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ABSTRACT Ocular imaging has developed rapidly and plays a critical role in clinical care and ocular disease
management. Development of image processing technologies pertinent to ocular diseases has paved the way
for automated diagnostic systems including detection techniques using deep learning (DL) approaches. The
prevalence of an abnormal tissue layer in the conjunctiva, known as pterygium eye disease, is increasing due
to lack of awareness. Despite the non-cancerous/benign nature of pterygium, a clinical diagnosis from an
ophthalmologist is still required to prevent the pterygium tissues from extending into the pupil, which would
result in blurred vision. However, current diagnostic methods are mostly dependent on human expertise.
Automated detection can potentially serve as an assistive method to reduce diagnosis time by applying
a DL approach. Considering the lack of comprehensive research work on pterygium detection using DL,
we propose a new architecture consisting of an improved CNN-based trained network named VggNet16-
wbn that is derived from VggNet16, a pre-trained CNN algorithm. This paper presents an overview of the
DL as a core approach to the transfer learning (TL) concept, as well as current efforts towards automated
ocular detection approaches. A new architecture of a CNN-based trained network was proposed based on a
network assessment from six CNN pre-trained networks to detect pterygium. This work consists of two main
modules, namely, data acquisition and DCNN classification. The proposed trained network, VggNet16-wbn,
shows the best performance with 99.22% accuracy, 98.45% sensitivity, and a perfect score on specificity and
area under the curve metrics. This work has high potential for creating a pterygium screening system that
can be used as a baseline for fully automated detection using a DL approach.

INDEX TERMS Ocular imaging, pterygium detection, deep learning, transfer learning.

I. INTRODUCTION
Diseases caused by ultraviolet (UV) exposure affect
1.6 million people and account for an estimated 0.1% of
the total diseases in the world based on disability-adjusted
life years (DALYs) as measured by WHO’s Global Burden
of Disease (GBD) project [1], [2]. Ocular diseases, such as
pterygium, which involves the anterior structure of the eye,
are caused by excessive UV exposure and normally result
in eye dryness, irritation, and discomfort. From a worldwide
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view of pterygium prevalence that started early in the year
1965, Cameron [3] concluded that this disease is more
common in tropical regions. Approximately one-tenth of
Norfolk Islanders in Australia are positive for pterygium [4].
Moreover, the 9.5% prevalence of pterygium in South India,
especially in the tropical region, is associated with a lifetime
of high UV exposure [5]. The Singapore Malay Eye Study
has reported that the number of Malay adults with pterygium
is higher than that of Chinese adults by 12.3% [6]. Early
screening and detection of pterygium tissue can be performed
through clinical diagnosis by a trained ophthalmologist.
Examinations are executed using a slit lamp to detect the
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presence of pterygium. The presence of pterygium tissue can
also be seen clearly in the overview of a topographic map
of the anterior eye through the use of corneal topography
machines [7]. Current pterygium diagnosis methods rely
heavily on human expertise involving the use of expensive
diagnostic tools that takes time to execute.

The effort to achieve a fully automated pterygium detection
method using a digital image processing (DIP) approach has
been reported in previous research literature in which anterior
segment photographed images (ASPIs) of the eyes are cap-
tured using a slit lamp or regular digital camera [8]–[11]. The
three-step frame differencing technique has been introduced
to segment the cornea areas before the regions of interest are
fed to the feature extraction and cornea classification mod-
ules [9]. Technological advancement using machine learning
(ML) leads to increase in development of automatic ptery-
gium detection methods while reducing diagnostic time and
assisting ophthalmologists in the pterygium screening pro-
cess. ML implementation is based on learning image features
through a neural network (NN) of ASPIs input into the system
to predict the output image class from a probability calcu-
lated by the classifier function during the classification stage.
However, the implementation of this method requires several
conventional image processing steps by manual execution.

Automated detection, which has been widely used with
deep neural networks (DNN), exists as an alternative
approach to reduce diagnostic time. The implementation of
DNN requires large-scale data, thus becoming a challenge
for certain domains. As a solution, the concept of transfer
learning (TL) has been applied to overcome this constraint.
Based on a literature review, comprehensive research related
to pterygium detection using DNN is still currently limited.
DL method has long been applied in classification, tracking
and detection tasks for various diseases [12]–[17]. Therefore,
pterygium detection using TL in the DNN approach is pro-
posed in this study.

This paper is divided into five sections, starting with an
introduction of the entire research interest area of ocular
diseases, with an emphasis on pterygium. An overview of DL
in medical imaging including an evolutionary study of a pre-
trained convolutional neural network (CNN), an introduction
of pterygium disease and a review of implemented pterygium
detection methods using the DL through a TL approach
are discussed in Section 2. Section 3 presents the methods
to construct the proposed network, which is followed by a
discussion of the experimental results in Section 4. Finally,
Section 5 discusses the limitations of this work and recom-
mendations for future studies tomake the proposed pterygium
detection method more portable, accurate and efficient, thus
concluding this research conference.

II. BACKGROUND
In this section, we provide an overview of the DL approach
as a core approach to TL using CNN pretrained network,
followed by an introduction to pterygium and its medical
assessment.

A. OVERVIEW OF DEEP LEARNING
ML is a type of artificial intelligence (AI) that allows comput-
ers to learn by experience from a data sample without being
explicitly programmed. Through previous learning experi-
ences, the ML method searches for natural features in input
data that help in achieving good feature extraction results.ML
is widely used in the field of image processing and computer
vision and in various applications such as face recognition
and tumour detection [12]. There are three main categories
of ML, namely, supervised, unsupervised learning, and semi-
supervised learning [18]–[20]. Supervised learning refers to
the development of a predictive network based on information
from labelled input and output data. In unsupervised learning,
collected data is translated based on information gathered
from unlabelled input data. Semi-supervised learning is a
combination of feature learning from labelled data (super-
vised learning) and unlabelled data (unsupervised learning).
These types of learning can be applied to classification pre-
dictions in which input data are classified into appropriate
categories for medical imaging, voice recognition and credit
scoring [21]. In addition, regression predictions are used in
supervised learning to predict continuous responses, such as
changes in temperature or power, stock prices, and electricity
projection forecasts [20]. Clustering techniques, including
object identification, sequential gene analysis, and market
research, are commonly used in data analysis to find embed-
ded patterns in input data by unsupervised learning.

NNs are biologically-inspired sub techniques in ML that
aim to resemble the human nervous system. The visual cortex
contains an easy and complex alternate layer of cells in the
brain that inspired the creation of an artificial neural network
(ANN) architecture [22]. The NN architecture consists of
three processing layers, namely, the input, hidden, and output
layers, that are represented by several neuron units in each
layer. Generally, the NN data classification or identification
process undergoes three phases, namely, training, validation,
and testing. With advancements in data processing, the DL
method has been applied to achieve effective performance.

Deep learning in NN, or in a deep neural network (DNN),
is a study of a high level of data information that uses an
architectural hierarchy that starts from a low level and layer
by layer forms a specific feature. Deep learning processes
require more hidden layers than traditional NN [23]–[25]. DL
requires an advanced computer system technology to process
data in a DL structure, a deeper learning process and large
scales of input data to achieve maximum performance [26].
DL techniques include recurrent neural network (RNN) for
voice recognition and natural language processing [27], deep
belief network (DBN) as proposed by Hinton et al. [28]
in 2006 for use in stock price index forecasts [29], [30], and
CNN as proposed by LeCun et al. [31] in 1989, which is
also known as DNN, or more precisely, deep CNN (DCNN)
[24], [30], [32]–[34]. DCNN algorithms are typically used for
image classification with DL processes [14], [17], [33], [35],
[36], in which the hidden layers will process more layers;
DCNN algorithms are quite complex.
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CNN or ConvNet is a class of DNN that is most commonly
used in image analysis. It is a specific network used for clas-
sification through learning directly from input data sources,
such as images, videos, texts or voice [37], [38]. A DCNN
eliminates the need to deploy manual feature extractions as
documented in previous works [8], [9], [11], and the image
features can be extracted automatically. Image processing is
executed automatically during feature extraction via CNN;
the feature extraction mechanism is embedded within the
hidden network layer [39]. Feature extraction by CNN has
been proven to be more effective [17], [40] than manual
techniques in DIP.

B. PRETRAINED CNN
Implementation of DL techniques require large-scale
databases for maximum performance [41]. In some domains,
particularly in medical imaging, acquisition of large-scale
images or datasets is a challenging and difficult task because
of data-acquisition factors and other requirements. The image
classification task is based on DL methods employed in
the common phases of training, validation, and testing. The
DNN training process can be implemented using training
datasets of beginning or existing CNN-trained networks [42].
Learning from scratch refers to a process of training a data
set from the beginning [42], [43], which requires a manual
network configuration and a crucial understanding of the
DNN structure. Moreover, it requires a large quantity of
datasets so the DNN can study each feature in the new input
data. It therefore requires more effort and a longer training
time to perform early network training. Hence, TL becomes
an initiative step in training a new dataset without needing a
manual configuration of the network layer and data deficits.

TL is a common approach related to DL in computer vision
and natural language processing tasks; it was introduced fol-
lowing the emergence ofML in network training [44]. Instead
of training data from scratch, which requires large-scale data,
TL is an alternative for small data representations in DL [41],
[45]. TL is referred to as the transfer of relevant knowledge
and information that has been learned into a new task.

C. PTERYGIUM AND ITS MEDICAL ASSESSMENT
Pterygium refers to the abnormal tissue layer on the con-
junctiva known as wing-shaped conjunctivitis [6], [46], [47],
as illustrated in Fig. 1 (a). This ocular disease appears as a tri-
angular shape tissue, growing near the nasal area and invading
the cornea, as shown in Fig. 1 (c)[47]–[51]. The conjunctiva
is extremely susceptible to damage by UV rays, because it is
located at the outer lining, which protects the inner part of the
eye. Excessive UV rays are among the primary influences on
the prevalence of pterygium [46], [52]–[54].

Pinguecula is a common ocular disease similar to ptery-
gium, as depicted in Fig. 1 (b). As highlighted in Fig. 1 (d),
the pinguecula tissue is a yellowish white spot that appears
on the scleral area because of excessive UV exposure, as in
pterygium [46], [55]. Unlike pterygium, pinguecula does
not spread to the corneal area. However, it can potentially

FIGURE 1. ASPI of (a) pterygium, (b) pinguecula and appearance of
(c) pterygium tissue, (d) pinguecula tissue.

develop into pterygium if the tissue continues to grow on
the sclera and enter the corneal region [51]. According to
Viso et al. [54], this conjunctivitis tissue will lead to vision
disorders that are categorised as noncancerous; it is not harm-
ful [56] but should be of concern to prevent the disease
from causing vision disturbances. Nevertheless, pterygium
and pinguecula do not require serious treatment unless they
cause extreme discomfort, which would require consultation
with an ophthalmologist for further treatment.

The abnormal cells of conjunctivitis are associated with
gene anomalies that cause interference in eye cells. Contin-
uous UV radiation, especially UVB, disrupts the structure
of the eye cell DNA [56]. In addition to excessive sun-
light exposure, wind, dust, and excessively dry conditions
can also trigger abnormal tissue formation in the scleral
area [57]. Tropical countries along the equatorial region, such
as Malaysia, Brazil, and Australia, which receive the highest
UV intensities, are found to have higher prevalence of ptery-
gium and pinguecula [6], [47], [50], [55], [58]. According to
the Journal of Health Sciences, 88.9% of the farmers working
in the Cameron Highlands, Malaysia and 94.4% in Bachok
and Pasir Puteh, Kelantan, Malaysia are positive for ptery-
gium [59]. The formation of pterygium based onUV radiation
exposure factors has also been proven by recent studies
conducted in Padang Terap, Kedah, Malaysia; a majority of
patients suffer from pterygium and pinguecula [10]. This
can be attributed to the daily routines of the residents that
are consistently exposed to UV radiation for long periods.
Most of them are working as farmers, bus drivers, and
fishermen [9], [10].

1) MANUAL ASSESSMENT
Early detection of any disease is usually achieved through
clinical tests in hospitals or clinics where an ophthalmologist
will manually check for the presence of any abnormalities
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in patient’s eyes. During the diagnostic process, the use of a
UVfluorescent liquid, a yellow-coloured liquid, is focused on
abnormal tissue [60], which results in the manifestation of a
difference between the pterygium tissue and the normal tissue
in the eye. Abnormal tissues are visible in the early stages of
the pterygium progression, which spreads across the corneal
area of the eye. Nevertheless, the accuracy of detection and
diagnosis depends on the expertise and experience of the doc-
tors and the special instruments used. Additionally, the use of
UV fluorescent liquids can be cost inhibitive and may have
side effects on the patients [8], [9].

Corneal topography is an advanced medical assessment of
ocular diseases through a medical instrument that aims to
assist ophthalmologists in their diagnosis. It is used to map
the surface of the corneal tomographic image to visualise the
irregular abnormal tissues of pterygium. These instruments
are normally expensive and bulky, and human expertise is
needed to integrate the diagnosis report. Thus, clinicians are
now aware of the need for an automated detection approach
to assist with the diagnosis of ocular diseases.

2) TOWARDS AUTOMATED DETECTION
Previous studies have suggested appropriate methodologies
for the detection of many ocular diseases such as pterygium,
pinguecula, cataracts, glaucoma, and diabetic retinopathy
(DR) using DIP approaches in computer vision for medical
imaging. Image processing techniques applied on ASPIs pro-
duced by video keratographymachines provide a clear picture
of abnormal tissues for pterygium cases [9]. A video ker-
atography machine or corneal topography machine is usually
used by an eye specialist to verify the presence of pterygium.
Corneal topography uses a special device that radiates a series
of corneal light rings and is normally integrated with CAD
techniques to diagnose pterygium tissues [7]. In addition,
tomographic analysis is usually used to obtain information
on abnormal corneal surface qualities for use in image pro-
cessing methods [9], [61]–[63].

Mesquita and Figueiredo have applied the Circular Hough
technique (CHT) and the Otsu thresholding method to detect
the advancement of pterygium tissue in the ASPIs of the
eyes [64]. Their proposed method achieved 63.4% accuracy
and proved that the DIP approach could be used to investigate
pterygium cases. Another study conducted by Gao et al. [65]
applied Daugman’s algorithm in retro-illumination images
to detect pterygium and achieved 85.38% accuracy. In addi-
tion, early detection of pterygium disease using adaptive sig-
moid enhancement techniques performed well on the ASPI
database collected from [64]. This technique was successful
in detecting pterygium with 93.53% accuracy and 88.18%
specificity [8]. A study of pterygium detection in 2017
by [66], where the ASPI was obtained from a slit-lamp cam-
era, achieved 90% sensitivity.

Recently, in 2018, Zaki et al. [9] applied image enhance-
ments using sigmoid techniques, as in their previous study [8]
for pterygium disease detection. Prior to that, Hue, Satura-
tion, Value (HSV) contrast stretching had been applied to

diminish luminosity and the effects of artefact reflections
on the image. Corneal segmentation has also been applied,
where the corneal region is segmented as a foreground and
the non-corneal region as a background. Their studies have
yielded high accuracy, specificity, sensitivity, and AUC met-
rics of 91.27%, 88.3%, 88.7%, and 95.6%, respectively, using
ANN classifiers [9]. Nevertheless, this performance showed
a slight decline compared to their previous study in 2015 [9].
33Thus, based on previous work (see [8] and [9]), there have
been efforts to find an advanced approach for better automatic
pterygium detection using deep learning.

Detection techniques through image processing are geared
towards the development of automatic detection techniques
using machines in DL approaches. The DL network has
demonstrated outstanding performance in computer vision
applications because of the ability to extract the appropri-
ate features automatically [67], [68], specifically for image
classifications. The classification of images has been con-
ducted in the context of computer vision through tasks such
as detection, classification, recognition, segmentation, and
localisation [26], [69], [70]. To the best of our knowledge,
the implementation of DL approaches for pterygium ocu-
lar disease detection or screening is very limited. Recently,
pterygium detection has been conducted using TL in a DNN
approach by Zulkifley et al. [71] in which a Vgg network was
adopted to detect and localise pterygium tissues. While the
proposed method successfully achieved detection with 95%
sensitivity, 98.3% specificity and 81.1% localisation, the size
of the database used for validation was rather limited with
only 120 images. This work aims to improve the performance
of their proposed method by introducing a batch normali-
sation layer and then performing validation using a larger
number of images.

III. METHODOLOGY
A proposed block diagram of the pterygium detection using
a deep neural network is depicted in Fig. 2. It consists of
two main modules, namely, data acquisition and DCNN clas-
sification. A total of 386 pterygium and normal ASPIs are
obtained from local and non-local databases. Prior to the
development of the classificationmodule, all ASPIs were uni-
formly resized according to the input size of the six selected
CNN-trained networks. Then, the six selected CNN-trained
networks, namely, AlexNet [35], VggNet16, VggNet19 [72],
GoogLeNet [36], ResNet101 [73] and DenseNet201 [74]
were trained and evaluated with some hyper-parameter set-
tings using 5- and 10-fold cross-validation (CV) techniques.
Based on these preliminary results, the network with the
best performance was selected as the input to the proposed
network.

Fig. 3 shows a proposed trained network known as
VggNet16-wbn, in which additional batch normalisation lay-
ers have been integrated with the developed network. The
addition of a batch normalisation (BNorm) layer aims to
normalise the input layer to the next layer. This layer is
located between the convolutional layer and the rectified
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FIGURE 2. Proposed block diagram of pterygium detection using a deep
neural network.

linear unit (ReLU) activation function in order to reduce the
sensitivity at the beginning of the network on the next layer.
The BNorm is the statistical calculation of the subgroups
for the whole set of exercises through the mini-batch set
before the network training is conducted. These thirteen addi-
tional layers are highlighted with a yellow marker in Fig. 3.

The proposed method was implemented on an Intel Core
i7 personal computer with 8 GB of RAM and a 3.40 GHz
CPU. MATLAB
version 2018b (license no: 40699855) was
used to develop the CNN-trained network algorithms and
evaluate their statistical performance.

A. DATA ACQUISITION
In this work, 193 normal and 193 pterygiumASPIs have been
used that were acquired from local and nonlocal databases.
A set of 254 ASPIs from the total ASPIs have been cap-
tured using a high-resolution Leica camera from a Huawei
P9 smartphone; they are from a local database acquired
during the ‘Operasi Khidmat Masyarakat Optometri ke-26
(OPKOM-26)’ held in Padang Terap Community Centre,
Kedah. The OPKOM-26 was organised by the Department
of Optometry and Health Vision in the Faculty of Health
Science, UKM from 30th March to 1st April 2018, and these
images were verified and validated by an ophthalmologist.
During the data collection process, subjects were seated

on an adjustable chair with their eye, forehead and chin
placed towards the chinrest. A nonlocal database consisting
of 66 pterygium ASPIs contributed by [64] from the Centre
of Informatics, Federal University of Pernambuco, Recife
Brazil and 66 normal ASPIs were from an online database
UBIRIS [75], [76] were also used in this study.

B. DCNN CLASSIFICATION
The classification of ASPIs into either pterygium or normal
classes were conducted by first pre-processing an ASPI and
then setting the neural network parameter to produce a pre-
trained CNN model for classification.

1) PRE-PROCESSING ASPI
The input size in NNs were fixed by standardisation through-
out the network training. Raw input data were depicted in
the form of coloured images of red, green, and blue (RGB)
represented by three matrices that entered the CNN-trained
networks with different image sizes. Hence, all the ASPI
images were resized according to fixed input sizes on the pre-
trained CNN.

In addition, all resizedASPIs then underwent data augmen-
tation, which is a common technique for data management in
DL. This technique scales images by up to 10% vertically
and horizontally and then rotates the image randomly. Aug-
mentation techniques are applied to generalise the input data
size specified in the CNN-trained networks. However, this
process does not create a new database, instead, the data are
generated only during the training process. The network will
save all the extracted features without confronting overfit-
ting issues; the network training process takes some time to
complete.

2) NEURAL NETWORK PARAMETER SETTING
Network training tunes several parameters while training the
dataset in CNN-trained networks and applies optimisation
algorithms to minimise losses throughout the training pro-
cess. The general optimisation methods used were stochas-
tic gradient descent with momentum (SGDM), Adam and
RMSProp. An SGDM optimiser is applied to train datasets
in trained networks to observe the methods that affect the
accuracy, specificity, sensitivity, and area under the curve
(AUC) metrics of the obtained results. Gradient descent algo-
rithms update network parameters, such as weight and bias,
by taking steps through a negative gradient loss to minimise
the loss using (1),

θ`+1 = θ` − α∇E(θ`) (1)

where ` stands for the iteration number, θ is the parameter
vector, α > 0 is the learning rate, and E(θ ) is the abbreviation
for the loss function. The standard linear gradient algorithm
assesses the entire set of data at once, and the loss func-
tion at the gradient ∇E(θ ) is assessed as a whole training
set. A CNN-trained network algorithm evaluates the slope
and updates the parameters using a set of hyper-parameter
training sets known as a mini-batch of 10. Each gradient
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FIGURE 3. Proposed network architecture of VggNet16-wbn. These network shows the revolution of purposed network sourced by VggNet16 [72].

assessment that uses a mini-batch is an iteration. A full pass
on the training algorithm for the whole dataset using a mini-
batch is an epoch, which is the whole cycle of training with
20 cycles. The loss function is minimised in every iteration by
the optimisation algorithm throughout the network training.
A large probability stochastic gradient will oscillate along the
steep slope towards the optimisation of the training network.
This problem is overcome by adding the term momentum to
the parameter update as a measure to reduce the swing at the
slope [77], as shown with (2),

θ`+1 = θ` − α∇E(θ`)+ γ (θ` − θ`−1) (2)

where the addition of γ from the original (1) determines the
merging of the previous gradient step to the current iteration.
The learning rate is the proportion of the learning machine
in an NN as a major hyper-parameter that controls the speed
of learning. The smaller the value of learning rate, the more
precise the classification in the learning process. The learning
rate value used to train the training dataset in this study was
lowered to the value of 0.0001, but it took much longer to
train compared with using the value of 0.01. Nevertheless,
performance can be improved with the use of a small learning
value. These hyper-parameters were tested empirically using
an AlexNet network with a single central processor unit
(CPU). Regardless, the network structure of AlexNet is a base
reference for all the CNN-trained networks.

3) PRE-TRAINED CNN MODEL
The network assessment on six CNN-trained networks was
conducted through an evaluation with k-fold cross-validation
(CV) techniques to acquire the generalisation of CNN net-
works towards the unseen samples data. A total of 386 ASPIs
have been trained and tested for 5- and 10-fold CVs to
obtain the data generalisations among the databases. There
was some disagreement regarding the implementation of CV
techniques for small-scale samples on whether they will
weaken or reduce the network accuracy in identifying image
classification, as stated by Varoquaux [81]. This is because
the partition of the sample on the small part will increase the
level of loss with one false prediction. However, Varoquaux

studies are based on neuroimaging images that are more
complex than pterygium and normal ASPIs. In this exper-
imental work, ASPI samples are divided into five partition
with 20% (5-fold); 4 (training):1 (testing) partition, and ten
partition with 10% (10-fold); 9 (training):1 (testing) partition,
alternately. The CV techniques implement a training and
testing network, where one portion of samples was used for
testing and the rest for training. These partitions alternate for
5- and 10-fold training and testing accordingly. Therefore,
the proposed network was conducted on a 10-fold CV after
comparison with well-known six CNN pre-trained networks.
Training and Testing Network: The network accepts an

image that appears as a collection of numbers in a matrix
where each number represents the intensity of light at the
focal points known as pixels. Raw input data in the form
of coloured images of red, green, and blue (RGB) repre-
sent three matrices in colour intensity with augmented sizes
according to a specific network with a default input size.

Generally, feature extraction in a convolutional network is
performed by a feature extractor in the convolutional layer.
DCNN has a much deeper network layer compared to a basic
convolutional network. The training network starts with input
data on the network, followed by several feature extraction
layers of convolution, ReLU, pooling, and additional lay-
ers, and a classification layer. Additional layers of processes
during feature extraction, such as batch normalisation, depth
concatenation, normalised local response, and dropout, are
added for enhancement in characteristic learning. The imple-
mentation of these additional layers is different for each CNN
pre-trained network. NN processing starts with input data,
which can be in the form of images, videos, text or audio
sources, among which images are used as the input data in
the CNN pre-trained network.

The training network used a set of training images that
correspond to a 5- and 10-fold CV. As we implemented the
TLs, which reuse the pretrained network, the weight of the
ten initial layers of the proposed network and six CNN pre-
trained networks were frozen to retain the trained weight
for pterygium and normal ASPIs classification. It is recom-
mended to freeze the initial layer for a small-scale database.
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TABLE 1. Performance of AlexNet network tested using each CHP values.

The non-frozen layers will proceed the feature extraction
process. However, the final layer of fully connected layers
was changed to a new layer according to the classification
of the pterygium and a normal ASPI, and the classification
layer was changed as well. A new set of images was tested to
classify the pterygium and normal classes using the features
extracted throughout the training progress.

IV. RESULTS AND DISCUSSION
In this experimental work, the proposed trained network has
been evaluated against six established CNN pre-trained net-
works. They are AlexNet with eight layers, VggNet16 with
16 layers, VggNet19 with 19 layers, GoogLeNet with
22 layers, ResNet101 with 101 layers and DenseNet201
with 201 layers. The layers represent feature extraction
processes. The six selected networks are evaluated with
some hyper-parameter settings using 5- and 10-fold cross-
validation (CV) techniques. Based on these preliminary
results, a network with the best performance is selected as
input into the proposed network.

For the hyper-parameter setting, each hyper-parameter
value is tested on the ASPIs myMata database using the
AlexNet network. In this regard, the AlexNet network is
the basis of the CNN pre-trained network architecture since
the hyper-parameter settings canmeet the needs of other CNN
pre-trained networks during training. The ASPI database is
divided into three sets, where 70% of all the images were
used as the training set, 10% as the validation set and 20%
as the test set. These hyper-parameter values were tested to
determine the suitable value for 5-folds and 10-folds CV
network training. Table 1 shows the performance of each
combination of the hyper-parameter (CHP) values. Evalu-
ations were conducted on mini-batch sizes of 10, 32, and
64, in accordance with the prevalence of the CNN net-
works. The network is trained using three different learning

rates of 0.01, 0.001, and 0.0001 with the number of epochs
of 10 and 20.

Accuracy is one of the most significant performance met-
rics in assessing how good an image classifier is in predict-
ing real class of the test images. Based on the observations
in Table 1, the highest accuracy value was achieved at 97.70%
when trained on the first CHP with a 64 mini-batch size and
20 epochs at a 0.001 learning rate. However, the batch size
of 64 uses much computer memory space, making it difficult
for the network training process to converge because of the
limited computer memory space. Since this study only used
CPU chips in all the training and testing of the network,
a size of 64 could not be set as the hyper-parameter of the
mini-batch because of the limited processing power of the
CPU.

Accordingly, the second CHP value setting was identified
with an accuracy value of 97.20% by using a 10 mini-batch
size trained at 0.0001 for 20 epochs. The mini-batch size
of 10 is sufficient to train a small-scale database using the
TL approach. To avoid an underfitting problem during the
training process, feature extraction was performed at small
learning rate (0.0001) by 20 epochs. TheASPI features can be
extracted in a more detailed manner, although it takes longer
for network training. The number of epochs is determined
when network performance is no longer increased during the
training process. In addition, this CHP also recorded good
sensitivity of 96.37%. Although other CHP have achieved
100% sensitivity, the overall performance of the combination
failed to train and test the network. This can be seen with 50%
accuracy and AUC and 0% specificity assessment. These
could be attributed to overfitting and underfitting as almost all
predictions fall short of real expectations. This problem also
occurs when the network is trained at a high rate of learning
at 0.01 with a small mini-batch size of 10. Poor performance
may occur when the learning rate is high and fast, resulting
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TABLE 2. Average matric assessment of 5-fold and 10-fold CVs.

TABLE 3. Performance based on training time and complexity.

in the network not being able to extract the image features
properly.

Therefore, a learning rate of 0.0001 on a second CHP
is recommended for network training. In fact, this selection
is in line with the hypothesis that the smaller the rate of
learning, the higher the chance to achieve best performance,
even though it may take much longer for the network to train
images. A mini-group size of 10 was chosen to train and
test the network at a learning rate of 0.0001. The number
of the epoch was chosen as 20 because the performance of
the network stopped increasing after 20 epochs. This eval-
uation was trained by using a stochastic gradient descent
with momentum (SGDM) optimiser to achieve a minimum
gradient during network training.

The classification performance of pterygium and normal
ASPIs was evaluated using accuracy (Acc), sensitivity (Se),
specificity (Sp), and area under the curve (AUC) metrics,
as depicted in Table 2. As stated by Varoquaux [81], a small-
scale sample is not relevant for 10-fold CV. By contrast, the
10-fold CV outperformed the 5-fold CV with higher statisti-
cal measures, as shown in Table 2. Whereby, a 10-fold CV of
VggNet16 outperformed AlexNet, VggNet19, GoogLeNet,
ResNet101, and DenseNet201 with higher statistical mea-
sures of Acc, Se, Sp, and AUC of 98.70%, 98.42%, 98.97%,
and 99.95%, respectively. Furthermore, VggNet16 needed
less training time and complexity, as seen in (Table 3), and
was 802 minutes and 18 seconds faster than VggNet19,
ResNet101, and DenseNet201 but not much longer than
AlexNet and GoogLeNet. The VggNet16 training times are
neither longer nor shorter, justifying it being a better network
than other CNN pre-trained networks. This is because of its
fewer hidden layers and complexity, with only 16 layers of
feature learning with a small filter size of 3 by 3, which
captures image features more efficiently.

FIGURE 4. Average 5-fold CV ROC curve.

FIGURE 5. Average 10-fold CV ROC curve.

The AUC performance represented by the receiver oper-
ating characteristic (ROC) curve, are illustrated in Fig. 4 for
the 5-fold CV and Fig. 5 for the 10-fold CV, which denotes
the overall performance of six CNN pre-trained networks.
According to the ROC curve representation for the 5-fold CV
in Fig. 4, the curve for algorithms with better performance
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FIGURE 6. Some examples of pterygium and normal ASPI classification for 5-fold and 10-fold CV.

FIGURE 7. Comparison of qualitative performance between VggNet16 and VggNet16-wbn on sample of pterygium ASPI. Activation feature map of
convolutional layer (first row) and ReLU layer (second row).

will be closer to the upper corner edge. DenseNet201 curve
shows a perfect classification, followed by AlexNet with
only a slight difference of 1.86% at 98.41% AUC. While the
performance of the 10-fold CV in Fig. 5 shows improvement
of the AUC represented by ROC curve with a higher value
of 99.95% based on the performance of VggNet16. The
performance of VggNet16 shows the majority of high per-
formances and high increments from 5-fold to 10-fold CVs.
These performances were based on a numerical result repre-
sentation of the confusion matrix from the sample in Fig. 6,
as scored by the SoftMax classifier function. This result
concludes that the VggNet16 network is the best network
and that it outperformed the others due to its low network
complexity.

The VggNet16 network succeeded in overcoming
five other networks at the 10-fold CV. Therefore, the
VggNet16-wbn network was proposed to be the best. The
performance of the VggNet16-wbn network was evaluated
qualitatively and quantitatively. For the qualitative evaluation,
Fig. 7 and Fig. 8 show the improvement of the extracted
features layer by layer performed by VggNet16-wbn when
compared to VggNet16. These activation feature maps were
presented by a complete set of feature extractions, whereby
VggNet16 contains 5 complete feature extraction sets. Based
on the evaluations of Fig. 7, the first layer of convolutions
on the first feature extraction set shows the same output for
both networks. This is because there is no improvement in
the feature extraction performed in the first convolutional

VOLUME 8, 2020 191667



N. S. M. Zamani et al.: Automated Pterygium Detection Using Deep Neural Network

FIGURE 8. Comparison of qualitative performance between VggNet16 and VggNet16-wbn on sample of normal ASPI. Activation feature map of
convolutional layer (first row) and ReLU layer (second row).

TABLE 4. Performance of VggNet16-wbn compared to six CNN pre-trained networks on 10-fold.

layer. However, the contra pixel of an imperfect corneal
circle and the pterygium tissue can be seen clearly after the
feature map is activated by ReLU from the first to the last
set of feature extraction layers in VggNet16-wbn compared
to VggNet16. This is because of the normalisation layer that
helped in reducing the pixel sensitivity that will be activated
by ReLU. The same effect was also applied to the sample of a
normal ASPI in Fig. 8, where the perfect corneal circle can be
clearly seen. Therefore, the circularity of the cornea and the
presence of pterygium tissue improves the network’s ability
to discriminate and classify a pterygium ASPI and a normal
ASPI.

Table 4 shows the quantitative evaluation of the average
network performance of VggNet16-wbn versus six CNN
pre-trained networks. Performance findings recorded an
increase in the Acc, Se, Sp, and AUC metrics compared
to other networks with values of 0.52%, 0.03%, 1.03%,
and 0.05%, respectively. Regardless, the performance of the
VggNet16-wbn network increased over the performance of
the VggNet16 proposed by Simonyan & Zisserman [72] and
corresponded to the qualitative performance.

Moreover, the time taken for the network to undergo the
training process is 922 minutes 28 seconds and is a worth-
while performance time. The performance of the proposed
network by using BNorm could resolve the gradient van-
ishing problem due to a backpropagation process caused by
the small derivatives of the activation function, resulting in
a small gradient being updated in weights and biases in the
initial layers. Furthermore, the layer reduces this problem by
normalising the input to a certain range across the processing
layer in the backpropagation by enclosing the gradient vari-
ance so that the derivative is not too small. Thus, this result

concludes that the VggNet16-wbn network with the addition
of a BNorm layer performs better than the other networks.

Recently, a deep neural network named Pterygium-
Net [71] has been proposed to perform pterygium detection.
Like our VggNet16-wbn, the architecture of the proposed
Pterygium-Net implements Vgg network, but it only uti-
lizes three initial VggNet layers. This could be due to the
limited dataset being used in their pterygium study which
uses a detection of only 120 ASPIs comprising 60 images
of pterygium and 60 images of normal. To address the
data limitation issue, the authors proposed the use of data
augmentation and obtained 95% sensitivity and 98.30%
specificity. On the contrary, our transfer learning approach
via the VggNet16-wbn network has outperformed their
Pterygium-Net both in terms of sensitivity and specificity.
Tested using datasets acquired from both local and nonlocal
databases, Table 5 shows that the pterygium ASPIs detection
performance of the VggNet16-wbn (98.45%) surpassed the
Pterygium-Net (95%) in terms of sensitivity and obtained
perfect score specificity wise. These findings suggest that
the developed network of VggNet16-wbn has superior dis-
crimination ability with the addition of batch normalization
processing layer. The batch normalization layer helps the
network to find every possible features of pterygium tissues.
Furthermore, our network uses the hyper-parameter setting
of 0.0001 learning rate and mini-batch size of 10 which is
well-suited with the datasets and hardware being used as
compared to 0.0005 learning rate and 1024 mini-batch size
which would need high hardware requirement considering
the amount of available dataset. Hence, our VggNet16-wbn
has higher potential in detecting pterygium at low cost and
minimal hardware requirements.
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TABLE 5. Comparison of the performance of sensitivity and specificity
between VggNet16-wbn and Pterygium-Net.

TABLE 6. Comparison of the performance of Softmax and SVM classifiers
on Vggnet16-wbn and Vggnet16 networks.

The performance of VggNet16-wbn using a Softmax clas-
sifier has shown to outperform the VggNet16 network on
qualitative and quantitative evaluations. In addition to this
result, a simple experimental work has been conducted
to compare the performance of the Softmax and support
vector machine (SVM) classifiers on VggNet16-wbn and
VggNet16. SVM is a well-known and robust conventional
ML classifier compared to other ML classifiers [82], [83].
From this experimental work, it was shown that the perfor-
mance of SVM in DNN is not as expected from previous
ML implementations. Table 6 compares the performance of
Softmax and SVM classifiers, whereby the former imple-
mentation on the VggNet16-wbn network gave the best Acc,
Se, and Sp results compared to SVM. This result is based
on the fact that the Softmax classifier is more compatible
for high data processing than the SVM classifier. Therefore,
the Softmax classifier succeeded in detecting pterygium and
normal ASPI of the eyes.

V. CONCLUSION AND FUTURE WORK
Automated detection associated with the classification of
pterygium using the deep learning approach performs well,
which is in line with the state-of-the-art methods. TL, as an
alternative way to solve data deficit issues, is the core
approach proposed in this work. Currently, only a few studies
on DL implementations in medical imaging focus on ocu-
lar disease detection because of the limitations of labelled
datasets. This limitation is the main challenge faced by
researchers in terms of data acquisition, regardless of the
requirements of a large-scale database. Data acquisition for
medical images needs verification from medical experts in
the labelling of disease images, and some other procedures
may be required. Moreover, the training network used must
be appropriate for classification or detection to maximise
performance to enable an accurate and efficient ocular dis-
ease detection platform that is fully automated. On average,
ocular disease detection or screening from clinics using a
fully automated system could show a large improvement
that may exceed human expectation with the increase in
DL in ML approaches. The performance of VggNet16-wbn
using the Softmax classifier to detect pterygium outperforms
other comparative networks with 99.22% accuracy, 98.45%

sensitivity, and perfect scores for the specificity and area
under the curve metrics using the 10-fold CV. This excellent
performance proves that the additional batch normalisation
layers integrated with the VggNet16-wbn have successfully
reduced the sensitivity of the initial layer by adjusting the
activation layer.

In addition, it makes the network generalisation process on
the 10-fold CV more efficient while minimising overfitting
problems. In conclusion, a pterygium detection approach
has been successfully developed using an improved CNN
pre-trained network, VggNet16-wbn. In future, the proposed
network can be used as a baseline for the development of an
automated pterygium screening system in myMata applica-
tion for the convenience of rural community.
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