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ABSTRACT The n-ary subdivision scheme has traditionally been designed to generate smooth curve and
surface from control polygon. In this paper, we propose a new subdivision depth computation technique for
n-ary subdivision scheme. The existing techniques do not ensure the computation of subdivision depth unless
some strong condition is assumed on the mask of the scheme. But our technique relaxes the effect of strong
condition assumed on the mask of the scheme by increasing the number of convolution steps. Consequently,
a more precise subdivision depth technique for a given error tolerance is presented in this paper.

INDEX TERMS Curves and surfaces, n-ary subdivision schemes, convolution, error, distance, subdivision
depth.

I. INTRODUCTION
The n-ary subdivision scheme (nASS) is defined as the
set of n-rules with respect to a sequence of control poly-
gons. The nASS takes a polygon as an input and produces
a refined polygon by applying n-rules on each edge of a
coarse polygon. The repeated applications of these n-rules
on the polygons produce a sequence of refined polygons.
The sequence of refined polygons converges to a smooth
shape. LetX0,X1, . . . ,X k , . . . be a sequence of polygons and
X∞ be a limiting shape then the distance (also called error)
between polygon and limiting shape approaches to zero as
k approaches to ∞. In literature, there are different types
of nASS but few of them are listed in [1]–[9]. Most of the
researchers have discussed the some of well known properties
of nASS such as smoothness/continuity, Hölder regularity,
approximation order and support of the scheme. But fewwork
has been done on error and subdivision depths of nASS. Let
the designer has error tolerance ε and the polygon is divided
k-times. If the distance between refined polygon at kth level
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TABLE 1. The convolution constants of 6-point binary scheme for curve.

and the limiting shape is less than ε then k is called the
subdivision depth of the limiting shape with respect to ε.
In other words, subdivision depth tells us the number of
subdivision steps needed to meet the designer error tolerance.

Afirst attempt to find the distance between polygon and the
limiting shape is done in [10] for binary subdivision schemes.
Its generalization for ternary and quaternary schemes was
done in [11], [12]. Its further generalization for n-ary scheme
was done in [13]. In this reference, the technique to compute
the subdivision depth has also been introduced. The distance
of a subdivision surface to its control polyhedron has been
computed in [14]. Generally, the above techniques do not
ensure the computations of subdivision depth unless some
strong condition is assumed on the mask of the schemes. The
condition for curve case is δ1 < 1 while for surface case is
δ2 < 1, where δ1 and δ2 are defined in ( [13], Equations (5)
and (6)).
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TABLE 2. Subdivision depths of 6-point binary scheme for curve.

TABLE 3. The convolution constants of 6-point binary scheme for surface.

The generalizations of the work of [10], [11] is done by
[15]–[17] by using the convolution technique.

The error bounds of Doo-Sabin surfaces have been com-
puted by Huawei et al. [18] in 2002. The different versions
of the error bounds and subdivision depths of Catmull-Clark
surfaces have been presented by [19]–[21]. The error bounds
and subdivision depths of Loop subdivision surfaces have
been computed by [22], [23]. But all these techniques have
not been extended for the computation of error bounds and
subdivision depths for n-ary, n > 2 schemes yet.
In this paper, we attempt to find the generalized version of

the work done in [13] by using the convolution technique. Our
technique can relax the effect of strong condition assumed on
themask of the schemes by increasing the number of convolu-
tion steps. Using the proposed technique, very less number of
iterations (subdivision depths) are required to reach the user
given error tolerance. So, this method reduces the burden of
computational cost.

Rest of the paper is arranged as: In Section 2, we find the
subdivision depth of the n-ary schemes for the generation
of curves. Section 3 is devoted for the generalization of the
work presented in Section 2 for surface case. The applica-
tions of our computational technique are given in Section 4.
Section 5 is for conclusion.

II. SUBDIVISION DEPTH OF n-ARY SCHEME FOR CURVE
As is usually the case in subdivision depth papers, we will
first describe our subdivision depth technique in a curve
setting and then generalize it for a surface.

A. PRELIMINARY RESULTS FOR CURVE
Let X k = {xki ; i ∈ Z} be a control polygon with points
in RN , where N ≥ 2 and k be an integer (non-negative),
which indicates the number of iterations (subdivision level).
A generalized n-ary subdivision scheme for curve is

described as

xk+1ni+α =

N−1∑
j=0

aα,jxki+j, α = 0, 1, . . . , n− 1, (1)

with
N−1∑
j=0

aα,j = 1, α = 0, 1, . . . , n− 1. (2)

By [13], we have
bβ,j =

j∑
h=0

(
aβ,h − aβ+1,h

)
, β = 0, 1, . . . , n− 2,

bn−1,j = a0,j −
n−2∑
β=0

bβ,j,

such that
N−1∑
j=0

|bβ,j| < 1, β=0, 1, . . . , n− 2, and
N−1∑
j=0

|bn−1,j| < 1.

We introduce the coefficients for u = 0, 1, . . . ,N − 1, such
that

tnu+γ = bγ,u, where γ = 0, 1, 2, . . . , n− 1. (3)

In the field of science, mathematics and engineering the
convolution product has been used. It is a process that can be
used for various branches of signal processing, edge detection
and data smoothing. Here in the following section, we define
some important results regarding the convolution of n-ary
subdivision scheme for curve.

B. ONE DIMENSIONAL CONVOLUTION REFORMULATION
Let (xl)l≥0 be a limited length vector and (tl)l∈N = (tl)

nN−1
l=0 ,

with tl = 0 if l ≥ nN . The one time convolution product of
x = (xl) and t = (tl) of n-ary subdivision scheme for curve
is given by

(x(0) ? t)f =
bf /nc∑
l=0

xl tf−nl, (4)

TABLE 4. Subdivision depths of 6-point binary scheme for surface.
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TABLE 5. The convolution constants of 4-point ternary scheme for curve.

where b.c denotes the integer part. Similarly, we get the
reformulation for c0th convolutions

((. . . (((x(0) ? t)(0)) ? t)(0) ? . . . ? t)(0) ? t)f =
bf /nc0c∑
l=0

xlE
c0
l,f ,

(5)

with 
E1
l,f = tf−nl,

Ec0l,f =
bf /nc0−1c∑
e=nl

E1
l,eE

c0−1
e,f , c0 ≥ 2.

(6)

By (5), we get

‖((. . . (((x(0) ? t)(0)) ? t)(0) ? . . . ? t)(0) ? t)‖∞

≤ ‖x‖∞ sup
f

{ bf /nc0c∑
l=0

|Ec0l,f |
}
. (7)

Lemma 1: The term Ec0l,f given in the right hand side of
inequality (7) has the following relation for n-ary subdivision
scheme

Ec0l,f = Ec0l+1,f+nc0 . (8)
Proof: Here, we begin the induction process over c0.

• Case c0 = 1

E1
l,f = tf−nl = tf+n−n(l+1) = E1

l+1,f+n, (9)

similarly

E1
l+1,f = tf−n(l+1) = E1

l,f−n. (10)

We suppose that for an integerM , it is true for c0 = M , so

EMl,f = EMl+1,f+nM . (11)

Now, we will prove for

• Case c0 = M + 1

Consider

EM+1l,f =

bf /nM c∑
d=nl

E1
l,dE

M
d,f .

By using (11), we acquire

EM+1l,f =

bf /nM c∑
d=nl

E1
l,dE

M
d+1,f+nM .

Now, replace d by d − n, then

EM+1l,f =

bf /nM+nc∑
d=n(l+1)

E1
l,d−nE

M
d−(n−1),f+nM .

Using (10) and (11), we have

EM+1l,f = EM+1
l+1,f+nM+1

.

This completes the proof. �
Similarly, in the following lemma, we can deduce an

another relation for the same term Ec0l,f .
Lemma 2: The term Ec0l,f has the following relation for

n-ary subdivision scheme

Ec0l,f = Ec0l−1,f−nc0 . (12)
Proof: Here, we start the induction process over c0.

• Case c0 = 1

E1
l,f = tf−nl = tf−n−n(l−1) = E1

l−1,f−n, (13)

similarly

E1
l−1,f = tf−n(l−1) = E1

l,f+n. (14)

We suppose that it is true for c0 = M , that is

EMl,f = EMl−1,f−nM . (15)

Now, we will prove for
• Case c0 = M + 1

Consider

EM+1l,f =

bf /nM c∑
d=nl

E1
l,dE

M
d,f .

By using (15), we acquire

EM+1l,f =

bf /nM c∑
d=nl

E1
l,dE

M
d−1,f−nM .

Now, replace d by d + n, then

EM+1l,f =

bf /nM−nc∑
d=n(l−1)

E1
l,d+nE

M
d+(n−1),f−nM .

Using (14) and (15), we have

EM+1l,f = EM+1
l−1,f−nM+1

.

This completes the proof. �

TABLE 6. Subdivision depths of 4-point ternary scheme for curve.
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TABLE 7. The convolution constants of 4-point ternary scheme for
surface.

Corollary 3: The term supf

{∑bf /nc0c
l=0 |Ec0l,f |

}
presented

in the right hand side of the inequality (7) has the following
alternate form

Tc0=sup
f

{ bf /nc0c∑
l=0

|Ec0l,f |
}
= sup
f ∈6(c0,N )

{ bf /nc0c∑
l=0

|Ec0l,f |
}
. (16)

Proof: Assume that t = {t0, t1, . . . , tnN−1}, with
N ∈ N and �(c0,N ) = (nc0 − (n − 1))(nN − 1). Then for
f > �(c0,N ) and by using (6), we acquire

Ec00,f = 0. (17)

If f > �(c0,N )+ wnc0 then by Lemma 1, we get

Ec0w,f = 0. (18)

Now by using (17) and (18), we get (16). �

C. SUBDIVISION DEPTH OF THE SCHEME FOR CURVE
Now firstly, we present some results for computing the dis-
tance between two consecutive polygons. Secondly, we com-
pute the distance between kth level polygon and limiting
curve. Then we describe an important theorem regarding the
subdivision depth.
Theorem 4: Let X k and X k+1 be two consecutive polygons

obtained from the subdivision scheme (1) then the distance
between these polygons is

‖X k+1 − X k‖∞ ≤ στ (Tc0 )
k , (19)

where Tc0 , c0 ≥ 1 defined in (16), τ = max
i

∥∥4x0i ∥∥ , and
σ = max

{∣∣∣∣∑N−2
j=0 ãα,j

∣∣∣∣, α = 0, 1, . . . , n− 1
}
,

where
ãα,0 =

N−1∑
h=1

aα,h − α
n ,

ãα,j =
N−1∑
h=j+1

aα,h, j ≥ 1, α = 0, 1, . . . , n− 1.

Proof: Similar to the proof given in [13]. �
Theorem 5: Let X k and X∞ be kth level polygon and

limiting curve respectively obtained from the subdivision
scheme (1) then the distance between them is∥∥∥X∞ − X k∥∥∥

∞

≤ στ

(
(Tc0 )

k

1− Tc0

)
, (20)

where c0 ≥ 1, such that Tc0 < 1.

Proof: Similar to the proof given in [13]. �
Theorem 6: Let k be the subdivision depth and θk be the

distance between X k and X∞. For arbitrary ε > 0, if

k ≥ logTc0

(
ε(1− Tc0 )

στ

)
, (21)

then θk ≤ ε.
Proof: Since by (20)

θk =

∥∥∥X∞ − X k∥∥∥
∞

≤ στ

(
(Tc0 )

k

1− Tc0

)
,

therefore to attain given error tolerance ε > 0, consider

στ

(
(Tc0 )

k

1− Tc0

)
≤ ε,

which implies
στ

ε(1− Tc0 )
≤ (T−1c0 )k .

Now taking logarithm, we have

k ≥
log

(
στ

ε(1−Tc0 )

)
logT−1c0

=

log
(

στ
ε(1−Tc0 )

)
− logTc0

= − logTc0

(
στ

ε(1− Tc0 )

)
= logTc0

(
στ

ε(1− Tc0 )

)−1
,

which implies

k ≥ logTc0

(
ε(1− Tc0 )

στ

)
,

then θk ≤ ε. This completes the proof. �

III. SUBDIVISION DEPTH OF n-ARY SCHEME FOR
SURFACE
The surface case is the generalization of the curve case:
We perform two dimensional convolution followed by the
computation of distance between polygons to compute the
subdivision depth.

A. PRELIMINARY RESULTS FOR SURFACE
Let X k = {xki,j; i, j ∈ Z} be a polygon at kth level with points
in RN , where N ≥ 2. A tensor product of n-ary subdivision
scheme (1) is described as

xk+1ni+α,nj+β =

N−1∑
r=0

N−1∑
s=0

aα,raβ,sxki+r,j+s,

α, β = 0, 1, . . . , n− 1, (22)

where aα,r and aβ,s satisfies (2).

TABLE 8. Subdivision depths of 4-point ternary scheme for surface.
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TABLE 9. The convolution constants of 4-point quaternary scheme for
curve.

We introduce the coefficients for u, v = 0, 1, . . . ,N − 1
such that{

ynu+γ = aγ,N−u−1,
znv+γ = bγ,N−v−1 γ = 0, 1, . . . , n− 1.

(23)

B. TWO DIMENSIONAL CONVOLUTION REFORMULATION
Let a vector x = xl,m has limited length and (yl) = (yl)

nN−1
l=0 ,

(zm) = (zm)
nN−1
m=0 with yl = zm = 0 if l,m ≥ nN . The

convolution product of x = (xl,m), y = (yl) and z = (zm) for
n-ary tensor product subdivision scheme for surface is given
by

xc0f ,g =
(
xc0−1;0 ? yz

)
f ,g
=

bf /nc∑
l=0

bg/nc∑
m=0

xc0−1l,m yf−nlzg−nm.

(24)

Similarly, we acquire the reformulation for c0-th convolutions

xc0f ,g = (. . . (((xc0−1;0 ? yz) ? yz) ? . . . ? yz) ? yz)f ,g

=

bf /nc0c∑
l=0

bg/nc0c∑
m=0

x0l,mE
c0,y
l,f Ec0,zm,g , (25)

with 
Ec0,yl,f =

bf /nc0−1c∑
p=nl

Ec0−1,yl,p Ec0−1,yp,f ,

Ec0,zm,g =
bg/nc0−1c∑
q=nm

Ec0−1,zm,q Ec0−1,zq,g .

(26)

From (25), we have

max
f ,g
|xc0f ,g|≤max

f ,g

bf /nc0c∑
l=0

bg/nc0c∑
m=0

|Ec0,yl,f ||E
c0,z
m,g |max

l,m
|x0l,m| (27)

and

max
f ,g

{ bf /nc0c∑
l=0

bg/nc0c∑
m=0

|Ec0,yl,f ||E
c0,z
m,g |

}

= max
f ,g∈6(c0,N )

{ bf /nc0c∑
l=0

bg/nc0c∑
m=0

|Ec0,yl,f ||E
c0,z
m,g |

}
. (28)

Also

Yc0 = max
f ∈6(c0,N )

{ bf /nc0c∑
l=0

|Ec0,yl,f |

}
(29)

and

Zc0 = max
g∈6(c0,N )

{ bg/nc0c∑
m=0

|Ec0,zm,g |

}
. (30)

C. SUBDIVISION DEPTH OF THE SCHEME FOR SURFACE
In this section, we first estimate the distance between two
successive polygon X k and X k+1 obtained from (22) then we
estimate the distance between polygon X k and the limiting
surface X∞. After that, we present the subdivision Depth of
the scheme for surface.
Theorem 7: Let X k and X k+1 be two consecutive polygons

obtained from the subdivision scheme (22) then the distance
between these polygons is

‖X k+1 − X k‖∞ ≤ (Yc0Zc0 )
k

3∑
h=1

(ξh)(ηhα,β ), (31)

where Yc0 and Zc0 for c0 ≥ 1 are defined in (29) − (30) and
ηhα,β , ξh, α, β = 0, 1, . . . , n− 1 are defined as

η1α,β =

∣∣∣∣aβ,0 N−1∑
h=1

aα,h −
α(n− β)

n2

∣∣∣∣+ ∣∣∣∣aβ,0 N−2∑
s=1

ãα,s

∣∣∣∣,
η2α,β =

∣∣∣∣ N−1∑
h=1

aβ,h −
β

n

∣∣∣∣+ ∣∣∣∣ N−1∑
r=0

aα,r
N−2∑
s=1

ãβ,s

∣∣∣∣,
η3α,β =

∣∣∣∣ N−1∑
h=1

aα,h
N−1∑
h=1

aβ,h −
αβ

n2

∣∣∣∣+ ∣∣∣∣ N−1∑
h=1

aβ,h
N−2∑
s=1

ãα,s

∣∣∣∣,
4
k
i,j,1 = xki+1,j − x

k
i,j, 4

k
i,j,2 = xki,j+1 − x

k
i,j,

4
k
i,j,3 = xki+1,j+1 − x

k
i,j+1,

ξh = max
i,j
‖4

0
i,j,h‖, h = 1, 2, 3.

Proof: Similar to the proof given in [13]. �
Theorem 8: Let X k and X∞ be kth level polygon and

limiting surface respectively obtained from the subdivision
scheme (22) then the distance between them is

‖X∞ − X k‖∞ ≤ ν
(

(Yc0Zc0 )
k

1− Yc0Zc0

)
, (32)

where c0 ≥ 1, such that Yc0Zc0 < 1 and ν is defined as

ν = max
α,β

{ 3∑
h=1

(ξh)(ηhα,β ), α, β = 0, 1, . . . , n− 1
}
.

Proof: Similar to the proof given in [13]. �

TABLE 10. Subdivision depths of 4-point quaternary scheme for curve.
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TABLE 11. The convolution constants of 4-point quaternary scheme for
surface.

Theorem 9: Let k be the subdivision depth and ϑk be the
distance between X k and X∞. For arbitrary ε > 0, if

k ≥ log(Yc0Zc0 )

(
ε(1− Yc0Zc0 )

ν

)
, (33)

then ϑk ≤ ε.
Proof: Since by (32)

ϑk = ‖X∞ − X k‖∞ ≤ ν
(

(Yc0Zc0 )
k

1− Yc0Zc0

)
.

To obtain given tolerance ε > 0, consider

ν

(
(Yc0Zc0 )

k

1− Yc0Zc0

)
≤ ε,

which implies(
ν

ε(1− Yc0Zc0 )

)
≤ ((Yc0Zc0 )

−1)k .

Now taking logarithm, we have

k ≥
log

(
ν

ε(1−Yc0Zc0 )

)
log(Yc0Zc0 )−1

=

log
(

ν
ε(1−Yc0Zc0 )

)
− log(Yc0Zc0 )

= − log(Yc0Zc0 )

(
ν

ε(1− Yc0Zc0 )

)
,

which implies

k ≥ log(Yc0Zc0 )

(
ν

ε(1− Yc0Yc0 )

)−1
,

which further implies

k ≥ log(Yc0Zc0 )

(
ε(1− Yc0Zc0 )

ν

)
,

then ϑk ≤ ε. This completes the proof. �

IV. NUMERICAL APPLICATIONS
In this section, the subdivision depths of some well known
n-ary approximating as well as interpolating subdivision
schemes are presented. The subdivision depths are presented
both in tabular and graphical forms.
Example 10: If we take n = 1 and v = 0 in

( [5], Theorem 1), we get the following coefficients/mask

involved in the affine combinations of the 6-point binary
interpolating scheme.

(a0,0, a0,1, a0,2, a0,3, a0,4, a0,5)

= (0, 0, 1, 0, 0, 0) ,

(a1,0, a1,1, a1,2, a1,3, a1,4, a1,5)

=

(
w,−

1
16
− 3w,

9
16
+ 2w,

9
16
+ 2w,−

1
16
− 3w,w

)
. (34)

• Curve case: The convolution constants Tc0 for c0 ≥ 1
of the scheme (34) are presented in Table 1. In Table 2,
subdivision depths are shown and their graphical view
is shown in Figure 1(a).

• Surface case: The convolution constants Yc0Zc0 for c0 ≥
1 of the tensor product of the scheme (34) are presented
in Table 3. In Table 4, subdivision depths are shown and
their graphical view is shown in Figure 1(b).

It has been observed that the subdivision depth decreases
with the increase of convolution steps. That is we need less
number of iterations to get the required result by increasing
the number of convolution steps.
Example 11: If we take w = − 35

24 in ( [6], Equation 9),
we get 4-point ternary approximating scheme with following
coefficients.

(a0,0, a0,1, a0,2, a0,3) =
(
−

55
1296

,
385
432

,
77
432

,−
35

1296

)
,

(a1,0, a1,1, a1,2, a1,3) =
(
−

1
16
,
9
16
,
9
16
,−

1
16

)
,

(a2,0, a2,1, a2,2, a2,3) =
(
−

35
1296

,
77
432

,
385
432

,−
55

1296

)
.

(35)

• Curve case: The convolution constants Tc0 of the
scheme (35) are gathered in Table 5. In Table 6, subdivi-
sion depths are shown and their graphical view is shown
in Figure 2(a).

• Surface case: The convolution constants Yc0Zc0 of
the tensor product of the scheme (35) are presented
in Table 7. In Table 8, subdivision depths are shown and
their graphical view is shown in Figure 2(b).

Example 12: If we set n = 4, b = 0 and the free parameter
as a4 = 7

32 −
7
64µ, a5 =

15
128 −

5
64µ, a6 =

7
128 −

3
64µ, a7 =

1
64 −

1
64µ in ( [3], Equations (4.9)-(4.10)), we get the fol-

lowing coefficients of the 4-point quaternary approximating

TABLE 12. Subdivision depths of 4-point quaternary scheme for surface.
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FIGURE 1. The subdivision depths of 6-point binary scheme for curve and surface at first and fourth convolution steps with
respect to the user-specified error tolerance.

FIGURE 2. The subdivision depths of 4-point ternary scheme for curve and surface at first and fourth convolution steps with
respect to the user-specified error tolerance.

TABLE 13. The convolution constants of 3-point quinary scheme for
curve.

scheme

(a0,0, a0,1, a0,2, a0,3) =
(

7
32
−

7
64
µ,

29
64
+

13
64
µ,

5
16
−

5
64
µ,

1
64
−

1
64
µ

)
,

(a1,0, a1,1, a1,2, a1,3) =
(

15
128
−

5
64
µ,

57
128
+

7
64
µ,

49
128
+

1
64
µ,

7
128
−

3
64
µ

)
,

(a2,0, a2,1, a2,2, a2,3) =
(

7
128
−

3
64
µ,

49
128
+

1
64
µ,

57
128
+

7
64
µ,

15
128
−

5
64
µ

)
,

(a3,0, a3,1, a3,2, a3,3) =
(

1
64
−

1
64
µ,

5
16
−

5
64
µ,

29
64
+

13
64
µ,

7
32
−

7
64
µ

)
. (36)

• Curve case: The convolution constants of the scheme (36)
are gathered in Table 9. In Table 10, subdivision
depths are shown and their graphical view is shown in
Figure 3(a).

• Surface case: The convolution constants of the tensor
product of the scheme (36) are presented in Table 11.

TABLE 14. Subdivision depths of 3-point quinary scheme for curve.
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FIGURE 3. The subdivision depths of 4-point quaternary scheme for curve and surface at first and fourth convolution steps
with respect to the user-specified error tolerance.

FIGURE 4. The subdivision depths of 3-point quinary scheme for curve and surface at first and fourth convolution steps
with respect to the user-specified error tolerance.

TABLE 15. The convolution constants of 3-point quinary scheme for
surface.

In Table 12, subdivision depths are shown and their
graphical view is shown in Figure 3(b).

Example 13: If we put n = 5 and b = 0 in
( [4], Equations (3.10)-(3.14)), we get the coefficients of
3-point quinary interpolating scheme

(a0,0, a0,1, a0,2) =
(

7
25
,
21
25
,−

3
25

)
,

(a1,0, a1,1, a1,2) =
(

3
25
,
24
25
,−

2
25

)
,

(a2,0, a2,1, a2,2) = (0, 1, 0) ,

(a3,0, a3,1, a3,2) =
(
−

2
25
,
24
25
,
3
25

)
,

(a4,0, a4,1, a4,2) =
(
−

3
25
,
21
25
,
7
25

)
. (37)

• Curve case: The convolution constants of the scheme (37)
are presented in Table 13. In Table 14, subdivision
depths are shown and their graphical view is shown
in Figure 4(a).

• Surface case: The convolution constants of the tensor
product of the scheme (37) are presented in Table 15.
In Table 16, subdivision depths are shown and their
graphical view is shown in Figure 4(b).

V. CONCLUSION AND FUTURE WORK
The main purpose of this research was to provide an opti-
mal technique to compute the subdivision depth. In other

TABLE 16. Subdivision depths of 3-point quinary scheme for surface.
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word, the aim was to predict the number of subdivision
steps required to get an error-tolerant shape. In this paper,
we have presented the technique to compute the depth of
n-ary subdivision scheme. The advantage of this technique
over the existing technique is that the strong condition
imposed on the mask/coefficients of the scheme can be
knocked out by increasing the number of convolution steps.
We have also presented the subdivision depths of binary,
ternary, quaternary and quinary schemes in this paper. These
examples sentence that the proposed technique is valid and
applicable for the computation of depth. The authors are look-
ing, as a future work, to extend the computational technique
of the subdivision depth of n-ary subdivision scheme for the
generation of the shapes in higher dimensions.
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