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ABSTRACT The foremost challenge in a microgrid with Distributed Energy Resources (DER) is of
managing the intermittent nature of renewable energy sources. Therefore, the extent of integration of
the Battery Energy Storage System (BESS) has increased recently in a microgrid due to its versatility,
high energy density, and efficiency. Generally, BESS is a grid-tied system and has fast power adjustment
capability. Controversially, during the stand-alone mode, it cannot operate in the absence of a local Voltage
Source (VS) which acts as a voltage and frequency reference in the network. To ensure the reliable operation
of a microgrid during utility grid outage or non-availability of intermittent Renewable Energy Sources (RES),
it is significant to operate the BESS with the local VS to dispatch the stored energy. This paper discusses the
analytical methodology that can be adopted for identifying the most suitable rating of the VS which can act
as a voltage and frequency reference for the BESS using Matlab/ Simulink. Further, a simulation was carried
out against various load characteristics and it is observed that an Uninterruptible Power Supply (UPS) with
a kVA capacity of 35-45% of that of the BESS with an overload capacity of 150-200% can be chosen as a
feasible choice to act as the VS.

INDEX TERMS Battery energy storage system (BESS), distributed energy resources (DER), grid outage,
microgrid, renewable energy sources (RES), uninterruptible power supply (UPS), voltage source (VS).

I. INTRODUCTION

Recently, the development of microgrid has attracted the util-
ities greatly due to its network reinforcement and high-cost
aging asset replacement [1]. Also, more renewable energy
sources are getting incorporated into the power grid in
the form of Distributed Generation (DG) or Distributed
Energy Resources (DER) due to the increasing concerns
about the environment and rising prices of energy [2]-[4]
dominated by coal and oil reserves which grasps a major
stake at 66.73% [5] as per the United Nations sustain-
able development goals (SDG) [6] and Paris agreement
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commitments [7], [8]. This increasing penetration of DERs
poses new issues and challenges to the power grid such as
increased voltage transients, frequency variations, loss of
reliability, and power quality reduction [9], [10]. Particularly,
the planning and operation of the network are becoming a
serious problem to ensure its reliability [3]. Integration of
large-scale Battery energy storage system (BESS) has solved
these shortcomings because of its inherent advantages such
as enhancement of extent of penetration of DER, increased
grid flexibility, enhanced system reliability, emergence of
new energy business models, and support to distribution sys-
tem operators [11], [12]. Specifically, BESS coupled with
power electronic converter systems offers rapid response for
frequency regulation and load changes. It is considered as
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the most viable and promising approach [13], [14] which
minimizes the active power oscillation and the settling time
in smart grid power systems.

The recent advancements in Lithium-ion battery tech-
nology also offer various benefits in smart grids like high
power, longer life, and high charge and discharge effi-
ciency [15]-[17]. In addition to a small size and low weight,
Li-ion batteries can offer high energy density and storage
efficiency [18], which makes them suitable for portable
devices. It also deals with high fluctuating demands and is
used to compensate for long-term and low-frequency power
demands [19]. It plays a crucial role to realize the flexible
mechanism and optimal operation of active distribution net-
works. Hence, the placement and sizing of BESS directly
influence the active management capability using DERs and
the economic benefits of active distribution network oper-
ation [20]-[22]. Further, a rule-based control method for a
BESS is proposed by integrating with RES to dispatch energy
on an hourly basis [23]. On other hand, the use of BESS is still
an expensive option and the control and supervision strategies
are mandatory for their optimal performance according to
the SOC (state of charge) values and deep discharge con-
straints [24]. In order to maintain the distribution system
economically, the sizing and placing of DGs with working
constraints need to be carried out.

Comparing the benefits and shortcomings of the BESS in
the grid-tied system, it is determined that the BESS cannot
be operated in the absence of the main grid. Therefore, this
work focuses on finding the judicious sizing of the Voltage
source (VS) for the BESS based on the network character-
istics. It can provide the reference parameters to the BESS
during the outage of the grid and also provide the unbal-
anced currents to loads [25]. In order to demonstrate the pro-
posed system, a 100k VA Li-ion battery based Battery Energy
Storage System (BESS) is considered which is specifically
meant for brownfield projects. It consists of three-phase four
wire systems [26] and consumes three balanced currents for
charging and also provides three balanced currents while
discharging. Therefore, it can be modeled as a three-phase
current source. This sizing methodology supports the system
to continue its operation with the help of VS based BESS
effectively which can act as a voltage and frequency refer-
ence during outages. The main objectives of the study are as
follows;

o To design the Voltage Source-based BESS to supply
both real and reactive power to the load during grid
outages.

« To formulate the reference current generation procedure
for the BESS.

« To derive the ramping up scheme of BESS.

o To compute the optimum sizing of the VS ratings for an
effective hybrid microgrid.

The article begins with an overview of the technical and
economic performance features and the current research and
development of BESS technologies. Following this, mod-
elling of the test case is performed for grid-connected and
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TABLE 1. Technical specifications of BESS.

S. No Parameters Values
1 Input Voltage 400 V
2 Input Frequency 50 Hz
3 Nominal Current 150 A
4 Current THD <4% (@ nominal Power
5 Nominal Power 150 kVA
6 Efficiency >95%
7 Output Voltage 540 VDC to 730 VDC

islanded mode in section II. Further, this paper presents a
detailed summarization of network description and opera-
tional strategy with their corresponding technical specifica-
tions in section III. Then, section IV illustrates all the test
results under different modes of operation. Finally, section V
concludes the article with the key observations on the benefits
and the applicability of BESS.

Il. MODELLING OF THE TEST SYSTEM

The microgrid architecture of the proposed system consists
of various energy sources, BESS, and loads as illustrated
in Figure 1. The Photovoltaic (PV) source and BESS are
connected in conjunction with the utility grid to form a power
system that delivers power to different types of loads as
defined. Notably, all critical loads are fed through a UPS
and non-critical (sheddable) loads are fed directly [27]. The
Battery Energy Storage System (BESS) is connected to a low
voltage network as shown in Figure 1 and it can consume
and generate the active and reactive power. Preferably, it is
installed in a network where several loads and distributed
energy resources are connected in its proximity. The inter-
connection of the BESS and the micro-sources along with
various loads creates a local network that is connected to the
main grid by a single point (PCC). During normal operation
i.e. grid-connected mode, the main grid acts as a voltage and
frequency reference i.e. VS to the entire network including
the BESS. When the outage of the grid happens, UPS acts as
VS and provides voltage and frequency reference to the BESS
and PV inverter. The response time of a BESS is ranging from
0.5 to 1 seconds i.e. time required to ramp up completely and
start feeding the loads once the grid is withdrawn [28], [29].
The complete specifications of the BESS are listed in Table 1.
Further, the general single line diagram of the BESS under
consideration is shown in Figure 2. The battery management
system (BMS) aids to sense and control the system param-
eters. The energy management system (EMS) optimizes the
managed loads on the network using two different modes as
depicted below.

A. GRID-CONNECTED MODE
The single line diagram of the network during the
grid-connected mode of operation is shown in Figure 3.
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FIGURE 1. Microgrid architecture of the proposed system involving DERs, BESS and loads.
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FIGURE 2. Simplified block diagram of the BESS.

In order to ensure a safer switching, Circuit Breakers (CB) and B2 is in open position to provide isolation between
B1 and B2 serve as interlock breakers to guarantee that only two different categories of loads. Under these circumstances,
one source acts as the VS at a time [30]. Initially, the breaker grid supplies the power to both loads distinctly (critical and
B1 is in a closed position to ensure the grid integration non-critical loads). During outages, the sensing circuit of
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FIGURE 4. Single line diagram of the proposed microgrid involving BESS
in islanded mode.

B1 detects the grid status and sends a command signal to open
the breaker B1 and closes the breaker B2.

B. ISLANDED NETWORK

During a blackout i.e. when no grid is available; the BESS
can supply power to the network along with a local voltage
source (B1 open and B2 closed). A single line diagram of
such an islanded network is depicted in Figure 4. The voltage
source will act as a grid forming source and provide voltage
and frequency reference for the balanced currents generated
by the BESS. Also, the it would act as a primary element for
feeding any unbalance in the islanded network.
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TABLE 2. Network configuration of the microgrid architecture.

S.No Type of
Source/Load

Specification

Total Network 500 kVA, 400V, 3 PH, TT grounding

capacity system
2 BESS 100 kW, 50 kWh
3 Managed 400 kVA, Air conditioner, Heater, &
Loads Standard 16 A Loads
Ph 1-N 230 V, Lighting: 13 kVA, PF 0.7
Ph 2-N 230 V, Lighting: 8 kVA, PF 0.55
4 Priority Ph 3-N 230 V, Lighting: 16 kVA, PF 0.85
unmanaged Ph 1-N 230 V, Loads: 12 kVA, PF 0.8
loads (1 PH) Ph 2-N 230 V, Loads: 14.3 kVA, PF 0.6
Ph 3-N 230 V, Loads: 3.5 kVA, PF 0.67
Priority
5 unmanaged 400V, 3 PH+N: 29.34 kVA, PF 0.92
loads (3 PH)
Critical
6 unmanaged 400 V, 3 PH+N: 6.45 kVA, PF 0.93
loads (3 PH)

Ill. NETWORK DESCRIPTION AND OPERATIONAL
STRATEGY
The validation of the aforementioned modes of the test
system is carried out with the help of a continuous sim-
ulation using the Matlab/Simulink platform. The complete
specifications of the grid-connected system are illustrated
in Table 2. The dynamic behavior of loads such as unbal-
ance and non-linearity is introduced in the same network in
order to estimate the size of the voltage source under diverse
conditions. Further, all managed or sheddable loads such as
air conditioning, heater, standard 16A loads etc. are switched
off during grid outage and hence they are not considered for
the off-grid scenario. A separate UPS is provided to feed
critical unmanaged loads during grid outage through BESS.
Also, the contributions of any renewable energy sources are
not considered during this situation. Therefore, the BESS
takes complete responsibility for feeding the single-phase
and three-phase priority unmanaged loads during the absence
of the grid. Importantly, BESS takes about 0.8 to 1 sec-
onds to ramp up the capacity to feed these loads. During
this transient time interval, the voltage source has to sup-
ply the entire islanded network. After the period of 1 sec-
ond, BESS ramps up completely to feed the entire active
component and some reactive component of the balanced
positive sequence current. The remaining part of reactive
power as well as power amounting for feeding unbalance
and harmonic generating loads are to be fed by the voltage
source.

The modeling of various blocks of the system and the
methodology used to generate the reference currents for
the BESS are explained as below. The grid is modeled as
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FIGURE 5. Phasor diagram representation of BESS reference current
generation.

a 3-phase, 400V, 50Hz voltage source without any source
impedance. As already mentioned in the earlier section, only
the priority unmanaged single and three-phase loads are
connected on the network. The voltage source acting as a
reference forcing function for the BESS is modeled by a
3-phase, 400V, and 50Hz programmable voltage source block
without any source impedance. The BESS which essentially
acts as a current source is modeled by a voltage source
inverter (VSI). It is assumed that the BESS batteries are
already charged completely and hence the VSI is fed by
a DC source which represents the battery storage block of
the BESS. In order to operate the VSI as a current source,
the VSI currents are controlled by hysteresis current con-
trol [20]. The reference BESS currents (to be followed by
the BESS) and actual BESS currents are compared and com-
plementary gate pulses for two switches in an inverter leg
pertaining to a particular phase are generated using relay
and Boolean logic blocks. The detailed phasor representa-
tion of reference current generation for BESS is shown in
Figure 5.

The total load current in three-phase system is measured
using three-phase VI measurements block in Simulink and
fed to the three-phase sequence analyzer. It measures the
magnitude and phase of the positive sequence component of
the total load current [21]. From the magnitude and phase of
this balanced component, both active and reactive parts are
found. It is possible to make the BESS feed 100% of both
active and reactive parts of the positive sequence component.
Also, the BESS can feed a part of both active and reactive
components as designated by the user through the desired
percentage of active or reactive components. Assuming that
11 is the magnitude of the balanced positive sequence compo-
nent of the total load current obtained from the three-phase
sequence analyzer block and resolving it across real and
imaginary axes as shown in Figure 5, then it can be seen that
Ire1 and Iy, are the respective active and reactive compo-
nents of current /.
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If the BESS is made to feed both these components at
100%, then I} /6 will be the reference balanced current to
be fed by the BESS. If the BESS is to be made to feed
the total active component i.e. g, = Ig.; and a part of
the balanced reactive component i.e. I2 < Ip,1, then the
effective BESS reference current magnitude and phase is
recalculated as follows,

1Ll = Vg + o M
I

6> = sin”! (”—"2> @)
I

Likewise, if the BESS is to be made to feed the total reac-
tive component (1,3 = Ip,,1) and a part of the balanced active
component (Ig,3 < Ige1), then the effective BESS reference
current magnitude and phase can be calculated respectively
as follows,

11 = Iies + Tins )
I

63 = sin”! (ﬂ) )
I

Moreover, the percentage of balanced reactive component
to be fed by the BESS is restricted to 30% for the simulation
study. Based on the desired percentage of active and reactive
components, the resultant magnitude and phase of the effec-
tive balanced current to be fed by the BESS is obtained. Using
this phase information and the simulation time (obtained
using a digital clock block); three unit sinusoidal waveforms
are generated using a Matlab embedded function. These three
unit sinusoidal waveforms thus generated are multiplied by
the magnitude of the effective balanced current to be fed by
the BESS. Thus, the three-phase reference currents for the
BESS are obtained. Later, the three-phase currents fed by the
VSI (representing the BESS) are controlled in such a way
that they follow the aforementioned three-phase reference
currents which is achieved by hysteresis current regulators.

The average active and reactive powers fed by the voltage
source and the BESS are measured by averaging the outputs
of a three-phase instantaneous active and reactive power
block. The total apparent powers fed by the voltage source
and BESS are also computed in the same block. In order to
have a quantitative idea about the unbalance in the network,
a single value representing percentage unbalance is calculated
from load currents utilizing the following formulae.

3
1
Irms = § ermsn (5)
n=1
1 3
AIrms = § Z |Irms - Irms,1| (6)
n=1
Al
Percentage Unbalance = —— x 100 7)

rms
where I,,,;; is the RMS value of the fundamental current of the
‘n’th phase, I,,,;s is the average of RMS values of all the three-
phase currents and Al is the average of the absolute devi-
ation of RMS value of each phase current from the average
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FIGURE 6. Three-phase currents fed by the BESS.

of the RMS values of all three-phase currents. The priority
unmanaged single and three-phase loads indicated in Table 2
are further modified in order to have more unbalance in the
network. Also, single-phase diode bridge rectifier loads are
introduced in order to increase the penetration of nonlinear
loads.

IV. RESULTS AND DISCUSSION
In order to illustrate the effectiveness of the proposed scheme,
the simulation was carried out into three events based on the
time interval as follows,

Event 1: From the start of execution to 0.5 seconds

In this case, the main grid is considered initially which
feeds the priority unmanaged single and multi-phase loads.
Subsequently, the grid is withdrawn after 0.5 seconds by
opening a three-phase circuit breaker. It is noted earlier that
all managed loads are not considered for the simulation study.

Event 2: (From 0.5 to 1.4 seconds)

In this case, the voltage source which is essentially in
a “hot standby” mode detects the absence of the grid and
connects to the network at 0.51 seconds. The BESS is allowed
to ramp up to feed the network from 1.4 seconds onwards
and the voltage source is responsible for feeding the entire
network for approximately 0.9 seconds. During this transient
time, the voltage source has to meet the entire power demand
of the network amounting to (active + reactive + unbalance
+ harmonic) loads.
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1.44 1.46 1.48
Time (seconds)

Event 3: (From 1.4 to 3.0 seconds)

During this period, The BESS starts feeding the balanced
part of the active (100%) and reactive (30%) components of
the total load current as designated by the user. In the course
of the steady-state interval, the voltage source is responsible
for feeding the remaining reactive power of the network as
well as any unbalanced and harmonic currents.

The simulation is executed for all the aforementioned
events/schemes and the powers fed by the voltage source
and the BESS are measured. The combination of different
values of unbalanced current along with different penetration
of nonlinear loads is also incorporated. Table 3 shows the
net power fed by the BESS through voltage source during
all three operating events against various percentages of cur-
rent unbalance and nonlinear loads. It is observed that the
steady-state and transient mode kVA ratings of the voltage
source are estimated to be between 35 and 50 kVA. It should
possess 150-200 % of overload capabilities in order to handle
the loads in a transient time interval. Additionally, it is noted
that the summation of apparent powers for the BESS and
the voltage source will not encompass the total apparent
power accurately because they do not have the same displace-
ment between current and voltage. Moreover, the three-phase
current and voltage fed by the BESS during the transient
period (i.e. before 1.4 seconds) and the steady-state (after
1.4 seconds) are shown in Figure 6. It is perceived that the
BESS is supplying a uniform balanced current through all

VOLUME 8, 2020
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TABLE 3. Active, reactive and apparent powers fed by the bess and the voltage source.

Active, Reactive and | Active, Reactive and . .
Apparent powers Apparent powers Active, Reactive and
pparent p bparent p Apparent powers Active, Reactive and
Percentage supplied by the supplied by the .

Percentage . . supplied by the BESS | Apparent powers of the loads | 174

S. of voltage source during | voltage source during - Vs

Current . : L ; during steady-state: on the network
No. | | balance | Bonlinear | transient period: 0.5s | steady-state: 1.4 s to L ds o3 08 kV Aggss
loads to 1.4 s (no BESS) 3.0 s (with BESS) ’ )
kW | kVAR | kVA | kW | kVAR | kVA | kW | kVAR | kVA kW kVAR | kVA

1 |34 19 78.8 | 53 95 0.8 |36.7 368 |78 16.3 79.8 | 78.8 53 935 0.461
2 |42 9.8 77.6 | 56 95.7 0.8 | 388 38.9 769 | 17.2 78.8 | 77.6 56 95.7 0.493
3 |89 53 73.2 | 548 91.4 0.8 |38 38.1 72.5 | 16.8 74.4 | 73.2 54.8 91.4 0.512
4 |10.62 17.47 71.2 | 49.9 87 0.7 |34.6 346 | 706 | 153 722 |71.2 49.9 87 0.479
5 | 11.19 17.14 85.1 | 61.9 1052 | 0.8 | 429 43 84.4 | 19.1 86.5 | 85.1 61.9 105.2 | 0497
6 | 13.51 5.8 60.8 | 47.4 77.1 0.7 |329 329 60.1 | 14.5 61.8 | 60.8 474 77.1 0.532
7 | 15.03 20.67 90.2 | 58 107.3 | 0.8 |40.1 402 |89.6 | 179 91.3 [90.2 58 107.3 0.440
g | 17.27 5.1 67.5 | 54.1 86.6 |0.7 |376 37.6 | 66.8 | 16.6 68.9 | 67.5 54.1 86.6 0.545
9 |23.15 5.824 65.9 | 50.1 828 |0.8 |348 349 653 | 154 67.1 | 65.9 50.2 82.9 0.520
10 | 3032 19.61 582|333 67 07 |23 23 57.5 | 103 584 |38.2 333 67 0.393

400

(volts)

Vabc_VS

(Amperes)

labc_VS

Time (seconds)

FIGURE 7. Three-phase voltages and currents fed by the voltage source.

three-phases after 1.4 seconds. Furthermore, the three-phase
current and voltage fed by the voltage source during the tran-
sient and steady-state periods are shown in Figure 7. It indi-
cated that the voltage source is feeding the entire three-phase
load currents (active power, reactive power, unbalance, and
harmonic) during the transient period. As soon as the BESS

VOLUME 8, 2020

is admitted (at 1.4 seconds), it starts supplying about 30%
of the balanced reactive component. Subsequently, during
the steady-state period, the voltage source supplies less cur-
rent than the earlier event and it encompasses of remaining
reactive component along with unbalancing and harmonic
currents.
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FIGURE 8. Three-phase load currents priority unmanaged loads with unbalance and nonlinear loads.

Therefore, the BESS is released from supplying any unbal-
ance harmonic currents. Further, the total three-phase load
currents for priority unmanaged single and three-phase loads
with unbalance and nonlinear loads are depicted in Figure 8.
It is observed that the three-phase loads continue to consume
the same current during the transient and the steady-state
when the BESS is operational.

It is an important task to estimate the power fed by the
BESS and the voltage source during different events and the
observed results from simulations are shown in Figure 9.
From the observation, it is noted that the active power fed
by the voltage source during steady-state (after 1.4 s) is
negligible. Hence, the kVA rating of the voltage source dur-
ing steady-state is dominated by the reactive power fed by
it.

Further, this work focuses on estimating the optimum
VS rating for efficient hybrid system design against various
parameters such as percentage variation of current unbalance,
nonlinear loads, and power factors.

A. EFFECT OF CURRENT UNBALANCE

Primarily, the effect of the percentage of current unbalance
on the ratio of KVA ratings is analyzed with a constant
nonlinear load while the percentage of current unbalance is
varied for each event. Moreover, the ratio of steady-state
kVA ratings of the voltage source and BESS is calculated for

188868

each case and displayed in Table 4. It represents two cases
with 10% and 20% of nonlinear load in a combination of
current unbalance ranging from 6% to 35%. Notably, dur-
ing the load magnitude of 73.3 kVA with 6.4% of current
unbalance and 10% nonlinear load, the optimum capacity
of voltage source and BESS are 27.9 kVA and 61.8 kVA
respectively. Importantly, the ratio of VS rating to BESS
rating is presented in the last column of the table and it helps
in arriving at optimum capacity for VS. Therefore, oversizing
of VS can be avoided for various depicted scenarios given
below.

Likewise, the percentage of current unbalance is plotted
against the ratio of kVA rating (KVAys/KVApgss) for each
aforementioned event by keeping the load nonlinearity con-
stant and the same is illustrated in Figure 10. It is evident that
the 5% of nonlinear load along with 20% to 30% of current
imbalance stretches the minimum VS rating requirement,
whereas the VS rating requirement is higher for less than 10%
current unbalance. Further, during 10 % nonlinear loads in the
network, 10% of current unbalance condition requires min-
imum VS rating. Likewise, 15% of nonlinear loads require
a minimum VS rating with 20% of the unbalance current.
Finally, with 20% nonlinear loads in the system, again the
VS rating requirements become low with 35% unbalance
current condition. Consolidating these inferences, it helps to
choose the optimum VS rating for a given nonlinear nature of
load and percentage of current unbalance.

VOLUME 8, 2020
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FIGURE 9. Active and reactive powers supplied by the BESS and the voltage source.

TABLE 4. Effect of percentage of current unbalance on the ratio of kVA ratings.

Percentage of Percentage Total load kVA
VS
S. No. nonlinear loads current kVAgEss kVAys KVA -
k VABESS
unbalance

06.4 61.8 27.9 73.3 0.451

1 10 09.8 57.5 25.6 68.0 0.445

11.9 77.8 38.0 94.3 0.488

18.5 70.7 33.6 85.1 0.475

234 66.0 30.6 78.9 0.463

28.8 63.5 29.2 75.8 0.459

04.0 72.2 30.3 84.0 0.419

2 20 06.0 66.5 27.3 77.0 0.410

13.5 65.2 26.5 71.7 0.406

15.7 67.7 28.1 78.5 0.415

21.5 74.3 31.7 86.8 0.426

27.3 69.5 31.0 82.2 0.446

34.1 59.4 23.6 68.2 0.397

B. EFFECT OF PERCENTAGE OF NONLINEAR LOADS

Similar to the previous case, the simulation is executed for
constant current unbalance (5%, 15%, and 25%) against the
varied percentage of nonlinear loads for each event and the

VOLUME 8, 2020

observed results are shown in Table 5. It is inferred that the
ratio of KVA ratings between VS and BESS is arrived to
find out the optimum VS rating requirement for a specific
load condition with different load nonlinearity and current
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FIGURE 10. Effect of percentage of current unbalance on the ratio of kVA ratings when percentage of nonlinear loads is held constant at (a) 5%, (b) 10%,

(c) 15% and (d) 20%.

unbalance. Particularly, during 5% current unbalance and 5%
nonlinearity in a total of 89 kVA load, the minimum VS and
BESS rating are estimated to be 35.5 kVA and 72.7 kVA
respectively. Figure 11 shows curves plotted for different
load current unbalance percentages for varying percentage of
nonlinear loads to identify the optimum VS to BESS kVA
rating. During the load, current unbalance of 5%, 15%, and
25%, the percentage variation of the nonlinear loads requires
a reduced KVA ratio.

C. EFFECT OF LOAD POWER FACTOR AND PERCENTAGE
OF THE CURRENT BALANCE

In order to analyze the effect of the total load power factor
on the size of the voltage source, simulations are carried out
between 70-80 kVA of load rating with a varying load power
factor and varying load unbalance while nonlinear load is
kept constant and the same is tabulated in Table 6. From
the results, it is observed that the BESS is supplying more

188870

active power when the active power of the load increases due
to better individual load power factors. At the same time,
the reactive power fed by the voltage source decreases even
after an increase in unbalance. Thus, there is a slight decrease
in the kVA rating of the voltage source. Therefore, the effect
of load Power factor on the sizing of a voltage source is also
crucial.

The proposed analysis finally reveals that an uninterrupt-
ible power supply (UPS) with a 35-45% kVA size of that
of the BESS and an overload capacity of 150-200% can
be chosen as the Voltage Source (VS) for the BESS. Thus,
a judicious sizing of the UPS can be derived for the proposed
microgrid system, which can serve critical loads and also act
as VS/UPS for BESS during a utility grid outage. This method
helps in avoiding oversizing VS and hence critical loads in
the network are not more than 45% of overall microgrid
capacity. Also, this method proves that any stand-alone BESS
can be integrated seamlessly into the microgrid with DERs in
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TABLE 5. Effect of percentage of nonlinear loads on the ratio of kVA ratings.

Percentage Current Percentage of nonlinear kVAgEss kVAvys kVA
VS
S. No. unbalance loads Total load KVA
kVABESS
5.000 72.7 355 89.0 0.488
1 5 9.400 75.2 36.6 91.1 0.486
15.60 76.3 34.6 90.6 0.453
20.47 65.4 28.5 75.5 0.435
05.0 64.5 31.6 78.30 0.489
2 15 09.5 56.6 253 67.00 0.446
14.5 76 33.8 90.50 0.444
19.0 88.4 39.1 104.4 0.442
05.6 58.0 27.2 69.5 0.468
3 25 09.3 57.7 26.0 68.3 0.450
14.5 55.8 23.2 65.0 0.415
19.0 60.6 24.6 70.0 0.405
% of current unbalance =5% % of current unbalance = 15%
0.5 05
0.49 . 0.49 4
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FIGURE 11. Effect of percentage of nonlinear loads on the ratio of kVA ratings when percentage of current unbalance is held constant at (a) 5%, (b) 15%
and (c) 25%.
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TABLE 6. Effect of total load power factor and percentage of current unbalance on the ratio of kVA ratings.

Percentage Percentage of Total load Total load PF kV A
S. No of Nonlinear Current kVApess kVAvs kVA v
loads unbalance kVABESS

13.54 65.3 26.5 75.4 0.860 0.40

! 2021 34.60 67.6 24.9 76.4 0.880 0.37
36.00 63.5 28.3 75.1 0.838 0.44
31.00 64.2 31.8 78.2 0.80 0.49
30.00 63.8 33.2 79.0 0.79 0.5204
19.41 63.5 25.1 72.9 0.867 0.3955

2 10.83
10.89 67.6 19.3 73.2 0.923 0.29
08.80 70.1 25.2 78.8 0.886 0.3595
25.22 67.0 25.7 76.4 0.873 0.3837

3 15.00
07.60 61.0 24.6 70.5 0.862 0.4035
09.20 65.4 24.8 74.4 0.875 0.3801
20.81 66.3 21.2 73.1 0.906 0.3205

a cost-effective manner by choosing the feasible sizing of the ACKNOWLEDGMENT

voltage source.

V. CONCLUSIONS

This work proposed a coordinated control of VS-BESS in
a microgrid under two cases such as grid-connected and
islanded mode. Comprehensive simulation and analytical
studies were carried out using Matlab/Simulink with a chosen
network configuration. The proposed model comprises of a
detailed design of BESS and VS operated with hysteresis
current control.

Considering the results and supporting discussion in pre-
vious section, it can be inferred that during outage of the
grid, VS based BESS can supply both real and reactive power
to the load. The proposed scheme shows great effectiveness
for sizing the VS to drive the BESS against diverse loading
conditions. The procedures for reference current generation
for the BESS and active and reactive power-sharing between
the VS and the BESS and percentage current unbalance cal-
culation are also proposed. It was also seen that by providing
proper time lapse between the events, ramping up of BESS
is possible copiously. The effects of the percentage of load
unbalance, nonlinear loads, and power factors are analyzed
and the feasible sizing of VS ratings is computed for an
effective hybrid microgrid.

Various load scenarios are discussed with a different com-
bination of load current unbalance with various percentage
of load nonlinearity to find out the optimum rating of VS for
an efficient hybrid system design. This proposed method has
laid a strong platform to find the most economic VS rating
for given load patterns. It would be vital to further explore
the effects of intermittent RES on sizing of the VS present on
the microgrid network.
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