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ABSTRACT Given the explosive growth of geospatial data, parallel computing technologies have become
widely used in the spatial analysis of these massive types of data. The data used in geographic computing
often exhibit a complex graphic structure, which is an important cause of data skew in parallel computing.
The shape complexity is crucial to the task allocation strategy of parallel computing. The effect of polygon
shape features on the performance of spatial analysis was investigated in this study. A quantitative polygon-
shaped complexity evaluation model was established through regression analysis. The Hilbert data partition
strategy weighted by shape complexity was used as a spatial data allocation method for parallel spatial
analysis. This study established a shape complexity evaluation model for overlay analysis and used the
Spark parallel computing paradigm to carry out a comparative experiment of a massive, complex polygon.
Experimental results showed that the spatial data allocation strategy based on the complexity of polygon
shape computing effectively solved the problem of data skew in the parallel spatial analysis of massive

complex polygons.

INDEX TERMS Big data, shape complexity, overlay analysis, data skew, parallel computing.

I. INTRODUCTION

In recent years, geospatial science has faced challenges
in data-intensive computing with the explosive growth of
geospatial data [1]. High-performance parallel computing
is generally considered an effective solution for improving
massive spatial data processing and large-scale computing
applications to solve the challenges brought by complex algo-
rithms and massive data [1]-[5]. The efficient processing of
a large number of complex graphics is the objective of high-
performance geographic computing. The spatial analysis of
millions or even tens of millions of complex geographic
graphics has become a common demand. For example,
the number of geological patches in many Chinese provinces
often reaches tens of millions. Many polygonal patches
exhibit considerable vertices and complex hole structures.
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The difference in the shape complexity of geographic graph-
ics often leads to serious data skew in parallel spatial
analysis, thereby greatly reducing the efficiency of parallel
computing.

Overlay analysis is a common task in geographic com-
puting that is widely used in geographic information sys-
tems, computer graphics, and computer science. This study
conducted an in-depth analysis of the effect of the poly-
gon features on overlay analysis based on the classical
Greiner—Hormann algorithm [6], and quantified the fac-
tors that affect overlay evaluation analysis, established a
polygon shape complexity evaluation model. Moreover,
through the combination of Hilbert space-filling curve [7],
this study designed a calculation task allocation and opti-
mization strategies on the basis of polygon shape com-
plexity, which effectively solved the data skew problem
and greatly improved the efficiency of parallel overlay
analysis.
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The remainder of this work is organized as follows.
Section 2 reviews the research background and related stud-
ies. Section 3 analyzes and quantifies the effect of typical
shape features on the computational complexity of spatial
analysis. The complexity measurement model of the polygon
shape is established using overlay analysis as an example.
Subsequently, the design of the computing task allocation
strategy of parallel overlay analysis on the basis of the mea-
surement model is described. Section 4 presents the exper-
imental verification and results analysis. Section 5 provides
the conclusion drawn from this research, followed by poten-
tial future work.

Il. RELEVANT WORK

A. DATA BALANCED DISTRIBUTION IN PARALLEL
GEOGRAPHIC COMPUTING

The reasonable distribution of spatial data is a key fac-
tor for improving the query and calculation performance
of geographic big data [29]. The basic principle of paral-
lel computing divides a complete data block into relatively
small and independent multiblock datasets, improves the
I/O performance of data through parallel access, and pro-
vides the basis for distributed or parallel data operation.
When MPI, MapReduce, Spark, and other parallel comput-
ing frameworks for distributed clusters are applied in spa-
tial data processing, the rational allocation of spatial data
is widely considered. Spatial big data processing systems,
such as spatial Hadoop [30], Hadoop GIS [31], and MD
HBase [32], extend Hadoop. These systems realize the spa-
tial data partition method on the basis of grids, R-trees,
R+-trees, Z-curves, Hilbert curves, quad trees, and k—d
trees. The aforementioned systems also provide a method
for assigning the specified partition and multipartition
repeated storage for the cross-partition objects [30]-[34].
GeoSpark [35] and LocationSpark [36] expanded the resilient
distributed dataset (RDD) to the spatial resilient distributed
dataset (SRDD) that supports spatial object storage on the
basis of Apache Spark. Grid partition and coding are used for
all SRDDs, and index construction, such as quad trees and
R-trees, are supported for SRDDs [37], [38]. These opti-
mization methods improve the parallel nature of spatial data
processing on the basis of spatial partitioning. However,
the equal number of spatial objects or the same storage capac-
ity of each partition are taken as the basis of spatial data
partition in these studies, ignoring the effect of individual
differences of each spatial object on computing time. The
result is that although each partition has the same amount of
data, the calculation intensity varies greatly.

The allocation of spatial data is involved in specific parallel
spatial analyses. Wang [39] and Zheng [40] used grid division
for spatial data distribution in parallel overlay computing.
Zhao [28] used Hilbert division and R-trees for the division of
spatial data in parallel overlay computing, which has higher
parallel efficiency than grid division. Fan [41] and Zhao [28]
regarded the number of polygon vertices as the factor of data
allocation in parallel overlay analysis. However, the number
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of polygon vertices alone cannot fully reflect the effect of
polygon shape features on overlay analysis time. Obviously,
a comprehensive evaluation of the effect of polygon shape
features on overlay analysis performance is helpful to opti-
mize spatial data partitioning strategy.

B. SHAPE COMPLEXITY

Graphics are ubiquitous in nature. The concept of shape
complexity has been proposed [9], [10] and widely used in
many fields to describe the differences in the complexity of
graphic shapes, however, no unified shape measurement stan-
dard has been developed to date. Under a specific research
level and granularity [11], existing studies introduce different
measurement methods for shape complexity.

Geometric formulas are widely used to describe the lin-
ear features of object shape, and statistical physical factors,
such as the fractal dimension [12], are used to describe the
complex nonlinear features of the real world. The fractal
dimension quantifies the self-similar features [13] of spatial
objects through convolution, which is not limited to the quan-
tification of 2D graphics. In follow-up research, the fractal
dimension and image pattern recognition [14], [15] have been
extended to measure the spatial differences of various com-
plex shapes [16], [17] in nature. The fractal dimension quanti-
fies the local features of an object; however, the overall shape
does not affect the fractal dimension [13]. Fractal dimension
has low differentiation with shape complexity when few poly-
gon vertices are present. In the field of computer graphics,
shape complexity exhibits a global shape and local features.
Chen [18] used global distance entropy, local angle entropy,
and the shape factor to quantify shape complexity. Su [19]
used graphic boundaries, global structures, and symmetry
to measure shape complexity. Saleem [20] used a similarity
matrix of 2D graphics to describe the complexity of 3D graph-
ics. Matsumoto [21] used the absolute curvature to quantify
the surface shape complexity of the object. Duan [22] utilized
the combination of the area perimeter ratio of the graphics
and the number of blocks to represent the shape complexity.
Although these methods require graphical display and design,
they do not directly reflect the relationship between shape
complexity and calculation efficiency.

In geographic computing, computational efficiency is con-
sidered when expressing shape complexity, which is often
expressed as a function of the problem size and computational
cost [10]. Chazelle [23] described the shape complexity of
a polygon on the basis of the curvature (i.e., the frequency
at which the boundary alternately changes in the opposite
direction). This method does not involve the number of poly-
gon vertices and can effectively solve the polygon triangle.
Brinkhoff [13] selected the relevant structure, measurement,
and statistical parameters to create a complexity model for the
polygon. Guo [24] used the number of polygon features and
that of vertices of each feature to quantify the complexity of
the object. Accordingly, reasonable data division in parallel
computing has been realized. Ying [26] used the concept
of Brinkhoff complexity to simplify the expression of the
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polygon to improve the speed of graphic data transmission.
Li [27] defined the complexity calculation for line and sur-
face elements with two factors (e.g., area coefficient and
angle coefficient) and quantified the geometric information
on sensitive elements in maps. Zhao [28] used the number of
polygon vertices to estimate the complexity of polygons in
parallel overlay analysis. The aforementioned method solved
the problem of complexity measurements in specific geo-
graphic computing but is limited to specific questions.

In summary, existing methods for measuring shape com-
plexity mainly focus on how to express complex graphics,
while the research on the effect of shape features on the
efficiency of spatial analysis is lacking. Therefore, the appli-
cation of existing shape complexity measurement methods in
parallel spatial calculations is difficult. The difference in the
graphic shape causes variation in the time cost of the spatial
analysis, which is a key content of this article.

lll. METHODOLOGY

The information of spatial data includes two parts: spatial
graph and attribute information. Among them, the attribute
information has the same field structure and storage space,
but the spatial graph may be quite different. Therefore,
the difference in execution time of different spatial objects
processed by the same spatial analysis algorithm is mainly
affected by the differences in spatial objects’ graphics. In the
parallel overlay analysis, we found out the shape feature
factors that affect the time cost of the algorithm, and created
the polygon shape complexity evaluation model by using the
stepwise regression method, so as to quantified the compu-
tational strength in the overlay analysis of each polygon.
Moreover, we designed a data allocation strategy based on
Hilbert filling curve and polygon shape complexity.

A. POTENTIAL EFFECT OF POLYGON SPATIAL FORM ON
SPATIAL ANALYSIS

Polygonal graphics have different shape features. A simple
polygon only has a few vertices with regular shape (Fig. 1 [a],
[b], and [c]), and a geographic polygon has a complex shape
(Fig. 1[d]) that is irregular and can have tens of thousands
of vertices, uncertain concave or convex boundaries, many
complex holes and island structures, and different locations.
The principle of Greiner — Hormann algorithm is to get the
intersection part of two polygons by finding the intersection
points of two polygons. Therefore, the polygon shape fea-
tures that affect the number of polygon intersection opera-
tions are the potential factors determining the time cost of
Greiner — Hormann algorithm. We selected the potential
factors that affect the calculation of shape complexity from
the aspects of local features and spatial distribution to fully
describe the effect of the feature differences of complex
polygons on the performance of overlay analysis.

o Number of polygon vertices
A vertex is the basic element of a graphic and consists of

a pair of coordinates. According to the number of vertices,
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FIGURE 1. Different shapes of polygons.

the number of edges can be determined, and the spatial mea-

surement calculation (e.g., calculation of length and area) can

be carried out on this basis. The intersection relationship of

the graphs (e.g., whether points intersect lines and faces) can

also be determined. Therefore, the number of vertices is an

important factor that affects the performance of the algorithm.
« Density of polygon vertices

The polygon vertex density reflects the number of vertices per
unit area. The polygon structure is generally highly complex
when the density of polygon vertices is high. If the vertex
number and area of polygon P are n and A,, then the vertex
density of the polygon can be expressed as follows: D), = Ai,,'
o Spatial aggregation of polygon vertices
We used the average nearest neighbor (ANN) ratio to mea-
sure the spatial clustering of vertices. The polygon is highly
complex when the ANN ratio of the vertices is small, and the
degree of spatial aggregation is high. ANN can be expressed
as follows: ANN = &, where Dy is the ANN distance [42],

Dg
Zn: d;
Dy = %, Dg is the expected average distance, Dg = %,
d; is the nearest distance from each point to other points, n is
the number of vertices of the polygon, and A is the area of
each polygon.
o Number of ring structures

A complex polygon often has several holes, islands, and other
ring structures. In the intersect operation and spatial graphical
differences, the number of intersections and difference oper-
ations will be increased by the number of holes and islands,
thereby increasing the calculation complexity and reducing
the performance of spatial analysis.

o Number of concaves
The processing of concave polygons in the spatial analysis
that involves polygons is more complex than that of convex
polygons [43]. The vibration variation of the polygon edge
and the potential computational complexity are great when
many concaves are present.

« Concavity

Considering that the number of concaves does not reflect
the degree of concavity of the polygon, this study uses
Brinkhoff’s definition of convexity [13] for reference and
defines this relationship with concavity to quantitatively
describe the concavity of the polygon.

Definition 1: If the area of polygon P is A, and the convex

hull is A, then the concavity of the polygon is expressed as
Apch—Ap

COI’lpg = ApT

When the polygon concavity is large, the potential effect

on its spatial analysis is also great.
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(a) Elevation trigonometric patches

(d) Village batches in Yunnan

FIGURE 2. Experimental data.

TABLE 1. Basic information statistics of experimental data.

: 2o
(e) Land patches in Yunnan

Sl 4 3 ad
(f) Slope patches in Yunnan

Density of vertices

Number of Number of Number
Datasets olveons vertices of rings (per square Data sources
poiyg g kilometer)
Elevation trigonometric 4o 30 1,945,556 0 02 ASTER GDEM
patches
Tennessee land patches 324,564 3,479,160 4444 0.003 OpenStreetMap
Land patches in France 65,214 1,658,994 5371 0.09 OpenStreetMap
Village patches in National Census
Yunnan 20,317 37,989,776 0 0.06 Geography of China
Land patches in Yunnan 454,702 79,275,039 65,679 9 The Third National Land
Survey of China

Slope patches in Yunnan 108,025 892,878 14,671 0.08 ASTER GDEM

« Edge vibration frequency

Edge vibration frequency refers to the frequency of polygon
vertices in the concave—convex variation [13], [44]. In this
study, Brinkhoff’s definition of edge vibration frequency is
quoted.

Definition 2: If a polygon has P, vertices and P, concaves,
then P. < P, — 3. The concave rate of the polygon can
be normalized to Notchesyorm = %. The edge vibration
frequency of the polygon Freq, can be expressed as follows:
Freq,= 16(Notches,,orm—0.5)f— 8 (Notchesnorm—0.5)% + 1.

Brinkhoff’s research showed that when Notches;, ;. Was
close to 0.5, the vibration frequency of the edge was high, and
the smoothness of the edge was low. The edge of the polygon
was smooth when Notches, . was close to 0 or 1 [13].

« Coverage ratio of polygon area

The coverage ratio of the polygon area is used to express
the ratio of its area to the area of the study area, which
can indirectly reflect the size of the spatial distribution of
the polygon. The coverage ratio of the polygon area is a
meaningful indicator. When the coverage ratio of the polygon
area is great, it will likely participate in the spatial analysis
and calculation. For example, if the coverage ratio of the
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polygon area is large, the polygon may intersect with many
polygons.

B. COMPLEXITY EVALUATION MODEL OF POLYGON
SHAPE

1) SELECTION OF MODEL FACTORS

Since it is not clear how much effect a potential poly-
gon feature has on the time cost of overlay analysis,
we choose to use the correlation coefficient [25] between
polygon features and the time cost of overlay analysis to
measure the effect. This study selected five representative
complex geographical graphics and one simple geograph-
ical graphic dataset to determine the value of the afore-
mentioned potential factors (Fig. 2). Table 1 describes the
data.

These data were obtained at different scales and with
various complexities. Aside from convex polygons, concave
polygons, simple triangles, and quadrilaterals, complex poly-
gons with hole structures were also observed. The number of
vertices of different polygons ranged from several to tens of
thousands. These data were representative. Specifically, these
data samples were sufficient, and the common geographical
polygon shapes were covered.
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TABLE 2. Correlation coefficient of potential factors.

Vertices Concaves Parts Concavity DP ANN freq RC CT
Vertices 1.00
Concaves 0.97 1.00
Parts 0.56 0.67 1.00
Concavity 0.21 0.21 0.09 1.00
DP 0.12 0.10 —-0.01 0.31 1.00
ANN -0.14 —-0.15 —-0.10 -0.52 —-0.24 1.00
freq 0.05 0.06 0.04 0.37 0.23 —-0.31 1.00
RC 0.37 0.38 0.26 0.11 0.01 —-0.08 0.04 1.00
CT 0.95 0.93 0.57 0.46 0.11 —0.11 0.13 0.46 1

We used the above-mentioned polygons as experimental
data for overlay analysis and the clipping layer to clip the
subject layer. We also recorded the time cost. The clipping
layer had only one complex polygon. We randomly selected
100,000 polygons (if the dataset was less than 100,000, then
the features were repeatedly extracted) from each of the
datasets to merge into the subject layer, which eventually
contained 600,000 polygons. The specific steps are presented
as follows:

Step 1: The geometric center of the unique polygon in the
clipping layer was computed.

Step 2: A polygon was taken from the subject layer
sequence as the subject polygon, and the subject polygon was
translated to the geometric center of the clipping polygon.

Step 3: The timer was started, and the subject polygon was
clipped with the clipping polygon. Thereafter, the timer was
stopped, and the time cost was recorded.

Step 4: Steps 2 and 3 were repeated until all polygons in
the subject layer are clipped.

We used an ArcPy script to count the eight factors accord-
ing to the factor calculation method. These factors are
number of polygon vertices (vertices), number of concaves
(concaves), number of ring structures (parts), concavity (con-
cavity), density of polygon vertices (DP), coverage ratio of
polygon area (RC), edge vibration frequency (freq), and spa-
tial aggregation of polygon vertices (ANN). We used the data
analytical tool in Excel software to analyze the correlation
between the eight factors and the clipping cost—time (CT) and
obtain the correlation coefficient table (Table 2).

A correlation coefficient is a numerical measure of some
type of correlation, meaning a statistical relationship between
two variables. The value of correlation coefficient in range
from -1 to 1, where %1 indicates the strongest possible
agreement and O the strongest possible disagreement [8].
In Table 2, the correlation coefficients between the factors
and the CT were greater than 0.1, thereby indicating that
these factors all affected the overlay analysis performance.
The correlation coefficient between the number of concaves
and vertices was greater than 0.7, thereby indicating a strong
correlation between the number of concaves and vertices.
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The correlation among other factors was less than 0.4, except
for the CT factor, that means such correlation among other
factors was small. Therefore, concave and vertex factors
cannot be simultaneously selected. After the analysis, this
study used seven factors, namely, the number of polygon ver-
tices (vertices), number of ring structures (parts), concavity
(concavity), density of polygon vertices (DP), coverage ratio
of polygon area (RC), edge vibration frequency (freq), and
spatial aggregation of polygon vertices (ANN), as potential
factors to create a model assessing the computational com-
plexity on the basis of the polygon shape.

2) MODEL FOR EVALUATING POLYGON SHAPE
COMPLEXITY
The polygon shape complexity C is expressed as follows:

C =af (xj) =aix1 +axxy + -+ anxy, (1

where x; corresponds to the different shape feature factors,
n is the number of shape feature factors used, and g; is the
weight of the effect of the shape factors on the complexity of
shapes.

This study adopted stepwise regression analysis to deter-
mine the weight of the effect of each feature factor and fit the
polygon shape complexity model. The abnormal values of the
obtained data are eliminated and normalized. Subsequently,
CT is taken as the dependent variable, and other factors were
taken as the variables for stepwise regression analysis.

In the stepwise regression, the F' value of the variables that
were entered into the model was set to 0.05. If the F value was
larger than 0.1, then the variable was dropped. The analytical
results are presented in Tables 3, 4, and 5:

The adjusted R-square value in Table 3 is greater than 0.9,
and the value of sig. in Table 4 is less than 0.05, thereby
indicating that the model was statistically significant and well
fitted. Table 5 shows that the vertex, parts, RC, and ANN
were finally selected in the model. By contrast, DP and freq
were dropped because the sig. values were greater than 0.05.
Therefore, the shape complexity can be expressed as follows:

C=0.692x1+0.027x2—0.023x3+0.001x4, 2)
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TABLE 3. Model summary.

Model R R-square Adjusted R- Std. qur of the
square Estimate
1 .996* 993 .993 .00165
2 .997° .993 993 .00160
3 .997¢ .993 993 .00159
4 .997¢ .993 .993 .00159
aPredictors: (Constant), vertex
bPredictors: (Constant), vertex, and parts
Predictors: (Constant), vertex, parts, and RC
dPredictors: (Constant), vertex, parts, RC, and ANN
TABLE 4. ANOVA2.
Model Sumof 4 Mean F Sig.
squares square
Regression  9.167 1 9.167  3385874.830  .000°
1 Residual .067 24665 .000
Total 9.233 24666
Regression  9.170 2 4.585 1788411.976  .000°
2 Residual .063 24664 .000
Total 9.233 24666
Regression  9.171 3 3.057 1206914.153  .000¢
3  Residual .062 24663 .000
Total 9.233 24666
Regression  9.171 4 2.293  908381.279 .000°
4 Residual .062 24662 .000
Total 9.233 24666

“Dependent variable: Time

“Predictors: (Constant) and vertex

“Predictors: (Constant), vertex, and parts
dPredictors: (Constant), vertex, parts, and RC
Predictors: (Constant), vertex, parts, RC, and ANN

TABLE 5. COEFFICENTS?.

Unstandardized Standardized
Model coefficients coefficients ¢ Sig
B Std. Beta
Error
(Constant) —8.990E—5  .000 —8.540  .000
Vertex .697 .000 .996 1840.075 .000
(Constant) —9.730E-5  .000 -9.496  .000
2 Vertex .688 .000 .983 1541.319 .000
Parts .027 .001 .024 37.174  .000
(Constant) —9.409E—5  .000 -9.238  .000
Vertex .691 .000 .988 1425.128 .000
Parts .027 .001 .024 37.324 .000
RC —.023 .001 —.010 -17.371  .000
(Constant) .000 .000 —12.376  .000
Vertex .692 .000 988 1422.900 .000
4 Parts .027 .001 .024 37.592 .000
RC —-.023 .001 -.010 -17.215 .000
ANN .001 .000 .005 9.353 .000

where x; indicates the number of polygon vertices, xp is
the number of polygon parts, x3 is the coverage ratio of the
polygon area, and x4 is the spatial aggregation of polygon
vertices. The coefficient of the polygon vertex number factor
was the largest. Therefore, the number of polygon vertices
had a great effect on the efficiency of overlay analysis.
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FIGURE 4. Process of data partitioning.

C. DATA DISTRIBUTION STRATEGY BASED ON THE SHAPE
COMPLEXITY

1) PROCEDURE FOR DATA DISTRIBUTION STRATEGY

Given that the random and grid partition cannot reflect the
spatial proximity of elements [28]-[45], this study proposed
the Hilbert partition strategy with weighted shape complex-
ity. The core idea was to calculate the shape complexity of
each polygon on the basis of the evaluation model of the
shape complexity. This study also takes the equal total shape
complexity of each data partition as the measurement basis
for the reasonable allocation of parallel computing tasks to
ensure that the computing tasks of each data partition were
simultaneously completed.

Fig. 3 shows the Hilbert partition. Hilbert partitioning
divides a spatial region into 2V x 2V cells. During the iter-
ation, N is the order of the Hilbert curve (i.e., the number
of iterations). In general, N is determined by the number of
spatial objects, and the amount of spatial data (n) is required
n < 22N,

The implementation of the Hilbert partition strategy with
weighted shape complexity is detailed in Fig. 4.

Step 1: Data preprocessing

The average shape complexity of all polygons (¢) was cal-
culated before partitioning. The sum of the shape complexity
of all polygons was counted, and the ideal shape complexity
of each partition (Cjgeq7) Was obtained by dividing it by the
number of partitions. Cjgeq Was taken as the partition basis.

Step 2: Creating Hilbert curve and encoding the polygons

The center points of the polygon MBR (minimum bound-
ary rectangle) are normally distributed, and the optimal cell
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FIGURE 5. Example of allocating a group of complex polygons.

side length was determined. Thereafter, the value of N was
obtained. A cell was allowed to contain multiple polygons,
that is, repeated coding.

Step 3: Determining the division points of partitions.

We suppose that the shape complexity of the current par-
tition was Cg,,, and the complexity of the polygon to be
distributed was c¢. When a polygon was added, C¢, = Ceyr +
¢, and the values of C,y,, and Cjgeq; Were compared. When
Ceur = Cideal, the complexity of the current polygon ¢ and the
average complexity of the polygon ¢ were compared. If ¢ < ¢,
then the current polygon was taken as the end point of the
current partition. If ¢ > ¢, then the current polygon was taken
as the start point of the next partition.

Step 4: Detecting polygons across partitions

The MBR of the current polygon was used to deter-
mine whether the polygon was a cross partition. If the
MBR crossed other partitions, then the object was simul-
taneously distributed to all the crossed partitions. At this
time, the computational complexity of each partition was
changed, so the division points needed to be calculated
again.

2) EXAMPLE FOR DATA DISTRIBUTION STRATEGY
An example of allocating a group of complex polygons with
our algorithm is given below (Fig. 5). We will allocate the
polygons into four partitions with equal shape complexity.

The complexity indicators of each polygon, which have
been marked on the polygons in Fig. 5, have been calculated
in data preprocessing. We also counted the average complex-
ity of all polygons (c¢) and the ideal complexity of partitions
(Cidear)-

First, the spatial region was divided into 2V x 2V cells, and
a Hilbert fill curve was generated. Fig. 5 shows that each cell
was coded by Hilbert filling curve, and the codes range was
from 201 to 216. Thereafter, we determined the cell where the
center point of the polygon’s MBR laid. The Hilbert code of a
cell was the Hilbert code of the polygons that laid in the cell.
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TABLE 6. Equipment configuration.

Hardware Operating

Equipment Num configuration system Software
DELL R720, 24 ??dOOP q
X86 Server 6 core, 64 G RAM, Centos7 ) an
. . Spark
hard disk drive 231

The MBR of the polygon is used to instead of it to simplify
the calculation of the central point of a polygon.

We calculated the dividing points according to the method
of step 3 in the previous section. Fig. 5 demonstrates that
the dividing points are 207, 211, and 214. The number of
polygons in the four partitions is not the same. However,
the shape complexity of each partition is roughly the same.

In certain cases, polygons crossed multiple partitions, such
as the polygon crossed partitions 3 and 4.cells We can judge
whether the polygon crossed the partition 4 or not by com-
paring the MBR’s coordinates of the polygon with the coor-
dinates of cells in partition 4, thereby avoiding the operation
of polygon intersection. If the polygon crossed partition 4,
then it was also allocated to partition 4.

In parallel spatial analysis, ideal task allocation suggests
that the shape complexity of each data partition is the same,
and all data partitions simultaneously finish the computa-
tional task. According to the partition strategy in this study,
the numbers of polygons in each partition were not necessar-
ily the same. However, the shape complexity of each partition
was basically the same; thus, the time—cost of each parti-
tion was basically the same. In comparison with the random
partition and grid partition methods, this method considered
the spatial proximity of polygons and the dimensionality
reduction of coding.

IV. EXPERIMENTAL STUDY

In this section, the actual parallel overlay analysis was taken
as an example. We compared the weighted Hilbert partition
method for calculating shape computational complexity that
was proposed in this study with the Hilbert partition method
that uses vertex and polygon quantity balances.

A. EXPERIMENTAL ENVIRONMENT AND DATA
The data, experimental environment, and some algorithms in
the previous paper [28] were used in this experiment to make
the study comparative. The general process of spark overlay
analysis was used to map spatial data to several RDDs, and
each calculation thread performed overlay calculations and
finally gathered the results. For more details, please refer to
our previous paper [28]. The experimental environment was
a combination of Hadoop and Spark and consisted of six
Dell R720 servers (Table 6). The data were stored in HDFS
in GeoJSON format. The size of the HDFS data block was
64 MB, and the number of file copies was 3.

In this work, the patches of the National Census Geography
and those with a slope greater than 25 degrees in Yunnan
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(a) Subject layer (b) Clipping layer

FIGURE 6. Experimental data.
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FIGURE 7. Statistical graphs of polygon distribution with different vertex
numbers.

Province (generated by ASTER DEM data) were used as
the subject and clipping layers for parallel overlay analysis,
respectively (Fig. 6).

The statistics of the number of polygon vertices in the
subject and clipping layers are illustrated in Fig. 7 Approxi-
mately 88,000,000 vertices were found in 500,000 patches of
the subject layer through data checking. Among all polygons
of the subject layer, the simplest polygon has four vertices,
whereas the most complex polygon has 99,500 vertices.
A total of 890,000 vertices were recorded in 10,800 patches of
the clipping layer. Among all polygons of the clipping layer,
the simplest one has eight vertices, whereas the most complex
one has 5572 vertices. The subject and clipping layers are
typical complex geographic data.

We created 10 subject layers by randomly thinning and
duplicating the original 500,000 land-type patches. The num-
bers of patches in the subject layers were 50,000, 100,000,
250,000, 500,000, 1 million, 2 million, 4 million, 6 million,
8 million, and 10 million. Meanwhile, the number of patches
in the clipping layer was 108,000.

B. EXPERIMENTAL PROCESS

1) EXPERIMENT 1: BALANCE COMPARISON OF THE DATA
PARTITIONING STRATEGIES

The data skew was large when the difference between
the maximum and the minimum values of the partition
computational complexity was also large. We divided the
data according to the number of polygons balanced through
Hilbert partitioning (strategy 1), the number of vertices
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FIGURE 8. Comparison of the maximum deviation range of the three
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balanced through Hilbert partitioning (strategy 2), and
the shape computational complexity weighted through the
Hilbert partitioning method (strategy 3) proposed in this
paper. Strategy 1 is a method commonly used in other litera-
ture [31], [38]-[41]. Strategy 2 is the method of spatial com-
puting task allocation in my previous research [28]. Strategy
3 is the method adopted in this study.

Given the different dimensions of the polygon and ver-
tex numbers and computational complexity, we used the
maximum deviation amplitude of the shape complexity to
express the equilibrium degree of data allocation. This task
was conducted to quantify the effect of the different allocation
strategies.

Definition 3: Assuming that the data are divided into
N partitions, and the maximum, minimum, and average val-
ues of an indicator in N partitions are Vi, Vipin, and V,
respectively, the maximum deviation amplitude R,,; of the
indicator is expressed as R,y = @ The equilibrium
degree is high when the R,,; value is small.

The data were divided into 30, 60, 90, and 120 partitions
by using the three strategies. The deviation statistics of the
computational complexity of each partition are shown in
Fig. 8.

Although the numbers of polygons in each data partition in
strategy 1 were the same, the maximum deviation amplitude
of the shape complexity was the largest and more than twice
those in strategies 2 and 3. When strategy 3 was adopted,
the deviation degree was small, and the rationality of task
allocation was the high under the same number of parti-
tions. When strategy 2 was adopted, the deviation degree was
slightly higher than that of strategy 3. When strategy 1 was
adopted, the deviation degree was large, and the rationality of
task allocation was low.

2) EXPERIMENT 2: PARALLEL OVERLAY ANALYSIS AND
COMPARISON OF DIFFERENT COMPUTING TASK
ALLOCATION STRATEGIES

In the experiment, the Greiner-Hormann algorithm and Spark
framework were used to realize parallel overlay analysis. The
Hilbert curve was used to partition the data, and the number
of polygons, vertices, and computational complexity of each
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partition were equal to those of the strategy of computing par-
tition points. In the three different data allocation strategies,
we used sets of 50,000, 100,000, 250,000, 500,000, 1 million,
2 million, 4 million, 6 million, 8 million, and 10 million
polygons for the parallel overlay calculation, and the time
costs were recorded. The CT statistics of the overlay analysis
under different data allocation strategies are shown in Fig. 9.

a) The three time—cost curves show an upward trend with
the increase in data volume. The time—cost of strategy 1 is
more than twice that of strategies 2 and 3 under the same
number of computing tasks. The complexity difference in the
geographic graphics had an important effect on the parallel
nature of parallel spatial analysis.

b) The time—cost curve of strategy 3 was the lowest,
thereby verifying the effectiveness of the complexity model
proposed in this study.

¢) The time—cost curve of strategy 2 was slightly higher
than that of strategy 3, thereby indicating that the number
of polygon vertices was an important factor affecting the
performance of the overlay analysis.

C. ANALYSIS OF THE EXPERIMENTAL RESULTS

The three strategies are designed on the basis of the Hilbert
filling curve. The time complexity of constructing the Hilbert
curve is O(N?2), where N is the order of the Hilbert curve. The
parallel overlay analysis is based on the Greiner—-Hormann
algorithm, and its time complexity is O(logN).

The experimental results showed that the proposed method
(strategy 3) had an optimal rationality of the spatial data
allocation and short CT, thereby showing that the proposed
shape computational complexity model reflected the effect
of the polygon shape complexity on the overlay analysis
efficiency.

Strategy 1 did not consider the difference in the shape
complexity of each experimental data. Although the number
of polygons in each partition was the same, the computing
intensity of each partition was quite different. The result
showed that the data partition with the lowest shape com-
plexity finished first. Meanwhile, the data partition with the
highest shape complexity finished last, with a long interval
of end time between the two parallel computing operations.
The rationality of spatial data allocation of strategy 2 in
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Experiment 1 and the time—cost of parallel computing of
strategy 2 in Experiment 2 were close to those of strategy
3; this finding was also consistent with the shape complexity
evaluation model, that the number of vertices was the largest
effect factor in the shape complexity evaluation model. In ref-
erence [28], from the point of view of the time complexity of
the software algorithm, the number of polygon vertices was
proposed as the basis of data allocation, and other factors that
affected the overlay analysis were ignored. From the point of
view of the effect of the shape complexity on the performance
of spatial analysis, this study introduced the shape features
that affect the performance of spatial analysis and constructed
a shape complexity evaluation model for overlay analysis
by using a stepwise regression analysis. Here, the shape
complexity evaluation model of the overlay analysis, which
explained [28], [41] the effectiveness of using the number of
polygon vertices as the data allocation factor, was proposed.
Multiple factors and effect weights that affected the perfor-
mance of overlay analysis were comprehensively provided.
In combination with the Hilbert partition, a weighted Hilbert
partition strategy for the shape complexity was designed in
this study. Better effective allocation than that in the refer-
enced citation [28] was achieved through the comparison of
data allocation experiments.

V. CONCLUSION AND FUTURE RESEARCH

A. CONCLUSION

In this work, we analyzed the effect of different shape features
on the efficiency of spatial analysis and selected the indepen-
dent shape feature factors. We used parallel overlay analysis
as an example and created the complexity model of shape
computing for the Greiner—Hormann algorithm through step-
wise regression analysis. Moreover, we designed a weighted
Hilbert partition strategy for spatial data allocation in parallel
Geocomputation. This method achieved effective spatial data
allocation of parallel spatial computing.

The core idea of the method is to analyze and quantify the
shape feature factors that affect the time—cost of the spec-
ified algorithm. Such an initiative is conducted to evaluate
the differences of time—cost to calculate each spatial object
and guide the allocation of spatial data according to the
differences. Since the spatial proximity and dimensionality
reduction of coding, Hilbert fill curve was used as the spatial
partition method. Spatial algorithms are affected by the shape
of spatial objects, and great differences can be observed in
the shape of geographic data in reality; thus, the method
proposed in this study is universal. The essence of this idea
was to measure the time-consuming characteristics of the
computing tasks and develop a fine-grained data allocation
strategy. However, the shape features that affect the perfor-
mance of different algorithms are different. The shape fea-
ture factors and weights selected by different algorithms are
different. The computational complexity of shape will bring
some additional time—cost. An effective method to reduce
the calculation of the complexity model is to retain only the
factor with the largest weight in the complexity model. When
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the model is simplified to only one factor, the essence of the
model becomes the time complexity in computer science.

B. FUTURE RESEARCH

In the next step, we will construct a set of complexity factor
systems and shape complexity models for common geospatial
analyses on the basis of the method for assessing the shape
complexity proposed in this work to preprocess and catego-
rize the shape complexity for the massive spatial data stored
in the database. This step provides an efficient data allocation
strategy for the parallel spatial analysis of massive geographic
data.
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