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ABSTRACT We develop a new robust control scheme for a non-holonomic spherical robot. To this end,
the mathematical model of a pendulum driven non-holonomic spherical robot is first presented. Then,
a recurrent neural network-based robust nonsingular sliding mode control is proposed for stabilization
and tracking control of the system. The designed recurrent neural network is applied to approximate
compound disturbances, including external interferences and dynamic uncertainties. Moreover, the controller
is designed in a way that avoids the singularity problem in the system. Another advantage of the proposed
scheme is its ability for tracking control while there exists control input saturation, which is a serious concern
in robotic systems. Based on the Lyapunov theorem, the stability of the closed-loop system has also been
confirmed. Lastly, the performance of the proposed control technique for the uncertain system in the presence
of an external disturbance, unknown input saturation, and dynamic uncertainties has been investigated. Also,
the proposed controller has been compared with a Fuzzy-PID one. Simulation results show the effectiveness
and superiority of the developed control technique.

INDEX TERMS Spherical robot, sliding mode control, recurrent neural network, external disturbance,
unknown input saturation, control singularity.

I. INTRODUCTION

The pendulum-driven spherical robot can move by changing
the position of its gravity centre. Indeed, the rotating of the
pendulum generates the relocation of the mass centre position
of the robot [1]-[3]. The spherical geometry is very suitable
to use these robots for exploration in harsh environments,
such as in the space, deserts, and earthquake ruins [4]-[7].
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However, this kind of robot results in a nonlinear system with
non-holonomic dynamics, which means that the dimensions
of the state space model are more than the number of control
inputs. This condition makes the tracking control of this robot
difficult in real applications [8], [9].

Robotic systems are well-known samples of trajectory con-
trollable mechanical ones. Nevertheless, their highly nonlin-
ear dynamics, as well as uncertainties, cause a challenging
control problem [10]-[12]. Hence, so far several studies have
tried to solve the challenge of controlling a spherical robot.
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To this respect, a three-step technique has been developed by
Li and Canny for the control of both position and orientation
of a spherical robot [13]. A novel mechanism has also been
proposed by Azizi and Naderi for controlling a spherical
robot [14]. Precisely, they have investigated the dynamical
model of the system and its control. Andani et al. [14] have
proposed a sliding mode control (SMC) and a fuzzy SMC
to control a spherical robot motion. They have demonstrated
that the controlled system can track the desired path with
minimum tracking error. However, they have not considered
important issues, such as the control input limitation and
the singularity problem. Kayacan et al. [15] have introduced
another SMC with an online learning algorithm for spherical
rolling robots. In one recent study, Roozegar et al. [8] have
investigated the control and motion of a spherical robot on
an inclined plane. They have proposed a terminal sliding
mode control (TSMC) to maintain and control the robot on
a variable slope.

One prevalent problem in TSMC is the singularity, which
causes by some terms in the terminal sliding mode surface
(this kind of singularity does not occur in SMC). To avoid
this singularity problem, a saturation function has been intro-
duced in [16] for dealing with the singularity problem in the
case of chained nonlinear systems with matched perturba-
tions. In this method, without changing the design of the
controller, it was proposed to limit the control signal when
singularity occurs. However, in this method, the stability
of the closed-loop system where singularity occurs was not
proven. A nonsingular TSMC method was presented in [17],
which simply swaps the state variables in the conventional
TSMC function while retaining the finite time convergence
feature. Also, in [18] switching between TSMC and a lin-
ear hyper plane-based sliding mode was proposed. Another
approach is to transfer the trajectory to a prescribed region in
advance where no singularity occurs, which is the so-called
two-phase control strategy [19]. It should be noted that these
methods are adopting indirect approaches to avoid singu-
larity. In [20], an adaptive non-singular integral TSMC has
been presented for trajectory tracking of autonomous under-
water vehicles with dynamic uncertainties and time-varying
external disturbances, which can eliminate the singularity
problem. In [21], a modified time-varying nonsingular TSMC
manifold has been proposed to avoid the singularity problem.

In general, another type of singularity problem, which is
the result of the dynamic of systems, may occur in control
systems. In this kind of singularity, due to some terms that
there exist in the functions of the system, the singularity
will happen. This issue has been solved for TSMC in some
studies [22]-[25]. However, there are a few studies that have
solved this kind of singularity through SMC. Actually, most
studies in this field have considered nonsingular approaches
for TSMC, and solving this detrimental problem through
SMC is neglected.

In most real-world applications, it is rare to found
accurate information about the dynamics of the systems,
and moreover, they are often in the presence of various
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disturbances [26]-[30]. Thus, in these cases it is very benefi-
cial to apply a controller that is robust to unmodeled dynamics
and external disturbances [31]-[33]. To this end, previous
works have proposed several disturbance-observers with dif-
ferent control schemes for some systems [34], [35].

Neural networks have been presented as an appropriate
tool for approximation of any unknown function [36], [37].
Thus, using this advantage, several research studies have
applied neural networks for control purposes [38]-[40]. For
instance, a neural network-based SMC has been designed
by Guo et al. for an autonomous underwater vehicle [41].
However, few studies have shown that when there are unex-
pected changes in the system, recurrent neural networks
(RNN) perform better than conventional feedforward neural
networks [42]-[45]. To this respect, a RNN-based distur-
bance observer has been employed to fortify the robust-
ness of the controller by Salgado and Chairez [46].
To approximate the uncertain dynamics of a MIMO system,
Salgado et al. [47] have also developed a RNN-based
observer for an adaptive SMC. The authors have proven that
this control scheme can approximate the unknown states of
a given nonlinear system and lessen the convergence time,
as well as the oscillations in the steady-state responses.
Fei and Lu [42] have presented an adaptive SMC by using a
double loop RNN to approximate unknown dynamics. Zhang
and Chu [48] have designed an adaptive SMC based on the
local RNN to estimate the uncertainties for trajectory tracking
control of an autonomous underwater robot. Xu et al. [49]
have proposed a RNN-based robust tracking control to mea-
sure an online unknown nonlinear system function. The
authors have shown that an RNN-based robust tracking con-
trol is able to significantly improve the performance of the
controller. Also, there have been a lot of research works
focusing on approximating time-variant functions using an
RNN. For instance, Chow and Fang [45] have used RNN as an
estimator to develop an algorithm that can approximate any
trajectory tracking accurately. Feedback connections between
layers of the recurrent neural network create sophisticated
dynamics that can deal with time-varying outputs and esti-
mate them. Li ez al. [50] have shown the excellent ability of
continuous-time recurrent neural networks in the estimation
of dynamical time-variant systems.

On the other hand, since input saturation is a potential
problem in many practical dynamic systems and has played
an important role in many branches of control applications
during the past decades, several valuable control schemes
for uncertain nonlinear systems have been proposed up to
now [51]-[53]. By employing the idea of auxiliary system
design, Esfandiari et al. [53] have introduced nonsymmetric
input saturation constraints for a class of uncertain non-
affine nonlinear systems with external disturbances. In [52],
an adaptive backstepping approach has been introduced to
control a single-input uncertain nonlinear system in the pres-
ence of external disturbances and input saturation. In that
method, a Nussbaum function is employed to solve the prob-
lem of the saturation nonlinearity. By making use of the
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smooth nonlinear function of the control input signal, a non-
affine pure-feedback stochastic nonlinear system has been
investigated in [51]. More precisely, the proposed control
guaranteed convergence of the tracking error to an arbitrarily
small neighborhood around the origin in the sense of mean
quartic value.

To the best of the author’s knowledge, very few attempts
have been made to design a neural network-based controller
for spherical robots [54], [55]. Moreover, none of these
works have considered control input saturation in the system.
However, as it is evident, because of the current limitations
in real actuators, the bounds of control input should be con-
sidered in real-world systems [56]-[58]. Similarly, although
the singularity problem can be induced to a large control
input [59]-[62], this has not been taken to account in most
previous studies on spherical robots. Moreover, the advan-
tages presented by RNNs have still not been completely
exploited for the control of this kind of robots. Hence, in the
present work, a novel controller has been designed for an
uncertain non-holonomic spherical robot in the presence of
unknown disturbances, control singularity problem, and con-
trol input saturation. Precisely, an RNN has been combined
with an SMC. Moreover, it has been demonstrated that the
proposed RNN-based disturbance observer can identify time-
varying disturbances and uncertainties when the robot is on a
variable slope inclined plane. The control input saturation has
also been taken into account for evaluating the performance
of the robot in a practical, real-world scenario. Moreover,
the proposed technique has been able to avoid the singularity
problem in the spherical robot. The stability of the system has
been proven by the Lyapunov stability theory and the Taylor
expansions technique, even when control input limitations
were considered.

Overall, the improvements reached by the proposed con-
trol method, regarding other previous works on control of
spherical robots, can be summarized as follows:

(1) Ability to deal with the control input saturation and
singularity problem through SMC, simultaneously.

(2) Access to the estimated disturbance and uncertainty
by depicting the online assessed value of the overall
disturbance.

(3) High-rate of accuracy in the disturbance estimation
using the outputs of each step as the inputs of the next
one in the RNN.

(4) Utilizing both activation function and biases in the
neural network disturbance observer by taking to
account the stability constraints.

The remainder of the work is organized as follows.
Section 2 details non-holonomic spherical robot formu-
lation. In Section 3, the RNN-based nonsingular SMC
(RNN-based NSMC) is designed for the uncertain spherical
robot. In Section 4, the proposed scheme is applied to control
the motion of the system. Also, the performance of the pro-
posed controller is compared with a Fuzzy-PID one. Lastly,
conclusions are presented in Section 5.
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Il. MATHEMATICAL FORMULATION OF THE SYSTEM

A spherical robot is an active system which is led to a
desired position and orientation by moving the pendulum.
By adjusting the center of mass gravity, the motion of the
robot could be controlled. A schematic representation of the
system is depicted in Fig. 1, where points A, G, C, and
P represent the center of the shell, the mass center of the
robot, the contact point between the plane and robot, and
the position of the pendulum, respectively. In what follows,
;]A, and 12, respectively, denote the unit vectors in x, y, and
z directions.

FIGURE 1. A spherical robot on an inclined surface.

The Euler—Lagrange equations for the system are given by

d (0L 9L\ .
a(a‘q)‘(%)—Q W

where ¢ illustrate the generalized coordinates, Q indicates the
generalized external forces and £ is the Lagrangian function
of the system and is given by

L=T-U, @

where T indicates the total kinetic energy of the system and
U denotes the potential energy. The total kinetic energy can
be expanded as

T =Tegse + Tpendulum» 3)

where Teqge and Tpenguium are given by

1 1
Tease = 5Ms [Vall®> + Sl lwgh?, and  (4)

1 2
Tpendutum = Emp “ Vp” ) Q)]

where my; is the mass of the spherical shell, V4 denotes the

velocity of shell center, 14 is the spherical shell moment of

inertia and wy = (d — d:) k represents the angular velocity of

the spherical shell, where ¢ is the rotation of the spherical

shell relative to the inclined plane, and « is the angle of

the inclined plane. Also, m,, and V), indicate the mass of the
pendulum and velocity of the pendulum, respectively.

According to the system that is shown in Fig. 1 the veloci-

ties are as

Ve = xaj, Vajc = pgpi — Va=Vc+ Vayc

= ,oqb; + xo't}', and (6)

Ve = Va + Veja, Vp = ré(cos (0) i+ sin 0) ), (7)
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where 6 stands for the instantaneous angle of the pendulum,
relative to the inclined plane.

p is radius of the spherical shell and r denotes the radius
of the pendulum. The potential energy and external force can
be then expressed as

U = Mg (x sin(a)+p cos (a)—rg cos (@+0)), (8)
and

Q= 1tm, €))

where rg denotes the radius of the robot mass center and 7,
is the motor torque. If £ is recomputed by Eq. (3) to Eq. (7),
these equations will be obtained as

(IC + mpp2> ¢ + mypr cos (9)§ — myprsin (0) (éz + éo’t)
—I4é — M p (x0 + p) &% + Mgpsin (&) = Ty, (10)
mprzé + mppr cos (9)[15 + myprsin (0) (54(]5
+mpr (Xo+p@) sin (0) & + Mgrgsin (a+0) =1,  (11)

Respectively. By defining the states of the system as
¢ =x1,¢ =x2,0 = z1,0 = 22, the state space equations of
the system are

X1 = x2, (12)
. 1 2 .
Xy = — - (—m prsin(z1) (z +zza)
[Ic + myp?sin® 71 ] r 2
— 146 — Mp (x0 + px1) &% + Mgpsin(a)
cos (T . .
+p @) [— [mporsin (z1) éxz + mpr (xo + px1)
+ sin(z1) & + Mgrgsin (o + Z1)]])
Tm [1 _ pcos(z1)]
r
B (13)
[ + mpp? 721
21 = 22, (14)
) mpprcos (z1)
2 =

(Icm,,r2 + m,z,p2r2sin2Z1)
X [Mgpsin () — mpprsin (z1) (z% + z20'l> — Iy
(I +mpp?)

(Icmp r2 + ml%pzrzsinzzl)

— Mp (xo + pX2)d2] +

X [—mpprsin (z1) &xp — mpr (xo + px2) sin (z1) &
[Ic + myp? — mypreos (z))]

(Icmpr2 + m%pzrzsinzm)

— Mgrgsin (e+2z1)]+

m

(15)

Egs. (12)-(15) have been derived from the Lagrange equa-
tion and the total kinetic energy of the system. Combining
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Egs. (13)-(15) and assuming that the & and & are negligible,
we have

X1 = x2, (16)
S (cmprin e (3)

- —myprsin (z1) (z

[Ic +myp?sin® 21 ] v 2
cos (1)

Xy = —

+ Mgpsin(a) — p

o1 - 22

[Mgrg sin (o + Zl)])

17

[(c + mpp?sin® z1)] o

21 = 2, -
mpprcos (z1) ([_mpprsin (z1) <Z%)

=
(Icmpr2 +m2p?r? sin? zl>
(Ie +mpp?)

+ Mgpsin (@)]) +
(Icml,,r2 +m2p%r? sin? Z])

[le + mpp*—mppr cos(z))]
(Icmprz—i—mg,ozr2 sin? zl)
(19)

Tm

X [-Mgrgsin(ae+2z1)]+

This model contains enormous complexity. Thereby,
reaching a favorable controller is the most challenging prob-
lem in this system, which motivates the rest of the present
study.

IIl. CONTROLLER DESIGN

In the current section, an RNN-based NSMC is designed for a
non-holonomic spherical robot, and the tracking convergence
of the closed-loop system is proven. Suppose # = t,,,, we have
the following nonlinear system:

X1 = x2, (20)

XZ = f;CZ + Afxz + (ng + Agxz) u + d(t)v (21-3)
1

— _ - . 2
fr = [Ic + mp,ozsin2zl] ( mpprsin (21) (Zz)
. cos (z1) .
+ Mgpsin(a) — p———— [Mgrgsin (o + z1)]
(21-b)
[1 _ pcos}EZl)]
8xz = (21-¢)

[(Ic + mpp? sin®z;)]

where d (¢) denotates the external disturbances. These equa-
tions include uncertainties and disturbances against whom the
system must be robust. According to the uncertain terms Ag,.
and Af,., Eq. (21) can be rewritten as

X =fie+ @)u+ D), (22)
where D(¢) is defined as
D(@)=Af,,+Ag u+d). (23)
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A. SELECTING AN RNN-BASED CONTROLLER

Up to now, neural networks have been applied for enormous
applications and have shown successful results in several
problems. In [63], it is demonstrated that neural networks
in conjunction with recursive least squares can be used
effectively for model identification of nonlinear time-variant
processes. Actually, if we combine a feedforward neural
networks with a recursive method, then it can estimate
time-varying functions as well.

In [64], it is proven that Multilayer feedforward networks
are universal approximators and are capable of approximating
any smooth function. However, feedforward networks need
appropriate inputs to approximate any time-varying func-
tions. Also, In [65], it is proven that RNNs are universal
approximators even when they have only one layer.

An RNN is a powerful neural network that could be
used for predicting complex uncertainties. In comparison
with conventional feedforward neural networks, RNNs have
better performance when changes in the system are unex-
pected [42], [66]. In addition, time-sequential can be stored
through the recurrent weights of the network, and recurrent
neurons can then reflect time sequences. Therefore, an RNN
could estimate disturbances better than a conventional
feedforward techniques [48], [67].

Especially, RNN, which possesses recursive features,
is highly recommended for time-variant problems. Indeed,
due to the recurrent information which has been indirectly
stored in a neural cell, RNN provides short-term dependen-
cies that create the capability of processing and learning
time-varying smooth functions [50], [68], [69]. Hence, RNN
is more applicable to the estimation of the time-evolving
condition [70]-[72].

B. DESIGNING AN RNN-BASED NSMC

Consider ¢ as an input vector, D as the estimated disturbance,
and I" as a constant parameter which should be larger than the
value of the compound disturbance, i.e., than all uncertainties
and perturbations, we have

D=rf (W'¢+51)+en, (24)

where VV\l = [w1, @2, ..., w,]" is the vector of weights
of the RNN, 27\1 denotes bias, ¢, is the estimation error, and
f (X) is an activation function [56]-[58].

In the current study, we have used SoftSign as an acti-
vation function due to the fact that SoftSign is smoother
than tanh and sigmoid, and approaches its saturation regime
much slower. Consequently, compared with sigmod and tanh,
SoftSign prevents the chattering in the estimation process
and is less likely to oscillate between minimum and maxi-
mum bounds [73]. Even though tanh and softsign functions
are closely related, tanh converges exponentially, whereas
softsign converges polynomially. Softsign functions produce
outputs in scale of [—1, 41]; hence, I'f (VV\lTC +31) will be
in[-I, "]
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Adaptive laws for updating the bias and weights of the
RNN are designed as

by = —TSyf (v?]Tg +31), and (25)

Wi ==, (W' +5i)e, (26)

respectively, where S is the sliding surface that will be deter-
mined as described below. These updating rules with utilizing
the backpropagation method update the weights and bias of
the recurrent neural network. The optimal value of compound
disturbance which observer can estimate is modeled as

D =Tf (W¢+b1). )

where the input vector ¢ includes Sy, f - S2, X1, X>. The RNN
operation is shown in Fig. 2(a), whereas Fig.2 (b) shows the
procedure of the proposed controller. The RNN disturbance
observer has been combined with a SMC to compensate the
effects of control singularity, input saturation, and external
disturbance.

Assumption 4: There exist ideal vector of weights and bias
of the RNN such that |¢,| < &, with constant ¢, > 0 for
all ¢.

Assumption 5: The activation function f (x) is bounded.
By virtue of Assumption 4, it can be concluded that Dis also
bounded.

The manifolds of the sliding surface are designed as

S1 =e=x1 —x14, and (28)

S) = é+ace =S| +acSi, (29)

where e indicates the error of the system, which can be

measured by a sensor. Moreover, ¢, is a positive parameter
that should be designed. The first-time derivative S, is then

Sy =y — Joa + e (x2 — X24) - (30)

Due to the limitation of the control force, the input
saturation function should be considered in practical, real-
world applications. In the present study, the amount of the
controller input has been restricted by u;,,4x and u,,;,. Hence,
the restricted control input (u) is considered as [74]:

Umax I U > Upax
if Umax = U > Upin 3D

Umin I U < Upin

u=13u

where u,,,, and u,,;, are the bounds for the input signal and
u is the control signal, which is designed as
u = —gxz up
(& +e)
where ug will be described below, and ¢ is a positive
parameter. Based on Eq. (21-c) when cos(z1) = %, the
singularity problem occurs, and in this study, thanks to
the denominator of Eq. (32), we will rid of the singularity
problem. A simple calculation yields

(32)

g)zcz — 1_ J
(&% +€) (&% +¢€)

(33)
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(b) Xo & Recurrent neural u
—{__—8,(t)and§, (t}— network-based sliding —

mode control

—

Limit Input

_Signal
ﬁl ¥
/ .

glx)glx) +e) | 5 ™ spherical robot
External l
Disturbance

X0 5and =,

4 Non-holonomic

FIGURE 2. (a) Internal structure of the proposed RNN-based NSMC disturbance observer. (b) Global block diagram of the proposed RNN-based NSMC

for a non-holonomic spherical robot.

Substituting Eq. (33) into Eq. (22), Eq. (34) can be obtained
as

X2 = fo + (@) (u + Au) + D(1)

= faz U0 + gz Aut + D(1)— (34)

e
5 U0,
(& +9)
where Au = u — u and its value is unknown. By considering
impacts of the nonsymmetric input limitation, the compound
disturbance can be expressed as

D, =g Au+D (1) — (35)

£
—5 U0,
&%+ o)

188446

in which Actually, the uncertainties and the disturbances are
assumed to satisfy |D;| < I'. Considering Eq. (35), then,
Eq. (34) can be written as

X2 = fxz +uo + Dr. (36)

Finally, by considering the singularity problem and control
input saturation, the RNN-based NSMC is designed as

Uy = —ae (X1 — X14) — 882 — Ysign(Sy) — fur — D + J2a
—ae(xp —x2q), (37)
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where § and ¥ are positive parameters and i should be a
large constant to fulfill ¥ > |e,|.

The stability of the closed-loop system based on the control
laws described in Egs. (37)-(38) is demonstrated with the
following theorem.

Theorem 1 Under the proposed RNN-based NSMC,
Egs. (24) an (38), the uncertain spherical robot converges to
the desired trajectory in the presence of unexpected distur-
bances, singularity, and input saturation.

Proof: Supposing a Lyapunov function candidate as

I I
“WITW, + Eblz, (38)

1 1
V= _asSi+ =57+ 5

2 2

Yvherg\W1~= VE\ — W; and 1;1 = 31 — by, considering
151 = 151, W = Wl, and the first-time derivative of V is

V= acslSl +Sz$2 + V~V1TFW1 +l;1l}1
= acS1(S2 — acS1) + 282 + W TWy + bib1. (39)

substituting Eqgs. (29)-(30) and the proposed control law
described in Eq. (37) into Eq. (39), yields

V= SH (Sz +(¥c51) — (XCSIZ + W{FW] +b~1l.71
=8 (S + X2 — X2d o (2 — x24))
—OtCSI + Wl FW] -I—blbl (40)

Then, using Eq. (36), Eq. (40) can be written as follows

V = 85 (@eS1 + fig + 1o + Dy — F2q + e (x2 — X24))
— ST+ WITW, +b1by.  (41)

Considering Egs. (41) and (37), Eq. (41) can be expressed
as

V = S, (=882 — Ysign(Sy) — D+ D) — a2 + WITW,
+hibi. (42
According Egs. (24) and (27), we have:
V =2 (=88 — wsign(sy) — If (W' ¢+ ) — e,
+ TPV ¢+ b)) = aeST+ WITW) +bib 43)

Using Taylor expansion of f (W] ¢ + b1) about W+
bl we have

f(Wlesn)=f (WM c+B)+f (W'c+)
x (Wle+by), (44

in which, f (WIT ¢+ b1) is linearized by employing the math-
ematical Taylor polynomial. By substituting Eq. (44) into
Eq. (43) yields

V = 53 (~88: — psign(sp) — T (Wi ¢ +1) — e
+ 1 (W7 ¢ +B0) + 17 (W 400 ) (W] ¢ +61)
— aeS? + WITW, + 51by. (45)
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Finally, considering the updating rules described in
Egs. (25) and (26), we have

V = 83 (~88: — psign(sy) — Tf (Wi ¢ +1) — e
+1f (W' e +B1) + 17 (W e +51) (W ¢ +81)
—aeST = WITSyf (W' ¢ +51) ¢
—BiTSof (W' ¢ +B1) =55 (88— ysign(Sy)—e)
—a.S?, (46)

and having in mind that ¥ > |e,|, the following inequality is
obtained

V < —857 — a.S7. (47)

At the present stage, the proof is completed, and the states
of the system converge to the commanded values, even when
there exist external disturbances, unknown input saturation,
and the singularity problem.

IV. NUMERICAL SIMULATIONS

Herein, the performance and effectiveness of the proposed
RNN-based NSMC are demonstrated. The design parameters
of the controller were chosen as o, = v = 20,6 = 10, and
the initial weights in the RNN were considered as uniform
random functions in the range (0,10). The system’s parame-
ters were supposed as m, = 0.639 kg, M = 1.139 kg, p =
0.2m,rg = 0.101 m, and I, = 0.05 m*. Also, to investigate
the robust performance of the suggested control, the external
disturbance was assumed as d (f) = SCos( )mdz (By

considering dqx = 5”"1 ) and initial conditions for the
system were [X] (0) , X2 (O) Z1(0),Z,(0)] =10.1,0,0,0].
The sampling time for simulations were chosen to be 0.01
second.

A. TRACKING CONTROL

In this section, the performance of the RNN-based NSMC
on position tracking is illustrated. For this purpose, the slope
of the plane was varying by & (t) = & + J5sin (F5t) rad
and the control input was limited to the values ;4 =
6 N.m, and upiy, = —5 N.m. Then, Fig. 3 presents the
simulation results. It can be easily observed that the proposed
RNN-based NSMC can track the desired reference signal in
the presence of disturbances, input saturation, and dynamic
uncertainties. The maximum absolute angle of the pendulum
is less than 0.4 rad. Therefore, it can be verified that the angle
of the pendulum does not exceed % rad, which shows that
these results are appropriate for a practical system.

On the other hand, Fig. 4 demonstrates that the RNN-based
disturbance observer can identify disturbances and uncer-
tainties precisely. In fact, Fig. 4(a) depicts the torque input,
which implies that the proposed RNN-based NSMC has been
saturated, and Fig 4. (b) shows the estimated disturbance.

To show more extensively the capacity of the RNN-based
approximation and the proposed control scheme in tracking

188447



IEEE Access

S.-B. Chen et al.: RNN-Based Robust Nonsingular SMC With Input Saturation for a Non-Holonomic Spherical Robot

41
3
)
P
N9
1.
— Xi(rad)
0 | Xiglrad)
0 2 4 6 8 10
Time(s)
(a)
20
@ 10
°
2
X 0
—— Xy(rad/s)
=14 Xaglradys)
0 2 4 6 8 10

Time(s)

(c)

FIGURE 3. Time history of the closed-loop system for a step input signal.

6
4
2
E
£o0 \\/\/\/\/V\/\/\/\./\/\/W\/\/\/
3
-2
—4 — u(N.m)
0 2 4 6 8 10

Time(s)

(a)

0.25

0.20

©
=
tn

Z(rad)

(=]
=
(=}

0.05:

0.00 ‘ . :
4 6 8 10
Time(s)

(b)

o
N

0.2

Z(rad/s)
=
FE

o
o

—0.1 —— Z(radls)

4 6 8 10
Time(s)

o
N

(d)

T
TRIRIRIRIRIR

Disturbance

-—
-_—
P —

—— Estimated disturbances
-10 Real disturbances

2 4 6 8 10
Time(s)

(b)

FIGURE 4. (a) Time history of the control input when there are input saturation (b) Actual and estimated values of the disturbance d(t).

control, the designed controller has been used for another
trajectory target. Thus, Figs. 5 and 6 depict the state of the
system, control signal, and the estimated disturbances for
a ramp input signal. The numerical results conspicuously
demonstrate that, using the proposed RNN-based NSMC,
the spherical robot can track the desired trajectories, even
when there exist uncertainties and external disturbances.

B. COMPARISON BETWEEN THE PROPOSED METHOD
AND FUZZY-PID CONTROLLER

To illustrate the benefits of the proposed control scheme, its
performance has been compared with a Fuzzy-PID controller.

188448

This algorithm was mainly selected by two reasons. On the
one hand, many previous works have proven that neural
network-based disturbance estimators considerably improves
the performance of many controllers [75]. On the other hand,
Fuzzy control has been suggested as suitable for complex
robots, whose models cannot be easily established from a
mathematical point of view [76]. Moreover, a Fuzzy-PID
controller has been recently proposed to control a spherical
robot with excellent performance [47].

Consequently, the method developed by
Roozegar et al. [77] has been implemented and analyzed
in the present work. Although all details for this controller
can be found in [47], it should be noted that the gains for
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TABLE 1. Parameters of the Fuzzy-PID control scheme.

OBJECTIVE K, Ky K;
Minimum 35 0.005 0.0008
Maximum 45 0.02 0.002

the control scheme are given in Table 1. Moreover, input
is divided into 7 Fuzzy logic values, including zero (ZO),
positive small (PS), positive medium (PM), positive big (PB),
negative big (NB), negative medium (NM), and negative
small (NS). The degree of error and its time derivative are
expressed by these linguistic variables. Then, membership

VOLUME 8, 2020

functions are depicted in Fig. 7 and the fuzzy rule table is
listed in Table 2.

Figure 8 depicts the time history of the system with the
proposed RNN-based control scheme as well as the imple-
mented Fuzzy-PID controller used for comparison. In this
simulation, both controllers have been applied to the robot
after 0.2 seconds. As can be seen, both algorithms converge
to the desired position. Nonetheless, it is noteworthy that
when we have tried to consider the same input saturation
for the Fuzzy PID controller, we could not obtain a proper
result. Hence, we inevitably applied the fuzzy PID controller
without control saturation, which means a great drawback for
practical, real-world applications. As can also be observed
in Figs. 8(a) and (b), the proposed RNN-based NSMC was
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TABLE 2. Fuzzy rule table for the fuzz-PID controller used for comparison.

e NB NM NS Z0 PS PM
NB NB NB NB NB NM NS
NM NB NB NB NM NS 70
NS NB NB NM NS Z0 PS
Z0 NB NM NS Z0 PS PM

PS NM NS Z0 PS PM PB
PM NS Z0 PS PM PB PB
PB Z0 PS PM PB PB PB

faster than the Fuzzy-PID controller. Moreover, the simula-
tion also confirmed that the proposed RNN-based controller
was able to overcome the external disturbance and uncertain-
ties better than the Fuzzy-PID. Furthermore, the Fuzzy-PID
produced a high-frequency oscillation in the response of the
system.

On the other hand, it should also be noted that conven-
tional SMC generates chattering for uncertain systems due
to the existence of the sign function in the control input. This
phenomenon then causes vibration in the system, because it
takes time to converge the sliding surface to zero. However,
Fig. 8 shows that the proposed RNN-based NSMC is able
to substantially minimize this problem. Actually, one of the
major issues that causes chattering in a conventional SMC is
the existence of the uncertainties and disturbances. However,,
as it is shown in Fig. 4 (b) and 6 (b), the controller proposed
in the present study is able to estimate quickly and accurately
the uncertainties and disturbances. Actually, our numerical
results confirm that after 3 second the estimation errors for
ramp and step input respectively are less than 9% and 2%
in which the estimation errors (d,) is calculated in (48), as
shown at the bottom of the page.

Therefore, the vibrations in the response of the system will
be significantly decreased in comparison with a conventional
SMC.
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velocity reached by a spherical robot with the proposed controller and
the Fuzzy-PID one sued for comparison.
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FIGURE 9. Comparison of the control inputs obtained by the proposed
RNN-based controller and the Fuzzy-PID one.

The control input signals for both control schemes are
depicted in Fig. 9. As can be seen, in both cases the input
signals dropped to zero with some oscillation. Nonetheless,
it can be noticed that, when the target changed, the con-
trol input for the Fuzzy-PID controller had a big overshoot.
Otherwise, the control input for the proposed RNN-based
controller presented a smaller overshoot and quicker conver-
gence time. Thus, this figure corroborates that the proposed
control approach needed less control effort compared to the
Fuzzy-PID controller. To summarize, the proposed control
method had smaller oscillations, faster response, and less con-
trol effort. Hence, the numerical simulations have confirmed
the superiority of the proposed RNN-based NSMC over the
Fuzzy-PID controller.

0 — |ACTUAL DISTURBANCE — ESTIMATED DISTURBANCE]|

¢ MAX (ACTUAL DISTURBANCE)

188450

(48)
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V. CONCLUSION

In the present study, an RNN-based NSMC has been designed
to control the motion of a spherical robot. Unknown uncer-
tainties, including external disturbances and the control input
saturation, have been quickly and accurately approximated
by the approach, thus leading to successful control. Also,
the prevention of the singularity problem has been taken
into consideration for the control scheme. In fact, using the
Lyapunov stability theorem and employing Taylor series
method, stability, and robustness of the controller against
uncertainties, disturbances, control input saturation, and sin-
gularity have been guaranteed. Finally, the proposed con-
troller has been compared with a Fuzzy-PID control scheme.
The obtained simulation results have shown that the response
of the system is smoother when the proposed RNN-based
controller was used. Nonetheless, as a future suggestion,
updating control gains of the proposed control scheme in a
Fuzzy environment can improve the output response of the
system. Moreover, an extension of the proposed controller
could also be used for fractional-order systems.
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