
Received September 14, 2020, accepted October 4, 2020, date of publication October 13, 2020, date of current version October 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030559

Rethinking the Weakness of Stream Ciphers and
Its Application to Encrypted Malware Detection
WILLIAM STONE 1, DAEYOUNG KIM 1, VICTOR YOUDOM KEMMOE 1, MINGON KANG2,
AND JUNGGAB SON 1, (Member, IEEE)
1Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA
2Department of Computer Science, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

Corresponding author: Junggab Son (json@kennesaw.edu)

This work was supported by the Ministry of Science and ICT (MSIT), South Korea, through the High-Potential Individuals Global Training
Program supervised by the Institute for Information and Communications Technology Planning and Evaluation (IITP) under Grant
2019-0-01601. The preliminary version of this article was presented in the Proceedings of 2019 International Conference on Computing,
Networking and Communications (ICNC’19) [1].

ABSTRACT One critical vulnerability of stream ciphers is the reuse of an encryption key. Since most stream
ciphers consist of only a key scheduling algorithm and an Exclusive OR (XOR) operation, an adversary may
break the cipher by XORing two captured ciphertexts generated under the same key. Various cryptanalysis
techniques based on this property have been introduced in order to recover plaintexts or encryption keys;
in contrast, this research reinterprets the vulnerability as a method of detecting stream ciphers from the
ciphertexts it generates. Patterns found in the values (characters) expressed across the bytes of a ciphertext
make the ciphertext distinguishable from random and are unique to each combination of ciphers and
encryption keys. We propose a scheme that uses these patterns as a fingerprint, which is capable of detecting
all ciphertexts of a given length generated by an encryption pair. The scheme can be utilized to detect a
specific type of malware that exploits a stream cipher with a stored key such as the DarkComet Remote
Access Trojan (RAT). We show that our scheme achieves 100% accuracy for messages longer than 13 bytes
in about 17 µsec, providing a fast and highly accurate tool to aid in encrypted malware detection.

INDEX TERMS Encryption, Intrusion Detection, malware, network security, stream ciphers.

I. INTRODUCTION
Key generation and use are the most significant factors in the
security of a stream cipher; consequently, they are also the
source of many vulnerabilities for the cryptosystem [2]. It is
a well-known fact that encrypting multiple messages using
a stream cipher with the same key could lead to an unin-
tended leakage of information, e.g., the many time pad (MTP)
attack [3]. There are many examples of attacks which make
use of theMTP or related keys to break the cryptosystem, i.e.,
recovering plaintexts and/or encryption keys [4], [5]. How-
ever, we reinterpret this weakness from the new perspective
of ciphertext classification. In a stream cipher, the encryption
process represents a deterministic mapping of the transition
of one specific value to another on a byte-by-byte basis.
Encrypting a certain value repeatedly using the same com-
bination of a cipher and key results in the output of the same
value each time, and also, encrypting multiple values using

The associate editor coordinating the review of this manuscript and
approving it for publication was Tai-Hoon Kim.

the same combination reveals patterns in the distributions of
values represented at each byte of the generated ciphertexts.

Utilizing these patterns and the principles of perfect
secrecy [6], this paper proposes a ciphertext discrimination
function: a machine learning algorithm with the capability to
classify a ciphertext as either likely to have been generated
by a stream cipher and key pair or not. The discrimination
function is developed using a Bayesian approach where the
likelihood that a collected message was generated by a given
cipher and encryption key can be determined using a model
trained from ciphertexts generated by the same combination
of encryption elements. Then, the discrimination function
compares the calculated likelihood of the collected message
against a message length-based threshold in order to classify
the message into one of the two groups. Since the only
assumption made is that the encryption scheme and key are
held constant, the detection scheme can be extended to con-
ditions where the key is not explicitly known.

One promising application of the discrimination function
is the detection of encrypted malware. Encrypted malware
is malicious software that utilizes encryption techniques to

191602 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2452-5544
https://orcid.org/0000-0002-4297-3834
https://orcid.org/0000-0003-1887-6396
https://orcid.org/0000-0002-6206-083X

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

hide its malicious intentions from a method of detection such
as traditional network monitoring. Since it cannot decrypt
ciphertexts for inspection, an encrypted malware packet will
appear as normal, benign communication to an unintelli-
gent monitor [7]. Developing a method to detect malicious
activity without necessitating the decryption of each message
is crucial. Decrypting each message individually is expen-
sive, further reduces message integrity, and is impossible
without the monitoring service knowing the scheme and
key used. The ciphertext discrimination function proposed
in this paper presents such a method. Training the monitor
to detect encrypted malware packets without decryption also
adds the notable benefits of fast and accurate inspection while
protecting the monitoring station from potential threats that
may occur during the process of inspection. Although there
is no generic solution that can detect all types of malware,
our proposed scheme can effectively detect a specific type
of malware such that it transfers encrypted packets using a
stream cipher with a fixed encryption key. Figure 1 illustrates
an encrypted malware detection scenario using the discrimi-
nation function.

FIGURE 1. Conceptual overview of a trained network monitor detecting
an infected machine from packets sent over the network.

Our simulation results show that the discrimination func-
tion is capable of classifying ciphertexts from the follow-
ing stream ciphers: RC4, ChaCha20-Poly1305, and Salsa20.
Furthermore, it works well with a subset of block cipher
modes of operation that operate similarly to stream ciphers,
such as Counter (CTR), Galois/Counter (GCM), and output
feedback (OFB) modes. To demonstrate that the discrimina-
tion function is effective in detection of encrypted malware
packets, we perform a comprehensive experiment with the
Remote Access Trojan (RAT) DarkComet. DarkComet is
known to use RC4 to encrypt its communication between
attacking and victim machines using a static key [8], [9].

The results show that the proposed scheme is highly fast
and accurate, as it achieves an accuracy of 100% for mes-
sages longer than 13 bytes, completing detection in approx-
imately 17 microseconds (µsec) on an Intel Core (TM)
i7-8700 processor.

The remainder of this paper is organized as follows: a liter-
ature review presented in Section II, followed by Section III
which describes the statistical weakness found in stream
ciphers that allows us to determine the discrimination func-
tion. Section IV outlines the scheme we have implemented to
perform the detection and a discussion of the testing and eval-
uation of the scheme is provided in Section V. An example
of deploying the scheme to detect encrypted malware packets
from a real-world simulation is given in Section VI. Finally,
in Section VII, we give some final statements and possible
direction for future works.

II. RELATED WORKS
To provide insight into the current state of malware and detec-
tion, a comprehensive literature survey has been conducted.
In this section, we introduce works related to the topics of
known weaknesses of stream ciphers, encryption techniques
used in malware, and more specifically, the utilization of
stream ciphers in encrypted malware.

A. WEAKNESSES OF AND ATTACKS ON STREAM CIPHERS
The vulnerabilities of stream ciphers often originate during
the generation of the key stream [10]. The cipher must create
a key stream equal in length to the plaintext that is to be
encrypted and the key stream must appear random. Since this
is completed through various algorithms and not generated
truly randomly in practical applications, certain insecurities
may propagate through the encryption scheme. Here we will
present works that study some of these vulnerabilities and
attacks which exploit them.

In [11], F. Armknecht presented the results of algebraic
attacks on stream ciphers, where he outlines a theoreti-
cal attack on a Bluetooth encryption system. ChaCha20-
Poly1305 is commonly used for Secure Shell (SSH) and
Transport Layer Security (TLS) secure communication tools.
In [12], the authors exposed a vulnerability of OpenSSH
and OpenSSL that allows for the discovery of cryptographic
artifacts existing in memory, providing an interested party
with the ability to crack secure-tunneled communications by
targetedmemory extraction. B. Jungk and S. Bhasin proposed
potential power and electromagnetic side-channel attacks on
ChaCha20-Poly1305 in [13].

From the time it was leaked to the public in 1994, RC4 has
been under research scrutiny in attempts to uncover potential
vulnerabilities. Jindal and Singh surveyed RC4, detailing
the implementation of the cipher, its application, and some
of the well-known weaknesses in [14]. They classified the
different vulnerabilities in the following manner: weak keys
(set of keys in the cipher which leave a trace in the keystream
or output bytes), key collisions (the generation of similar
output states from two different keys), key recovery from the

VOLUME 8, 2020 191603

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

keystream, state recovery (recovering the internal state of the
cipher), and biased bytes (an event produces a nonuniform
probability which does not follow the expected randomness
of byte production). A few notable weaknesses which have
been identified and well-documented include: bias of the
second byte towards 0 (biased bytes) [5], the initial byte
generated by the Key Scheduling Algorithm is highly related
to a few bytes from the key as discovered by Roos in 1995
(weak keys) [15], and the discovery that only a few keys
may determine the output state and many output bits with
significant probability by Fluhrer, Mantin, and Shamir (weak
keys) [16]. A practical key recovery attack is described in
[17]. Exploiting the potential for key collision, the secret key
can be discovered in non-negligible time when the key is
sufficiently large in a related-key model. The authors of [18]
investigated event outcomes of the RC4 stream cipher, report-
ing on non-randomness and biases that further contribute to
the cipher’s insecurity. During their research, they were able
to define a bias created by the length of the secret key used to
create the cipher’s keystream, which was then used for proofs
of attacks on Wired Equivalent Privacy (WEP) and Wire-
less Protected Access (WPA). The bias discovered shows a
correlation between the length of the secret key (`) and the
`-th byte of the keystream. Vanhoef and Piessens introduced
attacks on WPA-TKIP and TLS, which employ RC4, where
they proposed a fixed-plaintext algorithm that returns a set
of probable plaintexts [19]. The authors breakWPA-TKIP by
using biases that they detect empirically through statistical
analysis, allowing them to uncover the TKIP MIC key.

B. USE OF ENCRYPTION IN MALWARE DEVELOPMENT
Various studies have been conducted on the subject of encryp-
tion employed by malware. In 2007, Martignoni et al. pro-
posed a malware detection technique referred to as Omni-
Unpack which attempted to solve the problem of packed
malicious software or malware whose payload was either
encrypted or compressed in an attempt to hide its presence
[20]. In polymorphic malware applications, the programmer
may alter the encryption or compression, making traditional
signature detection difficult to impossible; the authors investi-
gated amethod to unpack themalware and expose the original
source code so that a software scanner could identify the mal-
ware based on the original signature. In [21], R. Zhao et al.
proposed a new approach to detecting the encryption func-
tions within network applications. Through dynamic taint and
data pattern analysis, the authors were able to detect various
encryption routines, including RC4, which can be used in
signature detection of the malware.

While malware may employ encryption techniques for the
purpose of polymorphism, it may also hide its communica-
tions using secure traffic protocols. A research series per-
formed by a group at Cisco studied the use of encryption and
TLS in malware [22]. Through this work, a random forest
classifier was ultimately created which distinguishes TLS
flow generated by malware [23]. In [24], Prasse et al. pro-
posed a Long Short-termMemory neural network which uses

only observable features of HTTPS traffic (client and host
IP addresses and ports, timestamps, data flow volume, and
the unencrypted host domain name) for malware classifica-
tion, claiming it outperforms random forest models in similar
applications with a 64% detection rate and 70% precision.
The authors of [25] proposed a distance-based, supervised
learning solution which suffers from the pitfall of relying on
collecting a large amount of traffic data and extracting the
features before any analysis can be completed. An approach
that analyzes persistent communications, instead of the pres-
ence of anomalies within the persistent communication itself,
is offered in [26].

Encryption is also a critical aspect of ransomware appli-
cations. When a machine is infected with this type of mal-
ware, the data stored on the machine is encrypted and the
secret key which unlocks the data is held at ransom. Surveys
on the history and growth of ransomware are presented in
[27] and [28], which include details on the different families
of ransomware, notable attacks, and prevention techniques.
An early-warning scheme which allows for the detection of
potential ransomware infection was developed in [29] using
the following indicators: file type changes, similarity mea-
surement between original data and its encrypted version, and
Shannon entropy. The authors determined these indicators
from the actions that each class of ransomware performs upon
deployment.

C. MALWARE EMPLOYING STREAM CIPHERS
Stream ciphers are often chosen as the means of encryption
in malware applications due to their speed and ease of imple-
mentation. RC4 is among the most popular choices, having
a few notable examples such as DarkComet, Zeus, Citadel,
and Dridex. DarkComet has been used in an array of exam-
ples, ranging from amateur attacks on personal data to state
surveillance [30], [31]. The Zeus malware, which emerged
in the late 2000s, is a trojan horse malware that served as a
significant threat in the banking industry. Binsalleeh et al.
provided an in-depth analysis of the Zeus botnet in their
paper [32]. Through reverse-engineering of the toolkit, the
authors were able to uncover the encryption key and a method
to thwart the malware’s HTTP communications through the
injection of false information. It was found that Zeus packets
contain information about the length of the packet and that
upon XORing the ciphertext and plaintext, the ‘‘stream key’’
can be found and used as a method for detecting encrypted
Zeus packets [33]. A framework for the detection of the
DarkComet RAT was developed in [34], with the authors
claiming 95.23% detection accuracy.

While RC4 appears to be the dominant stream cipher
used in communication obfuscation, likely due to its legacy
role in securing network traffic, other contemporary stream
ciphers used in malware development may be found in
crypto-ransomware applications. A survey of trends in ran-
somware development is given in [35]; a few malware pack-
ages provided as examples are also listed with their respective
encryption schemes (RC4, BlowFish, and Salsa20) and how

191604 VOLUME 8, 2020

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

the key is derived in each of these examples. A novel approach
to discover the artifacts of malware communications using
crypto-libraries found in Microsoft Windows is described in
[36]. Their method does not require any prior knowledge and
is extensible to other implementations in the cipher suite of
TLS, such as AES and ChaCha20; AES-GCM is used for all
malware samples sourced in their approach. The ransomware
LockerGoga was used to attack Norsk Hydro in 2019; the
authors of [37] found the scheme used to encrypt the affected
data was AES with CTR mode.

III. STATISTICAL WEAKNESSES OF STREAM CIPHERS
We use the term statistical weakness to describe a scenario
in which the difference between the probability of an event
occurring in theory and the probability of the event that is
actually observed is significant. In the domain of encryption,
this is most likely attributed to the creation and introduction
of randomness. The primary goal of a cipher is to obfuscate a
message to ensure privacy: only the author of the message
and privileged personnel (those who have the appropriate
decryption key) are able to read its contents. This is achieved
by making the message appear completely random to any
potential adversary or entity who does not possess the appro-
priate decryption key.

In our preliminary research, we discovered that the RC4
stream cipher generates unique patterns of ciphertexts under
the following conditions: encryptions are computed under a
fixed key and that the plaintext message and key both be
derived from the same set of literary characters [1]. This
section will provide more details regarding the preliminary
results, the extension of the discovery to other popular stream
ciphers, and explain how these patterns occur.

A. PRELIMINARY RESULTS
This paper is a continuation of the findings presented in [1].
As a result of their work, the authors present a machine learn-
ing algorithm which can be used to identify RC4 ciphertexts
based on the probability of characters observed in the mes-
sage. If ASCII-encoded messages are repeatedly encrypted
under a fixed ASCII-encoded key, each byte of the result-
ing ciphertexts will produce a unique pattern. Each pattern
represents the values that could possibly be expressed at that
byte of the message. As more messages are analyzed, the
patterns can then be used as probability distributions which
represent the probability that a value may be found at any
given byte. Because the patterns are unique and non-random,
it is possible to train a binary classifier to identify ciphertexts
using the patterns to determine the likelihood that a ciphertext
was generated via RC4.

B. PATTERNS GENERATED BY STREAM CIPHERS
Before continuing on to describe the source of these patterns
and the results of the other ciphers that were studied, it is
important to first introduce the notation we will use for the
remainder of this document. We define a message generically
as x having length L. Each character of x is symbolized as xi,

where xi is the character at the i-th byte (i.e. position) of the
message such that 0 ≤ i < L and x0 ≤ xi < xL . More
specifically, we will refer to a plaintext or ciphertext message
as p or c, respectively. A stream cipher, E , encrypts x under
its secret key k written as: E(k, x) or we may also denote the
cipher mechanism and its key as Ek .

Human languages are defined over a set of characters.
In the English language, both cases of all the alphabetical
characters, Arabic numerals, and common symbols create a
set of length 95, known as printable characters. A computer
interprets these symbols through their binary representation,
which is translated through an encoder. The ASCII encoding
scheme defines characters using one byte which provides a
range of 256 possibilities. However, as we have described,
only 95 values are printable or readable by humans. In ASCII,
these values span the range of 32-12610. This discrepancy
can be used to our advantage because we know that a stream
cipher encrypts messages character-by-character via a deter-
ministic mapping of a plaintext character to a ciphertext
character. This means that because the plaintext values origi-
nate from this truncated range, the ciphertext characters must
also exist in a subset of equally reduced size. So for any
given message encoded by ASCII, there are only 95 possible
values for each character, and consequently, only 95 values
for each character in the ciphertext produced by a stream
cipher. We can use this property to generate patterns for
byte values expressed in the ciphertext which are unique and
representative of a stream cipher and encryption key pair.

FIGURE 2. The distributions of values expressed over the first four bytes
of ChaCha20-Poly1305 ciphertexts (x-axis: byte value in the range of 0 to
255, y-axis: probability).

Beyond RC4, we have found that other stream ciphers
or block ciphers whose mode of operation causes it to per-
form like a stream cipher also generate similar statistical
patterns. We extended the study into the following schemes:
ChaCha20-Poly1305, Salsa20, and the Counter, Output-
Feedback, and Galois/Counter modes of operation. Figures 2
through 6 show the patterns generated under our testing
conditions. The figures were generated through fixed-key
encryption of 10,000 random messages containing the full

VOLUME 8, 2020 191605

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

FIGURE 3. The distributions of values expressed over the first four bytes
of Salsa20 ciphertexts (x-axis: byte value in the range of 0 to 255, y-axis:
probability).

FIGURE 4. The distributions of values expressed over the first four bytes
of AES-CTR ciphertexts (x-axis: byte value in the range of 0 to 255, y-axis:
probability).

array of printable ASCII values. Compare the distributions
of these figures with those of Figure 7. The results of the
latter are generated by AES operating under the standard
Cipherblock-Chaining (CBC) mode which performs like a
traditional block cipher. Here, there is no distinguishable pat-
tern and observed values are well-distributed over the range
of the 256 possible values.

C. USING PATTERNS TO DETECT CIPHERTEXTS
Because these distinct patterns are unique to a given encryp-
tion scheme and key, we can use them as a fingerprint for
the detection of the encrypting pair. The patterns can then be
used to construct a model capable of predicting the likelihood
that a message was encrypted by the given scheme under the
specified key. Using the results of the analyzed ciphertexts,
we can record the values at the i-th positions of each message
x with matrixM = [xij], where j is the decimal representation
of the character found at the i-th position of x such that 0 ≤
j ≤ 255. The indices ofM are used as frequency bins, so upon
analysis of xi, we determine the decimal representation of

FIGURE 5. The distributions of values expressed over the first four bytes
of AES-OFB ciphertexts (x-axis: byte value in the range of 0 to 255, y-axis:
probability).

FIGURE 6. The distributions of values expressed over the first four bytes
of AES-GCM ciphertexts (x-axis: byte value in the range of 0 to 255, y-axis:
probability).

FIGURE 7. The distributions of values expressed over the first four bytes
of AES CBC mode ciphertexts (x-axis: byte value in the range of 0 to 255,
y-axis: probability).

the character, j, and update M by incrementing the value
at position (i, j). This way, M may be used to determine
whether or not a character will appear at a specified byte in the

191606 VOLUME 8, 2020

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

ciphertexts generated by an encryption pair or the probability
of that character existing at that byte.

IV. STREAM CIPHERTEXT ANALYSIS SCHEME
In this paper, we propose machine learning-based schemes
that can detect ciphertexts generated by stream ciphers.
Specifically, we present two training scenarios: (a) when an
encryption key is easily obtainable and (b) when an encryp-
tion key is not obtainable. Then, we present two detection
scenarios: (i) when a complete set of ciphertext is available,
and (ii) when only a partial ciphertext is available.

A. NOTATION
For any byte ci in the ciphertext c, let the probability of the
value occurring at that byte be defined as P(ci). The condi-
tional probability that c is generated by encryption scheme
E under encryption key k is denoted as P(c|Ek) and that the
value found at the i-th byte of the ciphertext given Ek is
denoted as P(ci|Ek).

B. TRAINING PHASE
We consider two scenarios for modeling the ciphertexts gen-
erated by a stream cipher and key pair: when the encryption
key is known and when it is not. Because the mechanism of
the stream cipher creates these patterns under a fixed key,
the key is not necessary to perform the analysis. Training
the models in either scenario is the same; the only step that
changes is how the data used to train the model is obtained.
In the first scenario, knowledge of the key allows us to create
the optimal dataset because we are able to deduce precisely
which bytes the cipher will be directly mapped to. We can use
the key to generate all possible encryptions deterministically,
allowing the model to be trained from theoretical calcula-
tions. In the second scenario, when the key is unknown, the
patterns must be determined empirically.

1) BUILDING A MODEL
In order to exploit the statistical weakness of stream ciphers
as ameans for detection as described in Section III-C, we con-
struct our model around the matrix M . How we construct M
is dependent on our access to the encryption key; however,
in either case, the cells of M are used to collect the values
observed at each byte of each message in the observed data.

Let us first consider the case in which the key is known.
In this case, we are able to execute a type of chosen plaintext
analysis of the cipher, encrypting every possible printable
value. That is, a character xj in the printable ASCII range
generates the character cj when encrypted under Ek , or cj =
E(k, xj), where 3210 ≤ xj < 12710. Each message is the
repeated character xj, and we perform this for each character
(i.e. 95 times). This allows us to find the encryption of each
possible character at each position over the length L. We take
each cij generated during this analysis and use it to populate
the values ofM , where cij is the value j found at the i-th byte
of c. The bins of M are initialized to 0 and are updated by
incrementing at the position (i, j) accordingly.

Algorithm 1 Proposed Training Model
Generate training data:

1: if a key is known then
GenerateD ⊃ E(k,mi),A32 ≤ mi ≤ A127, where A is the
set of all ASCII characters represented in decimal form
and mi is the repeated character found at Ai

2: else
Generate D, through network monitoring. Captured sus-
picious messages are formatted such that each character
in the message is represented as its respective decimal
value

3: end if
Construct training model:

4: M =
∑L

i=0
∑255

j=0 aij = 0
5: for message ∈ D do
6: l = 0
7: for character ∈ message do
8: M [l][character]++
9: l ++
10: end for
11: end for

Calculate probability distributions:
12: for position ∈M do
13: sum =

∑L
i=0 position[i]

14: for val ∈ position do
15: val = val ÷ sum
16: end for
17: end for

Without access to the encryption key, we are unable to
execute the same test in indistinguishable time. Instead, let
us assume that we are able to capture a sufficiently large
set of ciphertexts generated under our specified conditions
of using a fixed cipher and key. Using these samples, we are
able to iterate over each character in each message of the set,
populating M through the same analysis of incrementing the
cij-th position of M . Algorithm 1 details the steps taken to
construct the model in either training scenario.

2) FINDING PROBABILITY IN PATTERNS
After generatingM , we now have a collection of encryptions
for all printable ASCII characters. Due to the nature of stream
ciphers, the encrypted value can only exist as one of 95 values
and because encrypted messages are generated using a fixed
key, we can observe a one-to-one relationship between x and
c. So using the patterns created by M , we can determine the
likelihood that c was generated by Ek .

First, the elements of M are converted from sums of
observations to their respective frequencies by dividing each
element by the total messages which were analyzed. Now,
each element inM is equivalent toP(cij|Ek), or the probability
that we would expect the observed value at each byte given
the cipher and encrypting key. In order to determine the
probability that an arbitrary message was generated by Ek ,

VOLUME 8, 2020 191607

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

FIGURE 8. Conceptual overview of the proposed scheme. Frequencies of values expressed at each byte across n
ciphertexts are collected in matrix M. P(ci |M) is determined by looking up the value at M[i, ci]. (x-axis: byte value in the
range of 0 to 255).

we calculate the a priori likelihood usingBayes’ Theorem (1).
Once P(Ek |c) is calculated, we use the discrimination func-
tion (2) to determine the binary classification of the result,
where θ is the classification rule also referred to as the
threshold.

P(Ek |c) =
P(c|Ek) · P(Ek)

P(c)
. (1)

P(Ek |c)
Ek
≷
¬Ek

θ (2)

The independent probabilities of P(Ek) and P(c) are con-
stant. The probability of c being encrypted by Ek and not
being encrypted by Ek are equal, i.e. P(Ek) = P(¬Ek).
Assuming a uniform distribution of the possible byte-values
of c (i.e. if cwas generated truly randomly), any ciphertext c1
is just as likely to exist as another ciphertext c2. Thus, we can
simplify Equation (1) to the proportional relationship:

P(Ek |c) ∝ P(c|Ek). (3)

That is, the probability of Ek given c is proportionally
related to the probability of c given Ek . We can use this
relationship and Bayes’ assumption of event independence to
define the probability of a ciphertext c given an encryption
scheme E with key k as the product of probabilities of the
value observed at each byte of c over its length L:

P(c|Ek) =
L∏
i=1

P(ci|Ek). (4)

Our model performs a simple binary classification: a mes-
sage is generated by Ek or it is not. We show that after

a minimum number of bytes, messages are distinguishable
from random in Section V which allows us to determine θ as
a point on a line which linearly separates the two classes.

C. DETERMINING THRESHOLDS
Due to the variable length of the captured information, it is
crucial that we determine θ as a function of L. We determine
an optimal decision threshold from the theoretical probability
of a message with length L if it was produced by a truly
random, uniform distribution. This uniform distribution is
what Claude Shannon concludes in his definition of perfect
secrecy. To appear random, the probability of all possible
events or encryptions must be equal [6]. In this case, each
event can be said to have probability of 1 divided by the
number of possible events.
Let us consider a ciphertext c with length L. Because a

stream cipher encrypts byte-by-byte, we can consider each
character of c, ci, as an individual event. In Section III-B,
we described how the ASCII encoding scheme uses a
one-byte binary number to represent all possible characters.
In theory, this should allow for 256 possible values to be
represented by a single character such that each ci, can be
considered to have probability P(ci) = 1/256. For a number
to be truly randomly-generated, each event must be inde-
pendent of another. Considering each byte independently,
we can calculate the probability of any c as the product of
the independent probabilities of each ci:

P(c) =
L∏
i=0

P(ci). (5)

191608 VOLUME 8, 2020

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

Because we are calculating small probabilities, we con-
sider the log-likelihood as:

P(c) =
L∏
i=0

ln(P(ci)). (6)

In the case that c was generated randomly and encoded in
ASCII we can determine the probability of c as:

P(c) =
L∏
i=0

1
256

or
1

256
× L. (7)

However, we have described a weakness of the stream
cipher that, when paired with an encoding scheme such as
ASCII, only produces values over a truncated range due to
only a fraction of the possible values being printable. The
number of printable values in ASCII is only 95, meaning that
when c is generated by a stream cipher each character effec-
tively has the probability of P(ci) = 1

95 and the probability
of c is P(c) = 1

95 × L. As a result of the difference between
P(ci), 0 ≤ ci < 256 and P(ci), 0 ≤ ci < 95, we are able to
calculate an optimal threshold that perfectly separates both
classifications.

The optimal threshold may be found by calculating (7) for
the length of the message currently evaluated. This threshold
is optimal because the calculated probability returned by the
equation is the P(c) when each ci is uniformly distributed.
Any deviation from this value indicates that the message
being evaluated is not truly random.

We can also determine a solution to calculate θ from the
training data. In somemonitoring scenarios, certain messages
may be repeated periodically (i.e., a connection status or
keepalive message). By calculating θ from the collected data,
we can incorporate these repeated messages in determining
the likelihood that a message belongs to the encryption pair.
First, P(c|Ek) is calculated for each message in the training
dataset. Because we expect all messages in the set to be
generated under the same conditions, we can order them with
respect to how probable they are to test positive, finding
the least probable positive case (most likely to read false
negative) and denote it as P+. Then, we may calculate the
probability of the message given a uniform distribution of
bytes at each element of the message using (7) and denote
it as P−. Finally, we calculate the threshold as the midpoint
of the distance between the two: θ = P++P−

2 which yields
the threshold that maximizes the separation between classes
at the current length. Finally, we need to determine θ as a
function of message length. As the length of the message
increases, we gain more information in calculating the like-
lihood that it was produced by a given cipher. With more
information, the likelihoods begin to diverge and the margin
between the two classes increases. Assuming the margins
continue to diverge in this manner, we calculate the simple
linear equation: θ = mL + θ0 to represent θ as a function of
L, where m is the slope of the line and θ0 is the intercept.

D. DETECTION PHASE
Once the models have been trained, they can then be used
to make predictions about our suspected ciphertexts. The
following sections describe the detection algorithms for when
the complete ciphertext is available and when we only have
access to a partial ciphertext.

1) DETECTION OF STREAM CIPHERTEXTS WHEN A
COMPLETE CIPHERTEXT IS AVAILABLE
First, we develop a solution to the scenario in which we have
as much information as possible: the complete ciphertext c
generated by Ek . We denote the likelihood that E was used
to generate c as P(Ek |c) which we defined to be proportional
to P(c|Ek) in (3). Thus, by calculating the independent prob-
abilities of each byte of c given the stream cipher Ek , we can
determine P(Ek |c) as:

P(Ek |c) ∝
L∏
i=1

P(ci|Ek). (8)

The presence of a stream cipher may be detected using the
discriminant function found in (2). Here, the likelihood that
the given stream cipher was used to generate the ciphertext
is evaluated against the threshold (θ) to determine whether
we can classify c as a ciphertext generated by Ek or not. The
steps taken to calculate (8) and appropriately classify c are
provided in Algorithm 2.

Algorithm 2 Detection of a Complete Ciphertext
Training model:

1: Use the training model in Algorithm 1
Calculate probability:

2: p = 0
3: i = 0
4: for xi ∈ x do
5: pi = M [i][xi]
6: p = p+ ln (pi)
7: i++
8: end for

Determine threshold
9: l = length(x)
10: θ = ln (1/256)× l

Detection
11: if p > θ then
12: return Ek
13: else
14: return ¬Ek
15: end if

2) DETECTION OF STREAM CIPHERTEXTS WHEN A PARTIAL
CIPHERTEXT IS AVAILABLE
We also extend our detection scheme to the scenario in which
a ciphertext is only partially available. In the previous section,
we described how our proposed scheme detects ciphertexts
encrypted by a stream cipher when the positions of values in

VOLUME 8, 2020 191609

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

Algorithm 3 Detection of a Partial Ciphertext
Training model:

1: Use the training model in Algorithm 1
Detection:

2: for i = 1 to (L −M + 1) do
3: pi=0
4: for j = 1 to M do
5: pi = pi + lnP(xi+j−1 = sj|RC4k)
6: end for
7: p=argmax pi
8: if (p > ζ) then
9: return Ek

10: end if
11: end for
12: return ¬Ek

the ciphertext are known. However, in a real-world scenario,
it is often difficult to know the exact position of a cipher-
text in traffic and some network protocols may experience
some amount of data loss. Since the patterns observed in the
collected ciphertexts are position-dependent, our proposed
scheme will not function properly when presented with only
a partial message. Instead, we must define a method to find
the most probable starting point of the partial message and
calculate an accurate likelihood from that position.

Suppose that we analyze only a slice of a network packet,
s = {si|1 ≤ i ≤ Ls} and s ⊂ c, where the size of the
partial packet is much shorter than that of the ciphertexts we
have gathered previously, i.e., Ls � L. We must determine
P(Ek |s), which we can use to infer if c = E(k, x). We begin
by determining themost probable position of s in c. We define
the likelihood function, P(i|s,Ek), which is how likely the
partial packet s is a subset of the ciphertext starting at i, where
1 ≤ i ≤ L. The log-likelihood, lnP(i|s,Ek), can be computed
by:

lnP(i|s,Ek) =
M∑
j=1

lnP(xi+j−1 = sj|Ek), (9)

where P(xi+j−1 = sj|Ek) represents the probability that the
byte value sj is observed in the (i+j−1)-th byte of themessage
x. Thus, P(xi+j−1 = sj|Ek) can be estimated by:

P(xi|Ek) =
ci(xi)+ α∑255
m=0 ci(m)+ α

(10)

and the maximum likelihood function returns the most proba-
ble position where the statistical patterns of the partial packet
match. The most probable position of the partial packet in c
can be obtained by calculating:

i∗ = argmax
i

lnP(i|s,Ek), (11)

where 1 ≤ i ≤ L − Ls + 1. An example of the log-likelihood
of a partial packet is illustrated in Figure 9. Using (9),
we describe howwemight find the position of a partial packet

FIGURE 9. Log-likelihood of a partial packet across a network packet.

in an original ciphertext. A partial packet of 18 bytes was
extracted from an RC4 ciphertext, the likelihood scores were
calculated in order to find the position of the partial packet in
the original RC4 ciphertext.

As seen in Figure 9, the distribution of the log-likelihood
shows that the highest score is approximately -82 at position
219, indicating the partial packet is most likely a subset of the
original ciphertext located between bytes 219 and 236.

In order to determine whether or not the partial packet s is a
subset of c, the discriminant function, L(s, k), is defined by a
log-posterior probability, lnP(Ek |s), which can be estimated
by the log-likelihood:

L(s, k) = lnP(Ek |s)

∝ lnP(i∗|s,Ek)

=

M∑
j=1

lnP(xi∗+j−1 = sj|Ek). (12)

Finally, ciphertexts can be detected by comparing with the
threshold (ζ):

L(s, k) =
M∑
j=1

lnP(xi∗+j−1 = sj|Ek)
Ek
≷
¬Ek

ζ. (13)

We empirically estimated the optimal threshold (ζ ∗) and
the minimum size (Ls) of the partial packet for cipher-
text detection, comparing the distributions of log-likelihood
scores of the two groups with synthetic data. The first group,
denoted as GC , includes only the log-likelihood scores com-
puted in the correct position, and the second, denoted as
GI contains the scores in the other positions. A cut-off
value that discriminates the two distributions is considered
the optimal threshold. In this study, the optimal thresh-
old is simply determined by the midpoint of the range,
[max(GI),min(GC)]. Specifically, we generated 10,000 RC4
ciphertexts and selected a partial packet of length Ls in a
random position of each ciphertext.

We considered various lengths of the partial pack-
ets: Ls ∈ {16, 18, 20, 26, 32, 34, 36, 40}. The empirically

191610 VOLUME 8, 2020

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

TABLE 1. The distributions of log-likelihood in GC and GI with various
lengths.

optimal thresholds for the various lengths of partial packets
are listed in Table 1. When the length of a partial packet
is 13 bytes, the two distributions overlap between -72.61
and -71.48, which results in misclassification. However, the
experiments show that the overlap decreases as the length
of partial packets increase because longer partial packets
provide more information about the statistical patterns of
the original ciphertext. The distributions of the two groups
separate from one another for lengths longer than 20 bytes,
allowing partial packets of 20 bytes or more to be detected
with 100% accuracy.

V. SIMULATION AND EVALUATION
We evaluated the proposed scheme using trained models for
each of the six cipher methods found to exhibit the studied
ciphertext patterns. Models were constructed from a syn-
thetic dataset generated using a fixed key as described in
Section IV-B which yields the optimal dataset. The distribu-
tions of M were calculated by sampling the set of 95 char-
acteristic messages with replacement 5000 times to simulate
training the model with 5000 messages. To generate testing
data, we encrypted 200 messages at various lengths for each
of the ciphers: 100 of which were generated under a fixed key,
while the remaining 100 were generated using random keys.
For each evaluation, the model is tested with 600 messages
at each length: 100 of which were generated by the same
cipher as the model and 500 from the remaining five ciphers
studied. We consider two sets of message lengths for testing,
the first of which is used to establish the lower detection
threshold and contains messages of 1 byte to 15 bytes in
length. The second set is used for the remaining tests and is
comprised of messages with lengths of 13, 16, 18, 20, 22,
24, 26, 30, 34, and 40 bytes. The evaluation to determine the

minimum detectable message length is tested with 9000 total
messages (1500 positive cases, 7500 negative cases) and the
remaining tests are conductedwith 6000 total messages (1000
positive cases, 5000 negative cases). The results of each of
the following evaluations are detailed in the remainder of this
section:
• determining the minimum detectable ciphertext length,
• determining detection time and accuracy dependent
upon ciphertext length,

• distinguishing fixed-key ciphertexts from those gener-
ated at random,

• distinguishing ciphertexts generated from different
ciphers.

A. MINIMUM DETECTABLE MESSAGE LENGTH
The proposed detection scheme uses the characteristic gaps in
value distributions of ciphertext bytes to determine the likeli-
hood that the ciphertext was generated by a given encryption
pair. Thus, any one byte alone is insufficient to make an accu-
rate, justifiable classification. In order to determine the point
at which our scheme can confidently detect Ek , we calculated
the message classification accuracy with lengths below the
minimum detectable message length as presented in Table 2.

TABLE 2. Detection accuracy below minimum detectable length.

At these shorter lengths, the scheme demonstrates a high
True Positive Rate (TPR) due to the overlap of the model’s
distributions with all other possibilities. The value expressed
at an arbitrary byte of a given ciphertext is likely to be
observed in many other configurations of Ek . In typical mal-
ware detection, minimizing Type I error is not a priority
because it does not affect the detection of actual malware.
However, because our scheme is designed to detect a cipher-
text generated by Ek from random, we must ensure that the
False Positive Rate (FPR) is zero. Each model has a slightly
different minimum length at which it achieves 100% accu-
racy, but for consistency, we will consider a message length
of 13 bytes to be the safe lower limit for classifiablemessages.

B. DETECTION TIME AND ACCURACY
Using 13 bytes as the minimum detection length, we tested
each model for accuracy and average detection time using

VOLUME 8, 2020 191611

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

TABLE 3. Minimum and maximum likelihoods calculated at various message lengths.

TABLE 4. Average detection times in µsec.

the 100 messages generated by Ek at each message length,
as seen in Table 3. Each model maintained 100% accuracy for
all messages at the tested lengths and we have provided the
minimum andmaximum calculated likelihoods calculated for
each. The minimum likelihood is important as it represents
the message in the dataset which is closest to presenting Type
II error. Messages shorter than 13 bytes may still be classified
accurately by chance, but when the minimum calculated like-
lihood is greater than the threshold, we can confidently say
that our model has made an accurate classification because
the classes are separable. We calculate the average minimum
likelihood for all models at lengths from 1 to 40 bytes and plot
them in Figure 10 to demonstrate how the model’s confidence
increases with message length.

The times taken to complete detection at each length are
provided in Table 4. Average times are listed in microsec-
onds with two standard deviations. Because our algorithm
uses each byte of the message to estimate likelihood, time
increases proportionally with the length of the message.

C. DISTINGUISHABILITY FROM RANDOM-KEY
CIPHERTEXTS
Next, we show that a model can perfectly distinguish cipher-
texts generated by the same encryption scheme under differ-
ent keys. Table 5 displays the calculations of the maximum

FIGURE 10. Average likelihoods calculated at various message lengths.

likelihood amongst the random-key ciphertexts. The model is
able to detect these messages and maintain perfect accuracy.
The maximum likelihood is the message that is closest to
present Type I error. The model easily detects random-key
cases as evidenced by the significant differences between the
calculated maximum likelihoods and θ at each level.

D. DISTINGUISHABILITY FROM OTHER MODELS
Finally, we show that the models are distinguishable from
one another. Using the fixed-key training set, each model
is tested with 500 ciphertexts comprised of the 100 mes-
sages encrypted by the other five ciphers at each testing

191612 VOLUME 8, 2020

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

TABLE 5. Distinguishability of ciphertexts generated under a random key by comparing the model’s most-probable false positive prediction to theta.

TABLE 6. Distinguishability between models for ciphers generated under the same key by comparing the relative most-probable false positive to theta.

length. In this scenario, each model has implemented the
same encryption key, so we can hold k constant as we change
E . As shown in Table 6, the maximum likelihood amongst
the 500 tests is provided to represent the message most likely
to be classified as a ciphertext generated by the current cipher,
i.e., presenting Type II error. The results of the evaluation
indicate that the models are distinct for each cipher and key,
preventing the misclassification of a ciphertext generated by
one of the other five models using the same key.

VI. EXPERIMENTAL RESULTS WITH DarkComet
We have studied and presented a statistical weakness found
in the ciphertexts generated by stream ciphers and proposed
techniques that may be used to detect them in different sce-
narios. This section is dedicated to detailing how our scheme
can be used to improve the detection of encrypted malware
through a real-world experiment on DarkComet.

For ease of implementation, encrypted malware tends to
use a pre-stored key to mitigate the difficulty of key sharing
once it has been deployed. In this case, the stored key can
be obtained via checking source code or through reverse
engineering, allowing us to generate the optimal dataset using
the known key. Conversely, other types of malware might
exploit a technique such as code obfuscation which renders
key acquisition almost impossible. Our training scenarios
address both of these potential conditions. By providing a
method to detect the use of a stream cipher, we can further
expand the discrimination function used to identify potential
malware traffic.

The RC4 stream cipher found wide use in secure technolo-
gies such as TLS, WEP, and WPA, among other applications.
Though its use in industry has since been replaced by other
encryption methods following the discovery of a multitude

of vulnerabilities, RC4 is still used by malware programmers
due to its ease of implementation. DarkComet, for example,
is a RAT that gained popularity in the early 2010s which
utilizes RC4 encryption under a fixed key to camouflage its
activity. In the following subsections, we describe the process
of how we can use our proposed algorithm to detect malware
in a situationwhere it is actively sending information between
a victim and an attacking machine using DarkComet.

A. DarkComet TESTING ENVIRONMENT
DarkComet 5.3.1 was installed in a secure testing environ-
ment configured on an offline machine. To study the malware
traffic, we set-up two virtual machines (VM) with one acting
as an attacker and the other as a victim. Both virtual machines
were deployed using VMware Player running versions of
Windows 10.

DarkComet infects a victim machine by deploying a stub.
When opened on the machine, the stub drops the payload
and initiates the connection with the attacker. To simulate
this event, the stub was copied to the victim VM via USB
and opened. Once connected, DarkComet begins to send
its encrypted messages via Transmission Control Protocol
(TCP). We used Wireshark on the attacking VM to capture
communications between the twomachines. Because we con-
figured the testing environment offline, filtering the packets
generated by DarkComet was trivial.

B. COLLECTION OF DarkComet PACKETS
Though it is now considered a malicious trojan, DarkComet
was originally designed more generally as a remote admin-
istration tool and provides functions used by other similar
applications. These tools include, but are not limited to:
screen capture, access to the secondary machine’s shell, and

VOLUME 8, 2020 191613

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

TABLE 7. Classification results of detecting DarkComet using the proposed scheme.

key-logging. It also has a collection of ‘‘Fun Functions’’
which provide features such as remote chat between the
two machines, a text-to-speech dictator, a piano which plays
sounds on the secondary machine, and options to show and
hide items on the GUI (clock, taskbar, desktop) amongst
others. We chose to primarily use these functions to generate
data as they are the most easily repeatable.

To generate communication data, we used the functions
within the DarkComet malware to send TCP packets between
the attacking and victim VMmachines, capturing these pack-
ets via Wireshark. Studying these messages, we found that
a DarkComet TCP packet consists of two parts: a header
that pertains to the function called and some appended text
regarding what the function will execute. For example, send-
ing the message ‘‘Hello, World!’’ via the remote chat func-
tion would produce a TCP packet with a payload containing
‘‘CHATOUTHello, World!’’ encrypted via RC4. This pay-
load is what we used as the data for our detection meth-
ods, discarding other information found in the header of the
packet.

To extract the payload, we exported the collected Wire-
shark data to a JSON file. Then, using a Python script, we fil-
tered out unwanted information so that we were left with only
TCP communications which contain a payload. The data is
output as hexadecimal values representing each byte, so we
wrote a method to convert the data to the appropriate ASCII
characters and then finally to the decimal representation of
each character.

C. DarkComet DETECTION USING THE DISCRIMINATION
FUNCTION
As described in Section II, we know that DarkComet employs
RC4 and uses a fixed key under which all messages are
encrypted. Conveniently, we know the standard key for
the version used in our simulation to be #KCMDDC51#-
890 [38]. This allows us to generate models synthetically or
via captured packets as proposed in Section IV-B. As we have
demonstrated the scheme’s efficacy using synthetic data via a

known key in the previous section, we will simulate building
the DarkComet model empirically.

We begin by collecting 10,000 malicious packets using
the DarkComet fun functions to generate traffic between the
two machines. Then, to complete our dataset, we obtained
benign samples by capturing packets from casual web surf-
ing on an uninfected machine. A testing set is gener-
ated using 500 packets from the web surfing data and
another 500 from the DarkComet traffic, labeling each benign
ormalignant accordingly. The remaining DarkComet packets
are allocated for training the detection model.

Each packet generated through DarkComet is prepended
with a plaintext ID pertaining to the function used to generate
the packet. Because this further reduces the variance in the
values expressed over the first n bytes, it can cause our model
to overfit itself to a dataset containing messages from an
imbalanced collection of message sources. We demonstrate
how we may use Algorithm 3 to detect a message where the
first n bytes are ignored.

Results of testing the model with messages sliced over
various lengths are provided in Table 7. Here, a perfect TPR
is maintained over the selected message lengths. This is due
to the positive class being generated from the same source as
the training data and under the same conditions, as introduced
in Section V. Since both training data and malware packets
were encrypted using RC4 and the same key, they must
share a unique distribution. There is no DarkComet packet
that does not fall under the distribution, and therefore, the
discrimination function retains the perfect TPR regardless of
the message length. However, it is not true that all benign
packets are generated from the distribution, and thus, the
discrimination function identifies a non-negligible number of
false positives when the length of the input is insufficient.
Due to these reasons, we use the FPR to indicate the model’s
efficacy. Furthermore, the FPR also tells us how many bytes
are necessary for the model to make accurate detection of a
malicious packet at the point which there are no more false
positives. Table 7 confirms our assertion that 13 bytes are the
minimum detectable message length because we eliminate

191614 VOLUME 8, 2020

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

false positives at this level, and the two classes become lin-
early separable.

VII. CONCLUSION
In this paper, we have expanded upon a novel approach to
detect the use of a stream cipher, showing that the findings
of [1] in regards to RC4 can be extended to other stream
ciphers or structurally-similar block cipher modes of opera-
tion. Aweakness produced by the properties of stream ciphers
and character encoding allowed us to create a unique finger-
print for a cipher and key. The proposed machine learning
scheme uses these fingerprints to discriminate ciphertexts
generated by the cipher and key from random. We evaluated
the models, demonstrating the distinguishability ciphertexts
generated by a stream cipher under different keys and also
from ciphertexts generated by other ciphers using the same
key. Experiments with the DarkComet RAT indicate that the
trained model also accurately classifies packets generated by
malware which uses a stream cipher to encrypt its commu-
nications. The model can detect such ciphertexts with 100%
accuracy for messages longer than 13 bytes in approximately
17 µsec.
There is no unique solution to detect all types of mal-

ware. Nonetheless, our proposed solution effectively detects
a specific type of malware that encrypts its traffic via a
stream cipher and a fixed key through use of a discrimina-
tion function. Our discovery and proposed scheme will aid
networking tools by providing a fast and accurate method
to detect encrypted malware which will ultimately produce
more robust network security solutions. In our future works,
we intend to expand our experiments through access to other
malware testing environments and extend our scheme to other
encoding standards such as Unicode variants.

REFERENCES
[1] J. Son, E. Ko, U. B. Boyanapalli, D. Kim, Y. Kim, and M. Kang, ‘‘Fast and

accurate machine learning-based malware detection via RC4 ciphertext
analysis,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), Feb. 2019,
pp. 159–163.

[2] R. Verdult. (Aug. 2015). Introduction to Cryptanalysis: Attacking
Stream Ciphers. [Online]. Available: http://www.cs.ru.nl/~rverdult/
Introduction_to_Cryptanalysis-Attacking_Stream_Ciphers.pdf

[3] D. E. Denning, ‘‘The many-time pad: Theme and variations,’’ in Proc.
IEEE Symp. Secur. Privacy, Apr. 1983, pp. 23–30.

[4] A. Grosul and D. Wallach, ‘‘A related-key cryptanalysis of RC4,’’ Dept.
Comput. Sci., Rice Univ., Houston, TX, USA, Tech. Rep. TR00-358, 2000.
[Online]. Available: https://scholarship.rice.edu/handle/1911/96275

[5] I. Mantin and A. Shamir, ‘‘A practical attack on broadcast RC4,’’ in Proc.
Int. Workshop Fast Softw. Encryption. Berlin, Germany: Springer-Verlag,
2001, pp. 152–164.

[6] C. E. Shannon, ‘‘Communication theory of secrecy systems,’’ Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.

[7] S. W. Brim and B. E. Carpenter. (Feb. 2002).Middleboxes: Taxonomy and
Issues. [Online]. Available: https://rfc-editor.org/rfc/rfc3234.txt

[8] B. Farinholt,M. Rezaeirad, P. Pearce, H. Dharmdasani, H. Yin, S. L. Blond,
D. McCoy, and K. Levchenko, ‘‘To catch a ratter: Monitoring the behavior
of amateur DarkComet RAT operators in the wild,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2017, pp. 770–787.

[9] Quequero. (2012). DarkComet Analysis-Understanding the Trojan
Used in Syrian Uprising. [Online]. Available: https://resources.
infosecinstitute.com/darkcomet-analysis-syria/

[10] Y. Dodis and J. Spencer, ‘‘On the (non) universality of the one-time
pad,’’ in Proc. 43rd Annu. IEEE Symp. Found. Comput. Sci., Nov. 2002,
pp. 376–385.

[11] F. Armknecht, ‘‘Algebraic attacks on stream ciphers,’’ inProc. ECCOMAS-
Eur. Congr. Comput. Methods Appl. Sci. Eng., Nov. 2004.

[12] P. McLaren, G. Russell, W. J. Buchanan, and Z. Tan, ‘‘Decrypting live
SSH traffic in virtual environments,’’ Digit. Invest., vol. 29, pp. 109–117,
Jun. 2019.

[13] B. Jungk and S. Bhasin, ‘‘Don’t fall into a trap: Physical side-channel
analysis of ChaCha20-Poly1305,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2017, pp. 1110–1115.

[14] P. Jindal and B. Singh, ‘‘A survey on RC4 stream cipher,’’ Int. J. Comput.
Netw. Inf. Secur., vol. 7, no. 7, pp. 37–45, Jun. 2015.

[15] A. Roos, ‘‘A class of weak keys in the RC4 stream cipher,’’ Vironix Softw.
Lab., Westville, South Africa, Tech. Rep. 1, 1995.

[16] S. R. Fluhrer, I. Mantin, and A. Shamir, ‘‘Weaknesses in the key scheduling
algorithm of rc4,’’ in Proc. 8th Annu. Int. Workshop Sel. Areas Cryptogr.
Berlin, Germany: Springer-Verlag, 2001, pp. 1–24.

[17] J. Chen and A. Miyaji, ‘‘A new practical key recovery attack on the
stream cipher RC4 under related-key model,’’ in Information Security
and Cryptology (Lecture Notes in Computer Science: Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6584.
Berlin, Germany: Springer, Oct. 2010, pp. 62–76.

[18] S. S. Gupta, S. Maitra, G. Paul, and S. Sarkar, ‘‘(Non-)random sequences
from (non-)random permutations—Analysis of RC4 stream cipher,’’
J. Cryptol., vol. 27, no. 1, pp. 67–108, Jan. 2014.

[19] M.Vanhoef and F. Piessens, ‘‘All your biases belong to us: BreakingRC4 in
WPA-TKIP and TLS,’’ in Proc. USENIX Secur. Symp., 2015, pp. 97–112.

[20] L. Martignoni, M. Christodorescu, and S. Jha, ‘‘OmniUnpack: Fast,
generic, and safe unpacking of malware,’’ in Proc. 23rd Annu. Comput.
Secur. Appl. Conf. (ACSAC), Dec. 2007, pp. 431–440.

[21] R. Zhao, D. Gu, J. Li, and Y. Zhang, ‘‘Automatic detection and analysis of
encrypted messages in malware,’’ in Information Security and Cryptology
(Lecture Notes in Computer Science: Lecture Notes in Artificial Intelli-
gence and LectureNotes in Bioinformatics), vol. 8567. Cham, Switzerland:
Springer, 2014, pp. 101–117.

[22] B. Anderson, S. Paul, andD.McGrew, ‘‘Decipheringmalware’s use of TLS
(without decryption),’’ J. Comput. Virol. Hacking Techn., vol. 14, no. 3,
pp. 195–211, Aug. 2018.

[23] B. Anderson and D. McGrew, ‘‘Machine learning for encrypted malware
traffic classification: Accounting for noisy labels and non-stationarity,’’
in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: Association for Computing Machinery, Aug. 2017,
pp. 1723–1732, doi: 10.1145/3097983.3098163.

[24] P. Prasse, L. Machlica, T. Pevny, J. Havelka, and T. Scheffer, ‘‘Malware
detection by analysing network traffic with neural networks,’’ in Proc.
IEEE Secur. Privacy Workshops (SPW), San Jose, CA, USA, May 2017,
pp. 205–210.

[25] R. Z. J. Liu, Z. Tian, and L. Liu, ‘‘A distance-based method for building an
encrypted malware traffic identification framework,’’ IEEE Access, no. 7,
pp. 100014–100028, 2019.

[26] J. Kohout and T. Pevny, ‘‘Unsupervised detection of malware in persistent
Web traffic,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Apr. 2015, pp. 1757–1761.

[27] H. Sultan, A. Khalique, S. I. Alam, and S. Tanweer, ‘‘A survey on ransome-
ware: Evolution, growth, and impact,’’ Int. J. Adv. Res. Comput. Sci., vol. 9,
no. 2, pp. 802–810, 2018, doi: 10.26483/ijarcs.v9i2.5858.

[28] J. P. Tailor and A. D. Patel, ‘‘A comprehensive survey: Ransomware
attacks prevention, monitoring and damage control,’’ Int. J. Res. Sci.
Innov., vol. 4, pp. 116–121, Jun. 2017. [Online]. Available: https://www.
rsisinternational.org

[29] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, ‘‘CryptoLock (and
drop It): Stopping ransomware attacks on user data,’’ in Proc. IEEE 36th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016, pp. 303–312.

[30] N. Anderson, ‘‘How the FBI found miss teen USA’s Webcam spy,’’ Ars
Technica, New York, NY, USA, Tech. Rep., 2013. [Online]. Available:
https://arstechnica.com/tech-policy/2013/09/miss-teen-usas-webcam-spy-
called-himself-cutefuzzypuppy/

[31] W. R. Marczak, J. Scott-Railton, M. Marquis-Boire, and V. Paxson,
‘‘When governments hack opponents: A look at actors and technology,’’
in Proc. 23rd USENIX Secur. Symp. (USENIX Security). San Diego,
CA, USA: USENIX Association, Aug. 2014, pp. 511–525. [Online].
Available: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/marczak

VOLUME 8, 2020 191615

http://dx.doi.org/10.1145/3097983.3098163
http://dx.doi.org/10.26483/ijarcs.v9i2.5858

W. Stone et al.: Rethinking the Weakness of Stream Ciphers and Its Application to Encrypted Malware Detection

[32] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,
M. Debbabi, and L. Wang, ‘‘On the analysis of the zeus botnet crimeware
toolkit,’’ inProc. 8th Int. Conf. Privacy, Secur. Trust, Aug. 2010, pp. 31–38.

[33] C. Park, H. Park, and K. Kim, ‘‘Realtime C&C zeus packet detection based
on RC4 decryption of packet length field,’’ Adv. Sci. Technol. Lett., vol. 64,
no. 14, pp. 55–59, 2014.

[34] A. A. Awad, S. G. Sayed, and S. A. Salem, ‘‘A host-based framework for
RAT bots detection,’’ in Proc. Int. Conf. Comput. Appl. (ICCA), Sep. 2017,
pp. 336–342.

[35] V. C. Craciun, A. Mogage, and E. Simion, ‘‘Trends in design of ran-
somware viruses,’’ in Innovative Security Solutions for Information Tech-
nology and Communications (Lecture Notes in Computer Science: Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 11359. Cham, Switzerland: Springer, 2019, pp. 259–272.

[36] P. McLaren, W. J. Buchanan, G. Russell, and Z. Tan, ‘‘Discovering
encrypted bot and ransomware payloads through memory inspection with-
out a priori knowledge,’’ 2019, arXiv:1907.11954. [Online]. Available:
http://arxiv.org/abs/1907.11954

[37] A. Adamov, A. Carlsson, and T. Surmacz, ‘‘An analysis of LockerGoga
ransomware,’’ in Proc. IEEE East-West Design Test Symp. (EWDTS),
Sep. 2019, pp. 1–5.

[38] L. Aylward, ‘‘Malware analysis-dark comet rat,’’ Context/Accenture
Secur., Essen, Germany, Tech. Rep. 1, 2011. [Online]. Available: https://
www.contextis.com/en/blog/malware-analysis-dark-comet-rat

WILLIAM STONE received the B.S.E. degree in
biomedical engineering from Mercer University,
Macon, GA, USA, in 2013. He is currently pur-
suing the M.S. degree in computer science from
Kennesaw State University, Marietta, GA, USA.
He is working under the supervision of Dr. J. Son
as a Research Assistant with Kennesaw State
University. His current research interests include
the domain of artificial intelligence and machine
learning with a focus on, but not limited to, the

implementation of data science tools to solve cybersecurity problems. His
other interests include data privacy, social networking, game theory, and
econometrics.

DAEYOUNG KIM received the B.S. degree in
electronic and computer engineering and the M.S.
degree in computer science and engineering from
Hanyang University, South Korea, in 2005 and
2007, respectively, and the Ph.D. degree in com-
puter science from Rutgers University, in 2019.
He is currently a limited-term Assistant Professor
of Computer Science with Kennesaw State Uni-
versity. His research interests include computer
security and privacy and mobile computing.

VICTOR YOUDOM KEMMOE received the B.Sc.
degree in computer science from Kennesaw State
University, GA, USA, in 2018, where he is cur-
rently pursuing the M.Sc. degree in computer sci-
ence. He is also a Graduate Research Assistant
with the Information and Intelligent Security Lab-
oratory, Kennesaw State University. His research
interests include applied cryptography, cyberse-
curity, blockchain and smart contracts, machine
learning in cybersecurity, and quantum computing.

MINGON KANG received the B.E. degree in
computer engineering from Hanyang University,
Ansan, South Korea, and the M.S. and Ph.D.
degrees in computer science from The Univer-
sity of Texas at Arlington, Arlington, TX, USA,
in 2010 and 2015, respectively. He is currently an
Assistant Professor with the Department of Com-
puter Science, University of Nevada Las Vegas.
He is the author of over 55 journal and conference
papers. His research interests include bioinformat-

ics, machine learning, data mining, and big data analytics.

JUNGGAB SON (Member, IEEE) received the
B.S.E. degree in computer science and engineering
from Hanyang University, Ansan, South Korea,
in 2009, and the Ph.D. degree in computer science
and engineering from Hanyang University, Seoul,
South Korea, in 2014.

From 2014 to 2016, he was a Postdoc-
toral Research Associate with the Department of
Mathematics and Physics, North Carolina Cen-
tral University. From 2016 to 2018, he was a

Research Fellow and a limited-term Assistant Professor with the Department
of Computer Science, Kennesaw State University, where he has been an
Assistant Professor with the Department of Computer Science, since 2018.
His research interests include applied cryptography, cybersecurity, privacy
protection, blockchain and smart contract, and datascience in cybersecurity.
He is an Associate Editor of IEEE ACCESS.

191616 VOLUME 8, 2020

