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ABSTRACT A spatial-temporal processing framework integrated of speech enhancement and speech
tracking is proposed in this paper for distant speech perception. First, weak speech signals are enhanced
by the deconvolved conventional beamforming (DCBF) with a microphone array. By virtue of the narrow
beamwidth and low sidelobes of the DCBF, the competing sources can be effectively suppressed without
introducing extra speech distortion. Second, with the accurate bearing provided by the DCBF, the Cubature
Kalman filter can be utilized to track the speech source of interest. By introducing a scaling factor in the
current statistical motionmodel, a new tracking algorithm is proposedwhich is suitable for bothmaneuvering
and nonmaneuvering speech sources. The introduced scaling factor can be adaptively adjusted to improve the
tracking performance of the proposed algorithm for different motion models. Numerical results show that
the proposed algorithm can provide better tracking performance than the conventional one. In particular,
the tracking root mean square error can be reduced by half for some cases.

INDEX TERMS Cubature Kalman filter, deconvolved conventional beamforming, improved current statis-
tical motion model, maneuvering speech source, speech perception system.

I. INTRODUCTION
Although the automatic speech recognition (ASR) products
have beenwidely implemented in practical applications, most
of ASR systems are only suitable for short-range speech
source within 5 m. The distant speech perception has not
been well studied yet, and is a challenging task due to the
severe signal attenuation, interference and background noise
[1]–[4]. In indoor environments, reverberation is the main
interference [5] while the wind noise is the main interference
in outdoor environments [6]. A typical speech enhancement
module is proposed in [1], consisting of a speaker tracker,
a beamformer, and a post-filter. When the speaker’s position
is estimated by the tracker, a beamformer is employed to
strengthen the sound waves coming from the direction of
interest. And the residual noise components are removed
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by a post-filter. In this paper, we develop a distant speech
perception system with novel beamforming algorithms and
enhanced maneuvering speech tracking capability.

The minimum-variance distortionless response
(MVDR) [7] is widely utilized in speech enhancement,
but the MVDR requires multiple snapshots to calculate the
sample covariance matrix. For a moving speech, there are
no enough snapshots for calculating the covariance matrix.
Thus, we consider the deconvolved conventional beamform-
ing (DCBF) to estimate the direction of arrival (DOA) of the
speech of interest. The DCBF has some advantages, such
as narrow beamwidth, low sidelobes comparable with the
MVDR, and moreover, it maintains the robustness of the
conventional beamforming (CBF).

It is of great interest to track a moving speaker of interest
in practice. The Kalman filter (KF) [8], the extended Kalman
filter (EKF) [9], the unscented Kalman filter (UKF) [10],
and the particle filter (PF) [11] are widely utilized in
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target tracking. Here, we consider the cubature Kalman filter
(CKF) [12] for speech tracking on account of its lower com-
putational complexity than the PF and better stability than
the UKF.

Sometimes, the speaker may abruptly stop for a while,
and then continue to walk. However, it is difficult to track
such a maneuvering target with some unknown time-varying
motion model. The current statistical (CS) model [13] can
be utilized to model the time-varying motion model. The
CS model assumes that given the current acceleration, the
probability density function of the acceleration at the next
instant is a modified Rayleigh density function whose mean
value is the current acceleration. The CS model is essentially
an extended Singer model adaptively with a non-zero mean
of the acceleration [14]. In [15], the limits of acceleration are
adaptively adjusted using the fuzzy control in the presence of
strong maneuvering. While in [16], the acceleration variance
is adaptively modified by estimation of the positional shift.
Besides, the interacting multiple model (IMM) algorithm is
widely utilized in tracking a maneuvering target, wherein the
target maneuver is modeled as a combination of different
motion models, such as a nonzero mean, white noise turn
rate dynamic model for tracking sharply maneuvering ground
targets [17], a combination of the constant velocity (CV)
model and the coordinated turn (CT) model with estimated
turn rate [18]. In particular, the IMM algorithm reduces to
the autonomous multiple model (AMM) algorithm when the
transition probability matrix (TPM) is an identity matrix [19].
In this paper, we propose an adaptive CS model by using
a scaling factor to improve the tracking performance of the
proposed algorithm for both maneuvering and nonmaneu-
vering motion models. Different from the previous methods,
the scaling factor is directly calculated using the residuals
during two successive iterations. And the initial parameters
are weighted with the scaling factor for next iteration.

The contributions of the paper include:
(1) A distant speech perception system is proposed by

integrating the DCBF algorithm and an improved tracking
algorithm. The existing speech perception and tracking tech-
niques are generally only effective for the case where the
speech source is at a distance ranging from 3 m to 6 m
[20], [21] and require a high signal-to-noise (SNR) at the
receiving end. In this paper, we are primarily interested in
the case where the speech source is at least 15 m far apart,
and the algorithms proposed in this paper perform very well
in our outdoor experiments.

(2) We extend the deconvolved conventional beamforming
algorithm to a circular array for the DOA estimation and
speech enhancement. Moreover, the DCBF proposed in [22]
which is only suitable for narrowband signals is extended to
be suitable for wideband signals by adopting the incoherent
signal-subspace processing scheme in this paper. The devel-
oped algorithms have been validated by our numerical and
experiment results.

(3) An adaptive CS model is developed to improve the
performance of our proposed tracking algorithm for both

maneuvering and nonmaneuvering motion models. To be
specific, we utilize a time-varying scaling factor to scale the
reciprocal of the maneuver time constant in the CS model.
It is worth mentioning that once a time-varying scaling factor
is introduced to scale the reciprocal of the maneuver time
constant in the CS model, the Cubature Kalman filter algo-
rithm, which is the tracking algorithm of our interest in this
paper, generally cannot be applied to the CS model anymore.
To overcome this, we set the product of the time-varying
reciprocal of the maneuver time constant and the sampling
period to be small, which is generally the case in prac-
tice since the sampling period is generally very small in
practical systems. Then, the implementation of the Cubature
Kalman filter algorithm is developed based on the proposed
improved current statistical model. As demonstrated by the
numerical and experimental results, the proposed adaptive CS
model works well for bothmaneuvering and nonmaneuvering
speech sources.

The remainder of this paper is organized as follows.
In Section II, the DCBF algorithm is derived for wide-
band speech signals. The adaptive CS model combined with
the CKF for speech tracking is introduced in Section III.
Section IV numerically evaluates the performance of the
DCBF processor and the adaptive CS-based Cubature
Kalman filter. Section V briefly describes the hardware plat-
form of the distant speech perception system. Experiment
results are presented in Section VI. Section VII summarizes
the paper.

II. WIDEBAND DCBF
Since the speech signal generally cover the frequency ranging
from 300 Hz to 3400 Hz, we consider wideband beamform-
ing techniques to estimate the DOA of the speech signal.
As shown in Fig. 1, the wideband signals are firstly decom-
posed into a group of narrowband components by using
Discrete Fourier Transform (DFT). Then, the narrowband
DCBF is employed for estimating the DOA for each fre-
quency bin. Then, the final DOA estimate can be obtained by
averaging the DOA estimates over all frequency bins. This
idea of extending the DCBF from narrowband signals to the
wideband signals is similar to that proposed in [23] which
is employed to estimate the spatio-temporal spectrum of the
signals received by a passive array. However, the applica-
tion considered in this paper is different from that in [23].
To be specific, we focus on the deconvolved conventional
beamforming approach while the paper [23] considers the
eigenstructure methods.

FIGURE 1. The scheme of DOA estimator for wideband signals.
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One of major advantages of the circular array is that the
shape of its beampattern is invariant to the look direction.
A wideband DCBF implemented on a circular array is our
focus. Consider an N -element circular array on the x-y plane
with radius r and its center at the origin of coordinate.1 The
array elements are evenly distributed on the circumference
which spatially sample a sound field at the locations:

[xn, yn]=
[
r cos(

2π
N
n), r sin(

2π
N
n)
]
, n=0, 1, . . . ,N−1.

(1)

In (1), we only consider the azimuth angle of incident
signals. For the case where the signals are not incident on
the horizontal plane containing the circular array, the CBF
can be firstly used to make a joint estimation of the azimuth
and elevation angles. Then, by using the estimated elevation
angle, the DCBF is utilized to accurately estimate the azimuth
angle.

Assume that there areK speech sources which emit signals
to the circular array from far field with different azimuth
angles θi and a known elevation angle φ0. The received signal
can be expressed as

X =
K∑
i=1

Aipi + n (2)

where Ai is a random signal amplitude and independent over
i, n denotes a white Gaussian noise vector with mean 0
and covariance σ 2I , which is independent of Ai, and pi is a
source-direction dependent vector, which is defined by

pi =
[
pi1, p

i
2, . . . , p

i
N

]T
=

[
e−jk(x1 cosφ0 cos θi+y1 cosφ0 sin θi),

e−jk(x2 cosφ0 cos θi+y2 cosφ0 sin θi),

. . . , e−jk(xN cosφ0 cos θi+yN cosφ0 sin θi)
]T

(3)

where j denotes the imaginary unit, k denotes wave number,
the superscript T denotes vector transpose. The exponent of
pin denotes the phase delay of signal from the center of the
circular array to the n-th array element.
In order to estimate the DOA of the signal by the CBF,

the steering vector s = [s1, s2, . . . sN ]T is multiplied by
the received signal X , so we can obtain the beam power for
different angle, where sn = 1

N e
−jk(xn cosφ0 cos θ+yn cosφ0 sin θ),

θ is referred to as the steering or look-direction angle. The
expected beam power is given by

Y (θ) = sH

 K∑
i,j=1

pi
〈
AiA∗j

〉
pHj +

〈
nnH

〉 s
=

K∑
i=1

〈
|Ai|2

〉 ∣∣∣sHpi∣∣∣2 + σ 2. (4)

1The element and receiver are interchangeable in this paper.

where <> denotes expectation. Note that σ 2 is independent
of s and known, and hence we can drop it in (4). As a result,

Y (θ) ∝
K∑
i=1

〈
|Ai|2

〉 ∣∣∣sHpi∣∣∣2 = ∫ 2π

0
Bp (θ, ϑ)S (ϑ) dϑ, (5)

where S (ϑ)
1
=
∑K

i=1
〈
|Ai|2

〉
δ (ϑ − θi) and

Bp (θ, θi)
1
=

∣∣∣sHpi∣∣∣2
=

∣∣∣∣∣ 1N
N∑
n=1

e
jkr
[
(cos θ−cos θi) cos

(
2πn
N

)
+(sin θ−sin θi) sin

(
2πn
N

)]∣∣∣∣∣
2

=

∣∣∣∣∣ 1N
N∑
n=1

e
j2kr sin

(
θ−θi
2

)
sin
(
2πn
N −

θ+θi
2

)∣∣∣∣∣
2

. (6)

Noting that as the number of the array elements N →∞,
(6) can be rewritten as

Bp (θ, θi) =

∣∣∣∣ 12π
∫ 2π

0
e
j2kr sin

(
θ−θi
2

)
sin
(
φ−

θ+θi
2

)
dφ

∣∣∣∣2
=

∣∣∣∣ 12π
∫ 2π

0
e
j2kr sin

(
θ−θi
2

)
sin(φ)

dφ

∣∣∣∣2
, Bp (θ − θi) (7)

Consequently, (5) can be rewritten as

Y (θ) =
∫ 2π

0
Bp (θ − ϑ) S (ϑ) dϑ (8)

From (8), we can see that the CBF beam power can be
expressed as the convolution of the beam pattern with the
source power distribution. Given the beam pattern of an array,
we can deconvolve the CBF beam power to estimate the bear-
ing distribution of the sources by using the Richardson-Lucy
(RL) algorithm [24], [25], and then we can estimate the DOA
of a source of interest. The R-L algorithm of deconvolution is
widely used in image processing where the channel impulse
response (CIR) is referred to as the point scattering func-
tion (PSF) and assumed to be position independent. We apply
R-L algorithm to the CBF beam power where the beam
pattern is viewed as the PSF to obtain the underlying signal
that has been corrupted by the PSF.

III. ADAPTIVE CUBATURE KALMAN FILTER
In this section, an adaptive Kalman filtering algorithm is
discussed for maneuvering speech source tracking. The state
equation and measurement equation are given by

xl = f (xl−1, ul−1)+ nl−1 and zl = h (xl)+ wl . (9)

where xl = [xl ẋl ẍl yl ẏl ÿl] ∈ Rnx is the state varible at the
time instant l, (xl, yl) , (ẋl, ẏl) and (ẍl, ÿl) are the position,
velocity and acceleration of the speech source, respectively;
f : Rnx × Rnu → Rnx and h : Rnx × Rnu → Rnz are some
known functions; ul ∈ Rnu is the control input; zl ∈ Rnz

is the measurement; {nl−1} and {wl} are independent process
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and measurement Gaussian noise sequences with zero means
and variances Ql−1 and Rl , respectively.

Since the azimuth angle of a speech source is obtained
by using beamforming techniques, the measurement equation
in (9) can be rewritten as

zl = arctan
(
yl − yo
xl − xo

)
+ wl (10)

where (xo, yo) is the position of the observer. It is clear that
the measurement equation is nonlinear.

A. IMPROVED MANEUVERING MODEL
The CS model [13] is widely utilized in tracking a maneu-
vering target. When a target is maneuvering with a certain
acceleration, the CS model assumes that its acceleration at
the next time instant is limited within a range around the
current acceleration. The acceleration can be modeled by a
modified Rayleigh density function with mean value equal to
the current acceleration. For simplicity, let’s first assume that
the target moves along one direction, that is, x-axis, and the
following results can be easily extended to the case where
the target moves arbitrarily in the two-dimensional space.
As such, the state vector xl = [xl ẋl ẍl] ∈ R3 and the
maneuvering model can be expressed as

ẍl = āl + al and ȧl = −αal + wl, (11)

where āl is the mean of maneuvering acceleration at time
instant l. al is the zero mean colored acceleration noise. α is
the reciprocal of the maneuver time constant, and wl is white
noise with zero mean and variance σ 2

w = 2ασ 2 [13].
When ẍl > 0, the probability density function is given by

Pr (ẍl) =


(amax − ẍl)

µ2 exp{−
(amax − ẍl)2

2µ2 } ẍl < amax

0 ẍl ≥ amax
(12)

where amax is the maximum positive acceleration and µ > 0
is a constant. The mean value and the variance of the random
acceleration ẍl are

E [ẍl] = amax −

√
π

2
µ and var [ẍl] =

4− π
2

µ2, (13)

respectively. Similarly, when ẍl < 0, the probability density
function has the form

Pr (ẍl)

=


(ẍl − a−max)

µ2 exp{−
(ẍl − a−max)2

2µ2 } ẍl > a−max

0 ẍl ≤ a−max
(14)

where a−max is negative. The mean value and the variance of
the random acceleration ẍl are

E [ẍl] = a−max +

√
π

2
µ and var [ẍl] =

4− π
2

µ2, (15)

respectively. The state equation in (9) can be rewritten as

xl = Fl|l−1xl−1 + Ul−1āl−1 + wl−1. (16)

where

Fl|l−1 =


1 T

1
α2

(
−1+ αT + e−αT

)
0 1

1
α

(
1− e−αT

)
0 0 e−αT

 (17)

Ul−1 =


1
α

(
−T +

αT 2

2
+

1− e−αT

α

)
T −

1− e−αT

α
1− e−αT

 (18)

By choosing T to be small enough such that αT is small,
Fl|l−1 can be reduced to

Fl|l−1 =

 1 T T 2/2
0 1 T
0 0 1

 1
= F, (19)

by employing the Taylor series of ex and ignoring
higher-order small terms. It is seen from (19) that Fl|l−1 is
independent of l and the choice of α. Similarly, Ul can be
approximated as Ul−1 = [0, 0, αT ]T .
It is clear that the CS model involves three parameters α,

amax , and a−max . These parameters need to be predetermined
in maneuvering target tracking. If some large values are
chosen for these three parameters, the CS model performs
well in tracking strong maneuvering targets which have large
accelerations and vastly time-varying motion models, but has
low accuracy in tracking nonmaneuvering targets which have
small accelerations and insignificantly time-varying motion
models. On the contrary, small values of α, amax , and a−max
may improve the accuracy of the nonmaneuvering target
tracking, but lead to poor performance in tracking strong
maneuvering targets. In light of this, we introduce a scaling
factor which can be adaptively adjusted to improve the track-
ing performance for both maneuvering and nonmaneuvering
targets.

The norm of the residual is defined by Dl = vTl P
−1
l vl ,

where vl =
(
zl − ẑl|l−1

)
denotes the residual, and Pl denotes

the covariance matrix of the residual at the time instant l.
For maneuvering targets, the difference between Dl and

Dl−1 is large. Otherwise, the difference is small. We define a
scaling factor as

λl = ln (Dl/Dl−1 + 1) , (20)

and therefore, the previous parameters at the instant of l is
adjusted as:

αl = λlα0, amax,l = λlamax,0, a−max,l = λla−max,0 (21)

where α0, amax,0 and a−max,0 are initial parameters.
For the case where the acceleration of the target is large,

the value of λl is also large, and therefore, αl , amax,l and
a−max,l are large enough to adapt to the target maneuvering.
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Otherwise, a small value λl is chosen when the acceleration
of the target is small with the goal of improving the accuracy
of target tracking. This improved CS model is referred to as
the adaptive CS (ACS) model in the following part.

B. CUBATURE KALMAN FILTER
For this nonlinear measurement model, a suboptimal solution
for estimating the state vector can be achieved by employing
the Cubature Kalman filter algorithm [26], [27]. As a result
of (19), for small αT , the state vector can be updated by

x̂l|l−1 = Fx̂l−1|l−1 + Ul−1āl−1 (22)

and its associated covariance is calculated as

Pl|l−1 = FPl−1|l−1FT + Ql−1. (23)

On the measurement update stage, the cubature points ξi,
i = 1, . . . ,L are transformed so that they can capture the
mean and covariance of the predicted density p (xl |zl−1) =
N
(
xl; x̂l|l−1,Pl|l−1

)
. The transformed points are

δi,l|l−1 =
√
P l|l−1ξi + x̂l|l−1, i = 1, . . . ,L (24)

where
√
Pl|l−1 is the matrix square root of Pl|l−1, that is,(√

Pl|l−1
) (√

Pl|l−1
)T
= Pl|l−1. The set of cubature points ξi

is defined by ξi =
√
nx[Inx

... − Inx ]i, where
... denotes matrix

concatenation, [A]i denotes the i-th column of matrix A, and
Inx is an identity matrix of size nx . The total number of points
required in a CKF is L = 2nx . Hence, a highly desirable
property of the CKF is that the required number of cubature
points increases only linearly with the dimension of the state
vector.

These transformed cubature points are then propagated
through the measurement function β i,l|l−1 = h(δi,l|l−1)
which are used to compute the predicted bearing measure-
ment as a weighted sum ẑl|l−1 =

∑L
i=1 wiβ i,l|l−1, where

wi = 1
2nx
, i = 1, 2, . . . ,L are the cubature weights. The

Kalman gain can be obtained as Gl = Pxz,l|l−1P
−1
zz,l|l−1

where

Pzz,l|l−1=
L∑
i=1

wi
(
β i,l|l−1−ẑl|l−1

) (
β i,l|l−1−ẑl|l−1

)T
+Rl

(25)

is the innovation covariance and

Pxz,l|l−1=
L∑
i=1

wi
(
δi,l|l−1−x̂l|l−1

) (
β i,l|l−1−ẑl|l−1

)T (26)

is the cross covariance matrix.
With a new measurement zl entering the algorithm, the

predicted state is updated using the Kalman gain as

x̂l|l = x̂l|l−1 + Gl
(
zl − ẑl|l−1

)
(27)

and the corresponding error covariance is given by

Pl|l = Pl|l−1 − GlPzz,l|l−1GTl . (28)

For simplicity, the Cubature Kalman filter based on the
ACS model is referred to as adaptive Cubature Kalman filter
in the paper.

IV. NUMERICAL SIMULATIONS AND PERFORMANCES
ANALYSIS
In this section, the performance of the DCBF for wideband
signals is compared with that of the CBF and the MVDR. In
addition, the adaptive CS model for tracking a maneuvering
target is also numerically evaluated.

A. PERFORMANCE EVALUATION OF DCBF
We consider a circular array with radius r = 0.5 m consisting
of 80 microphones evenly distributed on the circumference.
Assume that SNR is 10 dB and the sound speed c = 340 m/s.
The azimuth angle and the elevation angle are both 0◦. For the
sake of comparison, the DOA estimates produced by the CBF
and the MVDR are also given, respectively. The beam power
is respectively calculated at a given direction for each kr . The
number of iterations of the R-L algorithm is 20.

Fig. 2(a) shows the CBF beam output for kr ranging from
3 to 15. As expected, the CBF has a wide beamwidth at
low kr . Fig. 2(b) and Fig. 2(c) respectively depict the outputs
of the MVDR and the DCBF. It is seen from Fig. 2 that the
DCBF yields a narrower beamwidth and lower sidelobe levels
when compared to the CBF. In the wideband DOA estima-
tion, we consider a frequency range from 300 to 3400 Hz
which is contained in the Human voice frequency range. The
sampling frequency is 8 kHz. And a 1024-point fast Fourier
transform (FFT) is used for the spectral analysis of the time-
series. The RL algorithm runs with 20 iterations for each
frequency bin. The MVDR employs 160 snapshots while the
CBF and the DCBF only employ 10 snapshots. The azimuth
angle is 0◦. Fig. 3(a), (b) and (c) show the outputs of the
CBF, MVDR, DCBF for different frequencies. It is seen from
Fig. 3 that both the DCBF and the MVDR have narrow
beamwidths. Fig. 4 shows the average beampattern of the
three beamforming techniques. As illustrated in Fig. 4, the
DCBF performs the best in terms of beamwidth and sidelobe
levels, even though the DCBF uses fewer snapshots than the
MVDR. It is worth mentioning that the outputs of the DCBF
for all frequency bins are uniformly averaged in the wideband
DCBF algorithm.

In order to illustrate the superior directivity of the DCBF,
we consider the case where one signal source and one inter-
ference source are close in terms of directions. Specifically,
the azimuth angles of signal and interference are 0◦ and 3◦,
respectively. As shown in Fig. 5, the CBF and the MVDR
cannot identify two sources, but the DCBF can effectively
distinguish them.

B. ADAPTIVE CS MANEUVERING MODEL TESTING
In this section, the adaptive CS model is compared with the
conventional CS model in the context of tracking a maneu-
vering target by using the CKF. As shown in Fig. 6(a),
three receivers are located at (0 m, 0 m), (4000 m, 6000 m)
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FIGURE 2. Beamforming outputs with different kr . (a) CBF; (b) MVDR;
(c) DCBF.

and (7000 m, 5000 m), respectively. The standard deviation
of measurement of bearing is 5◦. The initial position of
the target is located at (3000 m, 7000 m). The sampling

FIGURE 3. Beam power outputs of all frequency bins. (a) CBF; (b) MVDR;
(c) DCBF.

time interval is 1 s and the total tracking time is 1200 s,
themotion of the target can be divided into five stages. During
the period of 0∼300 s, it moves with a unform velocity
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FIGURE 4. The wideband DOA estimations by the CBF, the MVDR and the
DCBF.

FIGURE 5. Resolution comparison among the CBF, the MVDR and the
DCBF.

(x = 15m/s, y = 0m/s), which is the stage I. Then it turns
right at a rate of 0.5◦/s for 300 s, which is the stage II.
From 601∼800 s, it moves with a uniform acceleration of
(ẍ = 0.02m/s2, ÿ = 0m/s2), which is the stage III. After
that, it moves with a uniform velocity during 801∼950 s,
which is the stage IV. During the final period of 250 s, it turns
left at a rate of 0.5◦/s, which is the stage V. The parameters
α0 = 1/60, amax,0 = 0.05m/s2 and a−max,0 =−0.05m/s2.
Fig. 6(a) depicts the true and estimated trajectories.

Fig. 6(b) shows the root-mean square errors (RMSEs) of the
CKF with the CS model and the ACS model. The number of
Monte Carlo runs is 500. It is seen from Fig. 6(a) that two
models can both track the target in the five stages. But, when
the target turns right or left, the tracking trajectories of two
models deviate the true trajectory as shown in Fig. 6(a) to
different extents. From Fig. 6(b), we can see that the ACS
model has a smaller RMSE than the CS model. In particular,
the tracking RMSE of the ACS model can be as small as half
of that of the CS model at time equal to 500 s. Thus, the ACS

FIGURE 6. Maneuvering target tracking with the CS model and the ACS
model. (a) True and estimated trajectories; (b) RMSE in position. The
circles denote the positions of three receivers.

model outperforms the CS model in tracking maneuvering
targets.

Further, the robustness of the ACS model is evaluated
using different initial parameters. Table 1 presents the over-
all average tracking RMSEs of two models with different
α0 and amax . In each table cell, the values before and after
the slash correspond the CS model and the ACS model,
respectively. The notation Inf in the table means that the
RMSE is too large. From Table 1, we can see that the ACS
model is better than the CS model since the former has small
RMSEs. Meanwhile, when α0 decreases, the RMSEs of the
CKF with the two motion models both decrease due to the
smaller step size in iteration. The ACS model has smaller
RMSEs than the CS model due to the significant role of
the scaling factor in tracking the strong maneuvering target.
What’s more, when α0 and amax deviate a lot from the true
value, such as α0 = 1/20 amax = 0.07, the target may be lost
when using the CS model but the ACS model can track the
target stablely.

Table 2 shows the tracking RMSEs for the target with
different maneuvering acceleration. Here, stage III denotes
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TABLE 1. Comparison between the ACS and the CS with different α0 and amax .

TABLE 2. Comparison between the ACS and the CS under different accelerations.

TABLE 3. Summary of processing algorithms.

the third stage with a uniform acceleration. It is obvious that
the ACS model outperforms the CS model when the target’s
acceleration becomes larger and larger. In addition, the track-
ing RMSEs for other stages are also provided in Table 2.
Similarly, the ACS model performs well when the target
turns right or left. In the first stage, when the target moves
with a constant velocity, the CS model shows slightly better
performance than that of the ACS model. But in the fourth
stage where the estimated angle produced by the DCBF is not
very accurate, theACSmodel has smaller RMSEs than the CS
model. This implies that the ACS model is more robust when
the estimated angle is not very accurate. Table 3 summarizes
some features of the DCBF, the CKF, and the adaptive CS
model. Detailed discussion on the pros and cons of the classic
tracking algorithms, such as KF, EKF, UKF, PF, CKF, IMM,
AMM, can be found in [14], [28]–[30] and references therein.

V. EXPERIMENTAL RESULTS
Besides the numerical results, we also build a real distant
speech perception system based on the proposed algorithm,
and we test the proposed algorithm based on the experimental

data. The experimental results show that when compared
with some conventional algorithm, the proposed algorithm
can achieve the same tracking performance with much lower
computational complexity.

The distant speech perception system is shown in Fig. 7.
The system consists of two microphone arrays, a signal
processing hardware platform and an upper computer. The
microphone rectangular array consists of eight horizontal
arrays with ten equally spaced elements. The element spacing
between two neighboring microphones is 3.8 cm. In the ver-
tical direction, the space between two neighboring horizontal
linear arrays is 3.8 cm. The circular array with radius 0.5 m
consist of 80 elements with a uniform spacing of 0.04 m.
As such, the beamforming algorithms implemented on the
two arrays can be integrated into the hardware platform to
capture distant speech signals in a real time manner, and the
recorded data are processed by our proposed algorithms on
the upper computer.

The omnidirectional microphone COTT-C5 has the sen-
sibility of −45 dB and the frequency response from 20 Hz
to 20 kHz. We developed an integrated pre-amplifier circuit
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FIGURE 7. The hardware platform.(a) Circular array; (b) Rectangular
array; (c) Processor cabinet and upper computer.

module to enhance the capability of microphones for sensing
weak speech signals. The signal processing platform consists
of a signal conditioning module, an A/D module, a main con-
troller unit and a DC power supply module. The signal condi-
tioning module consists of a amplifier with 20 dB gain and a
bandpass filter with a passband from 285 Hz to 3.7 kHz. The
signal conditioning module connects the A/D module with
a differential signal transmission cable. In the A/D module,

FIGURE 8. The experiment configuration.

the chips ADS1601 are used whose sampling rate is 48 kHz.
The Z-turn board based main controller unit consists of two
ARM Cortex-A9 processing systems and a Programmable
Logic unit, which are utilized for 80-channel synchronous
sampling, external communication, and the implementation
of beamforming etc. Meanwhile, the 80-channel data are
transmitted to the upper computer through RS-232 serial
ports, where the proposed wideband DCBF algorithm and
the improved tracking algorithms are implemented to the
received data for distant speech reception.

It is worth mentioning that the rectangular array is only
utilized to assist the circular array to estimate the initial posi-
tion of the speech of interest. Specifically, the CBF is applied
to the rectangular array to estimate the DOA of the speech
of interest. Meanwhile, the DOA of the speech of interest
is also estimated by the DCBF implemented on the circular
array. With the known positions of these two arrays and their
estimates of the DOA, we can estimate the initial position of
the speech source based on the Least Squaremethod.With the
estimated initial position of the speech source, we are able to
track the speech source in a real-time manner by solely using
the circular array with our proposed algorithms, which will
be illustrated in Fig. 9.

The system performance is tested in outdoor experiments.
The Fig. 8 shows the experimental setup. The centers of
the rectangular and circular array are respectively located at
(0m, 0m) and (10m, 0m) in the Cartesian coordinate system.
The speech source moves along a straight line from (−14 m,
15 m) to (25 m, 15 m). The speech of interest is a record
of an English lecture. The outdoor environmental noise level
is in the range from 53 to 55 dB. A 512-point DFT is used
in the wideband speech signal DOA estimation. In addition,
α0 = 1/60 and amax,0 = 0.1 m/s2 are chosen for the ACS
model.

The cubature Kalman filter is combined with the ACS
model (ACKF) to track a maneuvering speech source. The
speech source moves along a straight line from (25 m, 15 m)
to (−5 m, 15 m) and stops at the position (10 m, 15 m) for a
while. For the sake of comparison, the results of the PF with
the ACS model (APF) are also provided. In the tracking algo-
rithm, the initial positions are provided by the weighted least
square (LS) method with the estimated DOAs. It is seen from
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FIGURE 9. Position tracking of a maneuvering speech source using ACKF
and APF.

Fig. 9 that the ACKF and the APF can both stably track the
position of the speech source. And two tracking trajectories
almost overlap. The number of particles in the APF is 1000,
while the ACKF only uses 8 cubature points. Thus, the CKF
can achieve almost the same tracking performance as that of
the PF but with a much lower computational complexity.

VI. CONCLUSION
We have derived the wideband DCBF algorithm and designed
an adaptive cubature Kalman filter for a distant speech per-
ception system. The DCBF algorithm is extended from nar-
row band to wideband signals which is employed to estimate
of the DOA of the speech signal of interest using a circular
microphone array. With the adaptive CS motion model, it has
been shown that the cubature Kalman filter can reliably track
both maneuvering and nonmaneuvering speech source with
low computational complexity. By integrating the speech
enhancement approach and the improved tracking algorithm
into the hardware processing platform, we can capture the
distant speech and track the speech source movement in
a real-time manner, which has been demonstrated by the
outdoor experiments.
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