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ABSTRACT Big data is a ’’relative’’ concept. It is the combination of data, application, and platform
properties. Recently, big data specific technologies have emerged, including software frameworks, databases,
hardware accelerators, storage technologies, etc. However, the automatic selection of these solutions for
big data computations remains a non-trivial task. Presently, the big data tools are selected by analyzing
the problem manually, or by using several performance prediction techniques. The manual identification
is based on the data properties only, whereas the performance predictors only estimate basic execution
metrics without linking them with big data (3Vs) thresholds. Hence, both ways of identification are mostly
incorrect, which can lead to inefficient use of 3Vs optimizations, resulting into global inefficiency, reduced
system performance, increasing power consumption, requiring greater effort on the part of the programming
team, and misallocation of the hardware resources required for the task. In this regard, a novel framework
has been proposed for automatic detection of 3Vs (Volume, Velocity, Variety) of big data, using machine
learning. The detection is done through static code features, data, and platform properties, leading to
relevant tool selection, and code generation, with minimal overheads, lesser programmer interventions,
higher usability, and portability. Instead of handling each application with big data specialized solutions,
or manually identifying the 3Vs, the framework can automatically detect and link the 3Vs to the relevant
optimizations. Several standard applications have been tested using the proposed framework. In the case of
volume, the average detection accuracy is up to 97.8% for seen and 95.9% for unseen applications. In the case
of velocity, the average detection accuracy is up to 97.3% for seen and 92.6% for unseen applications. There
is no margin of error in variety detection, as it has straightforward computations without any predictions.
Furthermore, an airline recommendation system case study strengthens the effectiveness of the proposed
approach.

INDEX TERMS Big data (3Vs), detection, LLVM, machine learning.

I. INTRODUCTION
Recently, there has been an explosion of data from daily
sources such as credit cards, phones, social networks, astron-
omy, sensors, genomics, eCommerce, etc., [1], due to the
Internet of Things (IoT), artificial intelligence, robotics,
quantum computing, biotechnology, and fifth-generation
wireless (5G) technologies. Such a huge amount of real-time
heterogeneous data which is unable to get handled by con-
ventional hardware or software solutions is termed as big
data [2]–[7]. Big data is the combination of data, application,
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and platform properties. The application A operating with
dataD is considered as big data, if its processing gets difficult
on platform P. The 3Vs (Volume, Velocity, Variety) appear to
be the defining characteristics of big data for modeling data
processing challenge [8], [9].

As per literature, APIs, programming models, domain-
specific languages, and databases are invented to process
big data applications [2], [6], [7], [10]–[12]. However, these
solutions are adopted by manually testing the 3Vs data prop-
erties [8], or using performance predictors for estimating the
computational requirements [13]–[18]. Although, the possi-
bility of 3Vs can be roughly determined by observing use
cases, still data characteristics are not enough to dictate
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the presence of big data, ignoring application and platform
details [8]. Similarly, the automated techniques only predict
the generic information like job’s timing or resource require-
ments, without linking these metrics with big data (3Vs),
thus selecting the big data tools due to higher execution time,
or heavy resource consumption, not due to 3Vs presence.

This way, big data identification is mostly incorrect by
both the methods, leading to global inefficiency, reducing
system performance, increasing power consumption, requir-
ing greater programming efforts, and misallocation of the
hardware resources required for the task. For example, the
adoption of a server is justified for processing a high volume
data, which is unable to be executed on a small machine
due to large memory consumption. Similarly, executing a job
on a Spark cluster is justified, for faster processing of high
velocity data having strict deadlines, otherwise, the same job
can be run with fewer resources saving overall cost. Finally,
adaptive schema techniques are justified for high variety
data, whose format is unable to be handled by the routine
applications. In this way, the prior cost-benefit analysis of
big data (3Vs) is needed. Hence, an identification mechanism
is necessary [19], which can trigger the solutions only after
detecting big data problems at the right time. Up till now,
to the best of our knowledge no such technique has been pro-
posed which can automatically detect the big data workloads,
before triggering the specialized solutions.

The detection phase is substantial for determining the pres-
ence of 3Vs. In case, if each incoming application is handled
with specialized big data solutions, the resource wastage and
overheads are expected to increase significantly, which ulti-
mately leads to reduced overall performance. The detection
stage can automatically trigger the specialized 3Vs optimiza-
tions, only if the application is big data, otherwise routine
processing is continued. The 3Vs optimizations can be incor-
porated at various levels of big data stack such as hardware
(GPGPUs, FPGAs) [20], [21], compiler (garbage collec-
tion, parallelization, loop, type inferencing, data layout opti-
mizations) [22]–[24], third party libraries (Hadoop, Spark,
Flink, Storm) [25]–[27], databases (MongoDB, VoltDB) [20],
etc. Several benefits of automatic big data detection
include optimal computational resource utilization, selection
of appropriate tools, triggering of relevant codes either for
General Purpose Processors (GPPs) or varying accelerator
architectures, minimal overhead & user intervention.

This paper proposes a novel framework for detecting big
data applications before the execution phase, which to the
best of our knowledge is the first of its kind. The framework is
comprised of feature extractor, predictor, and detector. It can
identify the 3Vs of big data including Volume, Velocity, &
Variety usingmemory consumed ratio, execution time, & het-
erogeneity ratio metrics respectively. Firstly, the application
code is passed through the feature extractor for acquiring
relevant code features using compiler Intermediate Represen-
tation (IR).1 The IR emits source and target independent 3Vs

1Code used internally by a compiler to represent source code.

features. The feature set includes allocation size for volume,
instructions count for velocity, & data format for variety.
These features can only be determined at run time, where
the control flow information is available. Conventionally,
the profiling technique has been used for determining code
features, but it is discouraged for large scale applications due
to substantial overhead [28]–[31]. Therefore, the proposed
framework collects the feature set by first instrumenting each
application, and then running it with smaller data sets. The
computed features are then extrapolated for considered data
sizes of test applications. The instrumentation approach is
simpler and lightweight as compared to full system profiling
because only the relevant information is emitted [32].
In the case of volume and velocity, the feature vector is

passed to the predictor for estimating the application con-
sumed memory and execution time using a suitable regres-
sion model. The predicted consumed memory and time are
then passed to the detector for determining the existence of
volume and velocity based on predefined thresholds. Sim-
ilarly, the existence of variety is determined using hetero-
geneity ratio and predefined thresholds. With the large and
complex datasets, one time profiling seems infeasible [30],
[33] for computing the memory consumption and time. Sim-
ilarly, static complexity analysis is not a viable and precise
approach for real-world application codes due to nondeter-
ministic execution paths [30], [34], [35]. In this manner,
the proposed prediction based approach usingmachine learn-
ing and instrumentation appears to be reasonable for big data
applications [33].

For testing the proposed detection framework, vari-
ous application programs have been taken from standard
benchmark suites [36]–[43]. The considered benchmark
applications and datasets are diverse in nature, covering max-
imum possible use cases of big data. The feature extraction
algorithms have been implemented as an analysis pass in
Low Level Virtual Machine (LLVM) compiler for 3Vs. The
predictor and detector have been implemented in statistical
tool R [35]. For predicting memory consumption and time,
SVM [44] regression has been used due to a lower error rate.
The proposed framework serves as amilestone for identifying
big data (3Vs) characteristics at an early stage with overall
acceptable accuracy. Due to the generic 3Vs features, sim-
plicity, and lightweightedness, the framework can be imple-
mented in any third party big data processing tool (script)
or commercial compiler (flag). Hence, there is no compul-
sion to handle each application with 3Vs optimizations, nor
a need to manually identify the presence of 3Vs, because
the framework can automatically detect and map the 3Vs
to the respective optimizations without incurring substantial
overheads. Following are the main contributions of this paper,

1) To the best of our knowledge, the first framework
for automatically detecting characteristics of big data
applications before job execution.

2) Feature engineering for 3Vs i.e selection of suitable
feature set for estimating the memory consumption,
time, and heterogeneity ratio.

VOLUME 8, 2020 186305



H. Ahmed, M. A. Ismail: Towards a Novel Framework for Automatic Big Data Detection

3) Source and target independent 3Vs feature extraction
via compiler IR which can work with any computa-
tional engine.

4) Cross platform compilation i.e target platform features
are extracted by compiling code on any host platform
without the need for target machine compilations like
profiling approach.

5) Automatic selection of hardware & software solutions.
Rest of the paper is organized as follows: Section 2 dis-

cusses background&motivation. The framework is presented
in section 3. Section 4 analyzes the results. The case study is
presented in section 5. Section 6 discusses the related work
followed by the final conclusion in section 7.

II. BACKGROUND & MOTIVATION
Recently, big data workloads have emerged, involving huge
amount of real-time heterogeneous data, which is unable
to get handled by conventional hardware or software solu-
tions [2]–[7]. The 3Vs (Volume, Velocity, Variety) appear to
be the defining characteristics of big data and are enough
to model data processing challenge [8], [9]. Big data is a
‘‘relative’’ concept, hence the thresholds are determined via
data, application, and platform characteristics [2], [5], [9],
[45], [46]. Volume is indicated by higher memory or I/O
consumed ratios, velocity emerges when the data generation
rate gets greater than the data processing rate,2 and due to
dissimilarity between application and external data formats
variety is true.

In the past decade, there has been an emergence of
big data specific technologies, including software frame-
works likeHadoop, Spark, NoSQL databases likeMongoDB,
Cassandra, hardware accelerators like GPGPUs, FPGAs,
storage technologies like NVRAMs, Cloud, etc., [7], [20],
[20], [47]. However, automatic selection of these solutions for
big data computations remains a non-trivial task. Presently,
the selection task is done by skilled personnel or performance
predictors.

The personnel manually analyze the problem and then
select the appropriate big data tool. This analysis is mostly
incorrect as it is based on the data properties only, ignoring
application and platform features, for example, if the sce-
nario involves GB size or heterogeneous formats, big data
technology is used. However, the larger data size does not
necessarily involve heavy computations that are unable to get
done via conventional resources. Nor the heterogeneous for-
mats reflect the handling deficiency of application. This way,
adopting big data tools by only considering the data size or
format is a costly decision that can lead to excessive power &
energy consumption and wasting of the team’s programming,
administration, & management efforts. Hence, the exact need
for big data technology can only be known by executing the
given data with an application on a specific platform.

In contrast to the manual approach, several automatic
techniques have been developed [13]–[18]. However, these

2It means processing time gets greater than generation time.

FIGURE 1. Big data detection & processing.

techniques select big data tools by only predicting generic
metrics like job’s timing and resource consumption, without
relating these metrics with big data (3Vs) thresholds. This
way, before using big data tools the 3Vs existence status is
still unknown, resulting in inefficient resource exploitation.
The big data tools are adopted because of longer execution
time or higher resource consumption, not because the con-
ventional resources are incapable to handle such jobs.3

The adoption of resource intensive big data tools for such
workloads which can be handled with conventional resources
is a costly choice resulting in heavy resource wastage. For
example, using a high-end multi-core server is not wiser for
a job that can be processed with a laptop. The system will
consume high power & energy even with only one or two
cores are being utilized. Similarly, hiring of Hadoop experts
to perform data analytics is not worthy, if the same analytics
can be performed by a simple Python script. This way, a
mechanism is necessary which can automatically detect and
offload big data workloads to appropriate tools as shown
in Figure 1.

A. BIG DATA PROCESSING
In literature, numerous techniques are available at differ-
ent layers of computation stack that can address big data
processing challenge [2], [6], [7], [10]–[12]. It includes
domain-specific languages, software programming models,
third party libraries, hardware accelerators, storage devices,
and so on. To better understand the role played by the existing
techniques in solving big data problem, we have designed
the big data computation stack in Figure 2. It consists of the
common layers that are part of a computation stack, through
which every high-level application is passed to get executed
on hardware. In a similar manner, a big data application
possessing Volume, Velocity, Variety is passed through these
computation layers of the stack [25]. We have surveyed and
mapped each big data solution to the relevant layer of the
stack in Figure 2. Each level exhibits numerous opportunities

3The fundamental definition of big data workloads says these are unable
to get handled by conventional resources.
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FIGURE 2. Big data computation stack.

for attaining the 3Vs performance objectives as discussed
below.

1) APPLICATION LEVEL
The solutions are easier to design and manage from a pro-
grammer viewpoint at this level. It includes domain-specific
fourth-generation languages, in-memory databases, and data
compression techniques [20], [48]. The development in this
phase is rapid and regular.

2) MIDDLEWARE AND MANAGEMENT LEVEL
It is less abstracted in comparison to the application level,
the design and management tasks are more difficult for end
programmers. The growth is significant by means of pro-
gramming models and third party libraries [25]–[27].

3) SYSTEM SOFTWARE LEVEL
It is the middle stage that utilizes the resources to the maxi-
mum capability by mapping the above software to the hard-
ware [24], [48], [49].

4) HARDWARE LEVEL
Considerable growth is observed at this level, in terms of
dedicated accelerator architectures and storage devices [20],
[21], resulting in enhanced overall performance.

B. BIG DATA DETECTION
The need for big data detection before selecting specialized
solutions (section 2.1), can be understood in the light of
a 4 node virtual Spark [50] cluster that has been config-
ured on Hadoop Yarn [51]. A set of Spark jobs from big-
databench [52] benchmark suite has been executed in local
and cluster modes. As per Figure 3, the volume is indicated

FIGURE 3. Volume test for spark jobs.

by memory or disk read consumption of above threshold
(80%). For bayes, sort, and word count, memory & disk read
consumptions are less than 80% in local mode, indicating the
absence of volume problem. This way, volume specialized
solution is not needed for these jobs. However, if these jobs
are executed using a server or a cluster with large memory,
the memory consumption fraction becomes very low, but
the power and energy consumptions are likely to be greatly
increased while operating these high machines, which is not
worthy because the memory resource is under utilized.

Similarly, as per Figure 4, velocity is indicated, if execution
time is greater than the threshold (deadline). In this manner,
cluster adoption is justified only for connected component
(CC) execution, due to shorter deadline. Hence, it is not
justified to run such jobs on the cluster, which do not represent
velocity problem, as these are increasing the overheads in
terms of expansive nodes, unnecessary resource wastage by
cluster daemons, programmers time, and cluster manage-
ment. For instance, grep execution time is already below
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FIGURE 4. Velocity test for spark jobs.

the deadline, but when it is executed in a cluster, the com-
munication cost between nodes is unnecessarily increased
which leads to increase execution time. Also, the cluster
resources are idle most of the time but the power & energy
are still consumed as well as personnel is regularly involved
in programming, execution, and management of the given job
on cluster.

Despite the processing of GB size data by the jobs, 3Vs
requirements vary greatly. For instance, by observing the
same GB size, both grep and sort are categorized as high
volume. However, this manual detection gets incorrect as both
the jobs have different consumptions. Similarly, CC size is
much lesser than grep, but velocity is present in CC, due to
higher execution time. In this manner, manual testing is cer-
tainly not enough for offloading jobs to these rich resources,
because the application and platform knowledge are also
needed along with data for making the right decisions.
Moreover, the existing performance predictors [13]–[18]

are not enough, as these can only determine the job’s tim-
ing and resource requirements, without linking them to 3Vs
thresholds. For example, these techniques will prescribe to
run majority applications on the cluster to reduce execu-
tion time. However, with the execution of such jobs on the
Spark cluster which does not represent velocity,4 the cluster
resources are inefficiently exploited, resulting in huge penal-
ties in terms of power & energy consumption and wastage of
personnel efforts. In this regard, our approach is beneficial as
it makes prescriptions based on 3Vs metrics, hence cluster
is prescribed for CC only, after being detected as velocity
problem. Finally, the selection of adaptive schema techniques
is justified if variety is observed, that is the application is
not capable to handle incoming data. Otherwise, the adoption
can lead to unnecessary hardware, software, and personnel
resources spent in managing such complex techniques.

This way, an automatic 3Vs detection mechanism is
inevitable for appropriate processing of jobs, instead of exe-
cuting all the larger size, heterogeneous datasets, or slower
jobs with these expansive big data tools. In the considered
scenario, the prior detection of big data can save the slave
node resources, including RAM 3*(6 GB), disk 3*(20 GB),

4Such jobs can easily meet processing deadlines in local mode.

and CPU 3*(1 core @ 3.60 GHz), as well as for single
node up to 50% RAM & 31% disk reads are saved. Further,
the jobs can be sequentially coded by ordinary programmers
using conventional tools. Hence, the computation and human
resources are reduced up to 75% (3/4) by utilizing only the
single machine of a 4 node cluster.

III. 3Vs DETECTION FRAMEWORK
The 3Vs (Volume, Velocity, Variety) detection framework is
presented in Figure 5. Only Intermediate Representation (IR)
code and test data properties are input to the framework
comprising of feature extractor, predictor, and detector. The
3Vs features are extracted via IR, which ensures genericness
due to source and target independence. The feature vector
construction is followed by regression based prediction of
volume and velocity metrics. The presence of Vs is detected
through computed metrics.

A. VOLUME DETECTION
The presence of volume is indicated by higher memory or I/O
consumed ratios for a given size and platform [22] as repre-
sented in Equation 1. Where θv1 is volume threshold, P(α) is
a process memory consumed ratio (memory intensive), and
P(β) is a process disk I/O consumed ratio (I/O intensive).
Memory consumed ratio is the proportion of maximum phys-
ical memory consumed by a process with respect to the total
available RAM. It can be computed through the Resident Set
Size (RSS)5 of a process. Similarly, I/O disk consumed ratio
is the proportion of maximum disk reads per second done
by a process with respect to maximum disk reads per second
allowed for a hard disk.6

Volume = true, if P(α) > θv1 ∨ P(β) > θv1 (1)

In this paper, memory consumption is considered for cat-
egorizing volume based applications. The detector can auto-
matically determine the memory consumed ratio, by know-
ing the RSS and total system RAM. The RAM size can
be measured one time per platform, but the estimation of
RSS at compile time is not straightforward. For accurate
measurement of RSS, an application is required to be profiled
each time before passing through the detection framework,
which will affect the major objective of requirement iden-
tification before the actual execution [28]–[31]. On several
occasions, one-time profiling is justified for optimizing the
same application repeatedly [28]. However, executing an
unoptimized application with a large amount of data incurs
substantial overhead by consuming time and resources [30].
In this way, full profiling is not reasonable, even for the pur-
pose of accurate detection. Hence, our framework relies on
machine learning for predicting per platform RSS [28], [31],
[33], which may be less accurate at the benefit of minimal
overhead. The training set builds the regressionmodel offline,

5Resident Set Size (RSS) is defined as the portion of physical memory
occupied by a process.

6Both RSS and kB_rd/s are measured per process using linux pidstat -urd
-h -G command.
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FIGURE 5. Big data detection framework.

which is used by the incoming applications for online RSS
predictions [28], [31], [33]. The RSS is not the same for
different applications involving the same data size. In this
regard, along with data size, stack, heap, or other types of
memory allocation operations are required for predicting the
RSS.

Volume is detected via feature extractor, predictor, and
detector modules. As the incoming application is passed
through the compiler analysis pass, the RSS specific features
are extracted by the feature extractor, which are then fed to the
predictor for estimating the RSS using the trained regression
model. Finally, the detector decides the existence of volume
using the predicted RSS.

1) FEATURE EXTRACTOR
Memory consumption of an application is due to code binary,
linked shared libraries, global data, stack, heap, or other allo-
cations. The decision of allocating pages in memory is taken
by the operating system, hence the absolute value of RSS
can only be determined at run time. However, maximum RSS
can be roughly estimated at compile time by considering the
memory allocation features. The heap is allocated by malloc,
calloc, realloc, and new operator, and stack allocation is done
through the function calls. Similarly, the mmap function is
used for allocation. The data and bss segment are allocated via
global variables. For a single application, the variation in data
size can be observed by dynamic allocation functions (mal-
loc, new, mmap, etc), which allocate memory with respect to
external data [53].

There exist static and dynamic memory allocation cate-
gories. Static allocation refers to cases where the allocation
amount is determined at compile time. For example, at com-
pile time it is known that the allocated memory is equivalent
to data size. Whereas, in the case of dynamic, the amount
of allocation is not fixed and can only be determined by
reading the data file at run time [53]. In this regard, maximum
static and dynamic allocation sizes are selected as features for

estimating memory consumption. Static refers to the max-
imum fixed allocated bytes on the stack, heap, data, bss,
or other region at one time that can be computed by static
analysis, whereas dynamic refers to the maximum variable
allocated bytes on the heap, or other region at one time [53].
Dynamic deals with external file contents which are only
determined at run time.

The procedure for extracting the RSS feature set is depicted
in Figure 6. The high-level code is converted into Interme-
diate Representation (IR) through compiler front end. Then,
the IR is statically analyzed to record the functions, basic
blocks, loops, and memory allocation instructions. The IR is
instrumented with few necessary instructions for determining
the reachable basic blocks and functions which can only
be obtained at run time, hence instrumentation cannot be
avoided. However, the instrumentation overhead is likely to
be less, as few instructions are run with three smaller size
datasets for recording the basic block and function names.
Obviously, the execution flow remains the same for other
data sizes as well. The three output sets are compared for
categorizing the basic blocks. With the same frequency,
the basic blocks are static, otherwise, they are dynamic. The
frequency difference indicates that certain blocks are only
executed for a larger data size, due to varying iteration count.
Similarly, the basic blocks having loops with unknown trip
count are categorized as dynamic. The executed basic block
information is then mapped to static IR information obtained
previously. In this manner, only the allocation instructions of
executed basic blocks are considered.

The static count is computed via size allocated by stack or
global allocation instructions. Besides, malloc, calloc, real-
loc, new or mmap functions can also contribute to static
count, if their allocation size is constant. If the allocation size
is available at run time, then the dynamic count is computed
in terms of n, which is unknown at compile time, but for
rough estimation, it is substituted as data size. In this man-
ner, memory consumption cannot be estimated directly for

VOLUME 8, 2020 186309



H. Ahmed, M. A. Ismail: Towards a Novel Framework for Automatic Big Data Detection

FIGURE 6. 3Vs metrics estimation.

TABLE 1. Experimental configuration.

dynamic cases due to unknown n. Hence, machine learning
regression [28] is employed for predicting maximum RSS.
At the end of each basic block, an individual maximum of
static and dynamic features is computed.

2) PREDICTOR
The extracted feature set is passed through the regres-
sion model for predicting the maximum RSS as depicted
in Figure 6. Only those applications are passed whose alloca-
tion size is unknown at compile time. The regression model is
built offline from the training dataset, comprising of diverse
applications expected to possess similar allocation behavior.
The regression model is built based on the training set listed
in Table 1 using linear,7 tree,8 random forest,9 and SVM10

techniques. The testing has been done using leave one out
cross-validation. The results are reported in 2 categories i.e
seen and unseen. Seen indicates the case, where the test
application is present in the training set but with different data
sizes. In the case of unseen, no evidence of test application is

7Linear builds the relationship between response and explanatory vari-
ables using linear functions [54].

8Tree fits a regression model to each node for predicting the response
variable and uses the squared difference for measuring the prediction error.

9Random forest is an ensemble learning method to predict the output by
combining multiple trees.

10In Support Vector Machine (SVM) regression, an optimal hyperplane is
found, which is expressed as a combination of support vectors.

kept in the training set. Each application is run with almost
10 varying data sizes to construct per machine supervised
dataset. The features of each application are extracted with
respect to data sizes. The obtained dataset possesses skew-
ness, which is reduced by taking ln transformation. The pre-
diction accuracy is evaluated in terms of relative error (MRE),
which judges the closeness of predicted values (y′i) to the
actual ones (yi) as given in Equation 2 [33].

Mean Relative Error (MRE) =
1
N

N∑
i=1

|y′i − yi|

yi
(2)

For the seen category Figure 7, the lowest mean relative
error of 21.4% is observed for SVM. SVM is run with radial
kernel and optimal values of parameters sigma, C11 have
been found as 0.3 and 8000, through the tune function of
R. The maximum accuracy is obtained via SVM due to the
non-linear nature of data. Individually, bfs shows the least
error of 9.7% with SVM. For dfs and genann, SVM shows
greater mean error rates of 71.3% and 24.8%. In the case of
dfs, the mean error rate is increased due to 381% error for
6 MB size. Similarly, for genann, the error rate is high due to

11The margin gets smaller with a larger value of parameter C and vice
versa. The larger epsilon results in more flat estimates, and selection of fewer
selected support vectors. The Radial Basis Function (RBF) kernel can handle
the situationswhere the relation between dependent and independent variable
is non-linear by using parameter sigma/gamma [44], [55].
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FIGURE 7. Memory consumption prediction.

130.5% error for 9.1 MB size. The error is reported by taking
the average of separate readings of a single application with
different data sizes. It is observed that error rates are higher
with smaller sizes in the test set and vice versa, indicating the
unstable and lesser accurate consumption for small sizes.

In the case of unseen applications, the overall mean rel-
ative error is increased for all the techniques as depicted
in Figure 7. SVM performs better than others by showing an
error rate of 32.4%. SVM is runwith radial kernel and optimal
values of parameters sigma and C are 0.4 and 365. The error
rates are increased, as no instance of the same application is
present in the training set. For kmeans, an error rate of 105%
is observed with SVM, which is still lesser than others. SVM
depicts the smallest error of 8.1% for liblinear, indicating the
similarity of liblinearmemory pattern with the other training
samples. For blackscholes (Bs), random forest shows a lesser
error of 7.6% as compared to SVM error of 95.7%, indicating
the dominance of Bs similar applications in the random forest
model. The higher error rates are possibly due to two reasons;
the characteristics of testing application are not covered by
the training dataset, or the model is constructed such that
one type of data is preferred over the other, hence giving
more accurate results for one and less accurate for the other.
The error rates are expected to be reduced by extending the
training set with more diverse applications.

Due to the lower error rate, SVM has been selected as a
default technique for the volume predictor of the framework.
First, the model will be trained offline to acquire the relevant
SVM coefficients. Then, these coefficients will be coded in
the SVM based volume predictor.

3) DETECTOR
For identifying volume, algorithm 1 is used, which accepts
as input the test application code IR, data size, available
memory amount, instrumented executable file, and sample
datasets. In case if the dynamic allocation is null, maximum
RSS is estimated by static count only. Otherwise, SVM regres-
sion is used for predicting the maximum RSS. The memory
consumed ratio is computed by obtained RSS and available
memory. The obtained ratio is compared with the volume
threshold. In case if the ratio is greater than the threshold,
the volume is present for the considered scenario, otherwise,
the volume is absent.

Algorithm 1 Detection of Existence of Volume
Input: Test_Code_IR,Instrumented_Exe_file,Sample_Dataset_a,Sample_Dataset

_b, Sample_Dataset_c,Test_Data_Size,Total_Memory_Available
Output: Status of volume existence (FALSE, TRUE)

1: function Volume_Detection(Test_Code_IR,Instrumented_Exe_file,Sample_
Dataset_a,Sample_Dataset_b,Sample_Dataset_c,Test_Data_Size,Total_Memory_
Available):

2: x←Memory_Feature_Extraction(Test_Code_IR, Instrumented_Exe_file, Sam-
ple_Dataset_a,Sample_ Dataset_b,Sample_Dataset_c);

3: x1*←x.f1, x2*←x.f2;
4: if x2*=0 then
5: y∗←x1*;
6: else
7: y∗←Memory_Prediction(x);
8: if y∗/Total_Memory_Available > θv1 then
9: volume←TRUE;
10: else
11: volume←FALSE;
12: return volume;

B. VELOCITY DETECTION
Velocity means the real-time generation of data, which
requires fast processing to meet the deadlines [1], [3]–[5],
[9], [56], [57]. The velocity can be detected if the data
generation rate is greater than the processing rate, which
means the execution time per process exceeds the product
of sample count and source sampling period (Ts) as shown
in Equation 3. The processing deadlines are missed when
the processing time per sample is greater than the sampling
period.12 The processing time is varied with the data size and
format. Therefore, the presence of velocity can be determined
through application, platform, and data properties namely
size, format, and generation rate.

Velocity = true, if P(t) > Number of samples ∗ Ts (3)

This paper proposes feature extractor, predictor, and
detector modules for velocity detection. Only size varia-
tion is considered assuming fixed data formats. At compile
time, application execution time, source sampling period,
and sample count are required for detecting velocity. This
work assumes constant rate data generation, hence both the
sampling period and the sample count are predetermined at

12Sampling period is the reciprocal of sampling rate, which is defined as
the number of samples per unit time [57]. Each data source has a predefined
sampling rate [58].
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FIGURE 8. Execution time prediction.

compile time, and effort is made for estimating the execution
time.

Obviously, the exact time cannot be determined without
executing the application, hence rough estimations are pre-
ferred at compile time. Static complexity analysis of the
application is discouraged due to non-deterministic execu-
tion paths and inherent analysis complexity of the real-world
applications [30], [34], [35]. In this regard, no compiler based
tool is found to precisely analyze the complexity of pro-
grams. Instead, in literature profiling and statistical analysis
are emphasized for estimating the time [28], [30], [31], [33],
[35]. In the case of big data, one-time application profiling
is not preferred, due to larger and complex datasets, which
consumes time and resources resulting in substantial over-
head [28]–[31], [33]. In this situation, per machine regression
analysis is a feasible option for predicting time [28], [31],
[33], which is dependent on comprehensive training, and
expected to be less accurate. However, the overhead and
complexity are minimal in comparison to other approaches.

In this work, time prediction is based on data size varia-
tions, which is considered along with application features,
as time is not constant for different applications operating
on the same size. The time estimation requires the con-
trol flow information, which is only known at run time.
Hence, the proposed framework utilizes both the static and
application control flow information [30], [31], [33], which
is obtained by executing the instrumented code with three
small size samples [35]. The statistics achieved with smaller
datasets can be extrapolated for larger sizes [30], [35]. Finally,
the predicted time assists in velocity determination.

1) FEATURE EXTRACTOR
The considered features include static and dynamic count of
integer calculation, call, compare, condition, integer convert,
extract, float calculation, float convert, load, return, and store
instructions. The main motivation behind selecting these fea-
tures is [31]. Static instructions are executed irrespective of
data size, whereas dynamic count varies with respect to data
size. The procedure for determining the instructions count
is shown in Figure 6. The compiler front end emits the
Intermediate Representation (IR), which is analyzed to know

the details of all the functions, basic blocks, and instructions
present in the code. The IR is instrumented and run with
three smaller samples to determine the executed functions and
basic block names. The obtained traces are compared to know
the static and dynamic basic blocks. A basic block is static
if its frequency is the same for all three samples, otherwise,
the basic block is dynamic. The further analysis of obtained
basic block information yields static and dynamic instruction
counts.

Static instruction counts are correct as these are the same
for all the data sizes of a single application. While the
dynamic counts might contain error as these are extrapolated
based on three samples. In this work, the static and dynamic
are treated separately, instead of a consolidated count, which
is different from the previous works [30], [31], [33]. It is
justified for saving the absolute static values from the influ-
ence of less correct dynamic values. The proposed approach
leads to lesser accuracy in comparison to profiling. However,
minimal overhead is involved which is crucial for big data
applications [30].

2) PREDICTOR
The train set builds an offline regression model for predicting
the execution time of test applications. ln transformation is
taken for reducing data skewness. For regression, linear, tree,
random forest, and SVM are used, which is validated with
hold one out technique. In the case of seen (118 samples)
Figure 8, test application instances are included in training
samples with different data sizes. Overall SVM shows the
least mean relative error of 22.8%.Whereas, other techniques
show greater error rates. SVM is run with radial kernel and
optimal values of parameters sigma and C have been found
as 0.02 and 300, through the tune function of R. Individually,
grep, histogram, genann, and page rank (PR) show higher
error rates with SVM, due to dissimilar behavior of test and
train samples. For grep, histogram, linear regression (LR),
string match (SM), dfs, and kmeans, SVM performs better
than others. For word count (WC), and connected component
(CC), random forest is better than SVM. Similarly, for PCA,
liblinear, WC, nearest neighbor (NN), and bfs, linear model
shows lesser error rates as compared to SVM, due to linear
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Algorithm 2 Detection of Existence of Velocity
Input: Test_Code_IR,Instrumented_Exe_file,Sample_Dataset_a,Sample_Dataset

_b,Sample_Dataset_c,Test_Data_Size,Sample_count,Source_sampling_period
Output: Status of velocity existence (FALSE, TRUE)

1: function Velocity_Detection(Test_Code_IR,Instrumented_Exe_file,Sample_
Dataset_a,Sample_Dataset_b,Sample_Dataset_c, Test_Data_Size,Sample_Count,
Source_Sampling_Period):

2: y∗←Time_Prediction(Test_Code_IR,Instrumented_Exe_file,Sample_Dataset
_a,Sample_Dataset_b,Sample_Dataset_c,Test_Data_Size);

3: if y∗>Sample_Count∗Source_Sampling_Period then
4: velocity←TRUE;
5: else
6: velocity←FALSE;
7: return velocity;

behavior of applications. The error is reported by taking the
average of individual applications with different data sizes.
With smaller sizes, the error rate is higher and vice versa.

For the unseen category (121 samples) Figure 8,
no instance of test application is present in the training set,
hence the prediction errors are increased. In comparison to
others, SVM shows a lesser error rate of 105.8%. SVM is run
with radial kernel and optimal values of parameters sigma
and C are 0.0001 and 175. The error rates are relatively
lesser for dfs, PCA, WC, PR, reverse index (RI), NN,
and CC, due to the coverage of application properties in
the training dataset. The error rates are higher with smaller
data sizes and vice versa. For example, in the case of SM,
the error rate is 357.7% with SVM for 108.5 MB size, and
it is reduced to 76.7% for 30.4 GB size, giving an overall
average of 168%. The error rate is significant, even with a
slight drift in predicted value, due to smaller time readings.
For example, with actual 0.2 and predicted 0.1 the rela-
tive error is 50%. But, with the actual 1000 and predicted
900 the relative error is only 10%. The high error rates
are emerged due to smaller values, less affecting the detec-
tion accuracy. The error rates can be reduced by including
large size samples and diverse applications in the training
set.

Due to the lower error rate, SVM has been selected as a
default technique for the velocity predictor of the framework.
First, the model will be trained offline to acquire the relevant
SVM coefficients. Then, these coefficients will be coded in
the SVM based velocity predictor.

3) DETECTOR
The time predicted via SVM is compared with the product of
sampling period and sample count as shown in algorithm 2.
In case of greater time, the test application in the given
scenario possesses velocity, otherwise, velocity is absent.

C. VARIETY DETECTION
Variety is originated due to heterogeneous data formats [1],
[4], [5], [9], [59]. For N representations, structural variety is
present if the process heterogeneity ratio P(hst ) lies between
0 (exclusive) and P

(
N−1
N

)
(inclusive) as per Equation 4.

The heterogeneity ratio is the ratio of heterogeneous rep-
resentations (with respect to a base application) and total

Algorithm 3 Detection of Existence of Variety
Input: Test_Code_IR,Test_Data_Format
Output: Status of variety existence (FALSE, TRUE)

1: function Variety_Detection(Test_Code_IR,Test_Data_Format):
2: base_format←Format_Extraction(Test_Code_IR);
3: base_format_count←base_format.length;
4: het_format_count←Difference(base_format,Test_Data_Format).length;
5: het_ratio←(het_format_count)/(base_format_count + het_format_count);
6: if het_ratio>0 AND het_ratio<1 then
7: variety←TRUE;
8: else
9: variety←FALSE;
10: return variety;

representations as per Equation 5. These representations
involve difference in data type, data schemas, etc., [59].

Variety

= true, if 0 < P(hst ) 6 P
(
N − 1
N

)
(4)

P(hst )

=
Number of heterogenous representations w.r .t base

Total number of representations
(5)

Variety can be detected by computing the heterogeneity
ratio, which is straightforward to estimate. The data manip-
ulation formats are extracted by analyzing application code,
and external data sources. The formats are then compared for
computing the heterogeneity ratio.

1) FEATURE EXTRACTOR
The file read function calls are statically analyzed to check
the placement format of file data. The format vector is con-
structed by appending the formats of all the read operations
of an application.

2) DETECTOR
The variety status is decided through the application and test
data format vectors as depicted in algorithm 3. The base
format count includes the data manipulation formats used in
the application. The application and external source formats
are compared for computing heterogeneous format count.
The format vector for a specific data source is fixed. The
heterogeneous and base format counts compute the hetero-
geneity ratio. The variety status is true if the heterogeneity
ratio lies in the range 0 and 1 exclusive.

IV. RESULT ANALYSIS
A. EXPERIMENTAL SETUP AND BENCHMARKS
The implementation has been done using Low Level Vir-
tual Machine (LLVM) compiler13 analysis passes and R14

scripts [35]. LLVM analysis passes have been developed to
extract code features. Those features have been processed
using R scripts. For validating volume and velocity, only
data size variation is considered, and the data formats are

13The LLVM Compiler Infrastructure https://llvm.org/.
14The R project for statistical computing https://www.r-project.org/.
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TABLE 2. Benchmark details.

assumed to be constant. The hardware and software config-
uration details are given in Table 1. The results have been
reported in terms of seen and unseen application categories.
In the seen category, the testing applications are also part
of the train set, but with different data sizes, whereas in
the case of unseen an application is only part of the test
set.

For extracting the actionable insights from the avalanche
of data, graph traversal, machine learning, text analyt-
ics, and statistics algorithms are commonly used [61].
In this work, only those applications have been tested
to validate the detection of 3Vs (Volume, Velocity, Vari-
ety) which are part of standard big data benchmarks, rep-
resenting graph mining, machine learning, and statistics
& mathematics categories [52], [60]. These applications
have been selected through well known C/C++ based
benchmark suites including Rodinia [36], Graphbig [37],
Phoneix [38], CortexSuite [40], cbench [43], genann [41],
PARSEC [42], and grep-bench [39].15 These include bfs,
grep, kmeans, word count, page rank, etc as discussed
in Table 2.

The applications bfs, connected component, page rank,
and dfs operate on large graph datasets containing list of
edges and vertices. Similarly, kmeans, nearest neighbor,
genann, liblinear, LDA, and PCA deal with large machine
learning datasets. It can be noted that PCA operates on

15For constructing the dataset, diverse applications have been run with
maximum 11 random sizes as listed in Table 1.

high dimensionality datasets for extracting features. Finally,
grep, wordcount, and reverse index perform the search oper-
ation. While blackscholes, linear regression, bzip2d, and
histogram applications perform statistical & mathematical
operations on a large amount of data. It can be observed
that most of these applications use text datasets, while,
histogram uses image dataset, and reverse index recur-
sively operates on text files placed in multiple folders.
The considered benchmark applications and datasets are
diverse in nature, covering maximum possible domains of
big data, hence these are sufficient for testing the existence
of 3Vs.

B. PERFORMANCE METRICS
For measuring the accuracy of detecting the 3Vs, detection
accuracy is used as represented by Equation 6.

Detection Accuracy (DA) =
Number of Correct Detections
Total Number of Detections

(6)

While detecting the 3Vs, there can be either correct or
incorrect detection. The accuracy is computed by dividing
the count of those detections that are found to be correct
(TP+TN) with the total detection operations performed (TP+
TN+FP+FN). Where true positive (TP) means a real V is
detected, false positive (FP)means a false V is detected, false
negative (FN) means a real V is not detected, true negative
(TN) means a false V is not detected.
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FIGURE 9. Static applications volume detection accuracy.

C. 3Vs DETECTION
1) VOLUME
The memory consumed ratio16 is compared with the thresh-
old.17 The detection is considered correct, only if the pre-
dicted detection outcome (true/false) is the same as the
actual detection status (true/false).18 Due to the criticality of
resource utilization, no error margin is tolerable at the detec-
tion stage.19 The threshold value has a significant impact on
the overall detection process. For example, with the threshold
of 0.8, volume is absent with actual memory consumed ratio
of 0.7. In case, the predicted consumed ratio is 0.1, the volume
is correctly predicted despite a high error rate. However, with
the predicted ratio of 0.81, the detection is wrong, despite of
lower error rate. Hence, the boundary conditions are critical
in increasing the false positives (FP) and false negatives (FN),
requiring accurate predictions.

Applications grep, nearest neighbor (NN), and bzip2d
show numeric constant in static allocation only, which is due
to stack and global contributions, while dynamic allocation
is null, indicating the constant memory consumption. Simi-
larly, histogram (Hist), linear regression (LR), reverse index
(RI), string match (SM), and word count (WC) applications
show null dynamic allocation, whereas the static allocation
includes the sum of constant numeric and size factor.20 For
these static applications, volume detection accuracy is shown
in Figure 9. The detection accuracy is 100% for majority of
the thresholds and applications, due to deterministic alloca-
tion size which leads to lower errors. Only for LR with a

16Memory consumed ratio is defined as the proportion of maximum
physical memory consumed by a process with respect to total available RAM
size.

17Volume threshold is the maximum allowed memory consumption ratio.
It is expected to be high, at least 0.8 because there is a high likelihood of
system performance getting dropped if consumption by a process is reached
to 80%.

18It means memory consumption is rightly predicted with respect to
threshold.

19For example, actual memory consumed ratio is 0.79 (volume absent in
actual), and predicted is 0.81 (volume present in prediction), by considering
this misdetection, volume optimizations are invoked, leading to resource
misuse.

20The numeric constant is due to the stack and global allocations.
Whereas, the size factor is due to the mmap function which allocates memory
proportional to the data size.

threshold of 0.9, the accuracy is reduced to 90.9%, due to
boundary value misprediction for size 30.4 GB, with an error
rate of only 0.37%.

In contrast to this, bfs, connected component (CC), page
rank (PR), kmeans, blackscholes, dfs, genann, lda, and PCA
applications have both static and dynamic allocations, due to
functions whose size can be determined at run time by reading
the data file. Hence, for these applications direct computation
of memory consumption is not possible, and SVM regres-
sion is employed for predicting memory consumption. The
volume detection accuracy for these dynamic set of appli-
cations is depicted in Figure 10. For genann, PCA, kmeans,
the detection accuracy is greater in the seen category, because
the testing applications are also part of the train set, but with
different data sizes. For the remaining applications, seen and
unseen accuracy is almost the same. Bfs,CC, PR, show 100%
accuracy for all thresholds except for 0.2. For bfs (14.7 GB),
the misdetection is due to boundary conditions, where the
predicted value is 0.19 for the actual value of 0.21. Similarly,
for CC and PR 607.8 MB, the predicted value is 0.21 and
0.20 for the actual value of 0.18. For genann, liblinear, PCA,
kmeans, the detection accuracy is less than 100% for more
thresholds. Kmeans shows lesser accuracy for both seen and
unseen. In the seen case, kmeans accuracy is dropped to
85.7% for 0.4, 0.5, and 0.6 thresholds, due to 1 misdetection
(24.8 GB) out of total 7. In this case, the predicted value is
noted as 0.357 for the actual value of 0.69. In unseen case,
for 0.1 threshold kmeans correctly detects only 245.9 MB,
739.9 MB, 2.5 GB, and misdetects the others, reducing the
accuracy to 42.8%. Similarly, for 0.2 and 0.3 the accuracy is
recorded to be 57.1% and 71.4%. Thesemisdetections are due
to increased prediction errors in the unseen case. The error
rate is noted as 80.2%, 86.8%, 90.1%, and 95.1% for 4.9 GB,
7.4 GB, 9.9 GB and 24.8 GB size.

The combined detection accuracy is reported for both static
and dynamic in Figure 11. In the case of seen, the average
accuracy of 97.8% can be observed. For the threshold of 0.9,
the detection accuracy is highest i.e 98.4%, due to lesser
cases having consumption greater than 0.9, thus even the
mispredictions are not affecting the overall accuracy. The
threshold of 0.2 shows the least accuracy of 95.2%, due to the
mix of both true and false samples for this range, facing more
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FIGURE 10. Dynamic applications volume detection accuracy.

FIGURE 11. Overall volume detection accuracy.

misdetections. With the threshold of 0.8, reasonable accuracy
of 98.4% is achieved. The selection of 0.8 is practical as the
system performance is harmed for the consumption above
it. In the case of unseen, the average detection accuracy is
reduced to 95.9%. The detection shows the highest accuracy
of 97.6% for the threshold of 0.9, due to lesser consumption
cases having values greater than 0.9, hence the mispredic-
tions are not affecting the overall accuracy. The threshold
of 0.2 shows the least accuracy of 92.9%, due to the mix of
both true and false cases in this range, which increases the
misdetections. With the practical threshold of 0.8, the accu-
racy of 96.8% is achieved. For certain applications, the mem-
ory consumption cannot be accurately estimated at compile
time. However, with certain constraints, the proposed tech-
nique is showing satisfactory results both for seen and unseen
applications. Hence, the selected feature set is justified for
predicting the memory consumption of an application.

2) VELOCITY
The detection is done by considering multiple sampling peri-
ods and sample count. In this regard, each sample is assumed
to be 1 kB, thus sample count is obtained by dividing data
size with 1 kB.21 The average detection accuracy for individ-
ual applications is shown in Figure 12. For all applications
(seen & unseen), the detection accuracy is 100% with sam-
pling periods of 0.002s, 0.02s, 0.2s, and 2s, due to slower

21The velocity is true, only if the data processing time is greater than
generation time. The velocity detection is considered correct, only if the
predicted detection outcome is same as actual detection status.

generation rate. Further decrease in sampling period to 0.2ms,
0.02ms, 2µs still shows 100% accuracy for connected com-
ponent (CC), nearest neighbor (NN), word count (WC), and
PCA (seen & unseen). The accuracy is higher due to lower
prediction errors and the absence of boundary cases. String
match (SM) shows 100% accuracy for all thresholds in the
seen case, but the accuracy is dropped to 54.5% for unseen
0.02ms period. The misdetections occur in SM (108.5 MB,
542.5 MB, 1.1 GB, 2.2 GB, 4.3 GB), due to higher error rates
for these sizes. For bfs and liblinear, the accuracy is 100%
for all periods except 0.02ms in both seen and unseen cases.
In the seen case, the prediction error is only 10.7%, but the
accuracy is 27.2% for 0.02ms, due to boundary conditions.
In unseen case, the prediction error is increased to 74.5%,
reducing the accuracy to 18.1% for 0.02ms. Similarly, for
linear regression (LR), the accuracy is 100% for all thresholds
except for 2µs. In the case of LR seen, the accuracy is dropped
to 36.3% due to boundary values, despite an error rate of only
16.7%.Whereas, for LR unseen, the accuracy is 0% due to an
increased error rate of 57.2%. For page rank (PR), the unseen
error rate is 30.9% as compared to the seen rate of 32.5%,
which leads to 100% accuracy of PR for all thresholds in
case of unseen. Whereas, for seen, the accuracy is dropped
to 83.3% for 0.2ms.

For seen applications, the average detection accuracy is
97.3% as shown in Figure 13. Practically, the sampling
periods are lesser, hence contributing to velocity. The accu-
racy of 98.3% is noted for sampling period of 0.2ms.
By decreasing the sampling period to 0.02ms, the detection
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FIGURE 12. Applications velocity detection accuracy.

FIGURE 13. Overall velocity detection accuracy.

accuracy is dropped, as there is an equal mix of velocity true
and false samples for this value. Hence, the detection can both
be true or false instead of constant decisions like the other
cases. In the considered situation, the predictions are tougher,
as a slight miss can lead to bad accuracy. The performance is
lesser for period of 0.02ms, due to misdetections of bfs, and
liblinear samples. The misdetected samples are the boundary
cases for the considered sampling period. By further decrease
in the sampling period, true samples are increased, improving
the overall accuracy as noted for 2µs. For grep (5.4 GB),
despite of 32% error rate, the status is wrongly detected to
be false due to boundary values.

For unseen applications, the average accuracy is dropped
to 92.6% as depicted in Figure 13. For most samples,
the velocity is true with sampling period of 2µs. In this
situation, the average accuracy of 86.7% is observed, due to
histogram, genann, and LR misdetections. For the sampling
period of 0.02ms, velocity true and false samples are mixed,
hence the detection accuracy is dropped. In this situation,
the mean accuracy 66.9% is observed. Further increase in
the sampling period to 0.2ms (involving more false cases),
improves the average accuracy to 95%. Few samples of
kmeans and blackscholes (Bs) show misdetections. From the
above discussion, the significance of correct feature selection
is evident for detecting the presence of velocity via SVM.

3) VARIETY
Considering the non-adaptive applications, where the base
schema is hardcoded. As per Table 3, when bfs application
with the base format of {int, int, int, int, int, int, int}, deals
with the dataset having format {unsigned long, unsigned

long, unsigned int, unsigned long, unsigned long, unsigned
long, unsigned int}, the variety is false due to null heterogene-
ity ratio. However, when the same application receives data
in {unsigned long, unsigned long, unsigned float, unsigned
long, unsigned long, unsigned long, unsigned float} format,
the variety status is true due to non-null heterogeneity ratio.
Similarly, the histogram [38] is intended for bitmap 24 bit
images. In case, when jpeg images are input via a new source,
heterogeneity ratio becomes greater than 0.

In this manner, the framework detects whether the applica-
tion with incoming data possesses variety by following this
simple yet effectivemethod. The detectionmethod is valid for
all the formats and types of data be it basic like integer, float,
or complex like image, video, or other type. Although, image
and video do have different processing demands, but this
doesn’t represent software and hardware incapability. In this
situation, the variety gets true only, when the given hardware
or software is not capable to fulfill the processing demands
of these formats. Variety represents the handling deficiencies
of hardware and software because a single application needs
to deal with different data formats. No matter, how complex
the format is, if the infrastructure is capable of handling it,
variety is not true. The detection relies on straightforward
comparisons, hence there is no margin of error in variety
detection even if a diverse range of application areas are
considered that involve complex formats.

D. 3Vs OPTIMIZATIONS
The support for volume workloads is depicted through
Figure 14 (a). For page rank (6.1 GB), the detector indicates
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TABLE 3. Variety presence status for heterogeneous data formats.

the presence of volume, whereas for grep (53.7 GB) the
volume status is detected as false, due to lower memory
consumption. For both the cases, the detection is correct,
as the volume is present in page rank not in grep, despite
the lesser data size. Hence, the volume cannot be detected by
data size only, and a detector is vital. Similarly, velocity sup-
port is depicted through Figure 14 (b). For sampling period
of 0.02ms, the detector indicates the presence of velocity for
page rank (1.8 GB), whereas for grep (53.7 GB) the status
is detected as false, due to deadline compliance. The detec-
tion is correct for both the scenarios. Due to deadline miss,
the velocity is present in page rank not in grep, despite lesser
data size of page rank. Hence, velocity cannot be detected by
data size only, and a detector is vital. Finally, the support for
variety workloads is depicted through Figure 14 (c). For page
rank, the detector indicates the presence of variety, whereas
for grep the variety status is detected as false, due to null
heterogeneity.

Volume can be tackled by offloading page rank to a cluster
or cloud consisting of larger size RAMs. Also, it can be
tackled by performing garbage collection operations through
libraries or compilers [22]. For velocity, page rank can be exe-
cuted in parallel onHadoop, Spark, Flink, Storm, etc clusters
for reducing the execution time. Also, the jobs can be run
on hardware accelerators by generating appropriate machine
codes via compilers. Further, compiler optimizations like
parallelization, vectorization, loop, data access, etc., [23] can
be used. Finally, variety can be tackled by invoking NoSQL
databases or compiler optimizations like type inferencing,
data layout, etc., [24].

The detection technique can be integrated inside the exist-
ing tools like Hadoop, Spark, Storm, Flink, MongoDB, etc
by means of a shell script. Besides, it can be integrated
into any commercial compiler by means of a compiler pass.

In this manner, the optimizations are only enabled if there is a
need, promoting the efficient utilization of human, financial,
and computing resources. Also, the programmer is freed
from the burden of selecting the suitable optimizations. The
programmer is expected to run a single script or enable a
compiler flag, which is sufficient to first detect the incoming
3Vs, and then trigger the relevantmemory consumption, time,
and heterogeneity optimizations, hence avoiding the user
interventions.

V. CASE STUDY
Consider a real-time airline recommendation system to rec-
ommend the best airline from source to destination [62]. The
recommendation is done via Twitter, Facebook, airline web
API 1, and airline web API 2 real-time sources. Only three
sources are present initially, and the fourth one is added later.
These sources generate data at the rate of 5 samples/seconds,
2 samples/seconds, 10 samples/seconds, and 3.3 samples/sec-
onds with different formats. The recommendation application
is designed for the three sources.

In the case of Twitter and Facebook, text based tweets
and comments are analyzed for extracting the airline sen-
timents.22 Airline API 1 acquires airline details in {price
(float), departure status (bool), timing delay (time)} format,
and airline API 2 uses {weather conditions (text), airport
facilities (text), flight historical data (text), price (double)}
format. The application fuses user sentiments, price, tim-
ing, weather conditions, airport facilities for recommend-
ing the airline with the highest positive sentiments, lowest
price, and lowest delay counts. Assuming the fusion appli-
cation presented in Figure 15, is run on (8 GB RAM,

22Sentiment analysis is the process of understanding an opinion about a
given subject from written or spoken language.
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FIGURE 14. Automatic support for 3Vs. (a) Volume. (b) Velocity. (c) Variety.

FIGURE 15. Pseudo code of fusion application.

Intel i7-8550U CPU @ 1.80GHz) platform. The application
reads samples from N sources, storing in memory, and fusing
it. The window size (ws) is the product of sample count
and source sampling period, hence for each source (ws/TS )
samples can be processed at one time. The ws is taken as
5000 seconds.

For 3 sources, 25,000, 10,000, and 50,000 samples are
collected over 5000s ws, consuming 2 GB, 1 GB, and

4 GB memory. Afterward, source 4 data is expected with
16,667 samples. For the detection of 3Vs via the proposed
framework, source data sizes, sampling periods, and data
formats are known. The memory consumed ratio is estimated
to be 7 GB23 by adding the data sizes of 3 sources, indicating
the presence of volume due to consumption ratio of above
0.8. Similarly, the processing time is predicted to be greater
than 5000s, hence velocity is true. The application code is
generic enough to read data from multiple sources involving
similar or different formats. The processing is done smoothly
if the data is emitted in the same format. Otherwise, handling
issues are raised due to variety. Consider the application starts
reading data from source 4, collecting 16,667 samples. The
format of source 4 is compared with the base format, and the
heterogeneity ratio is computed to be above 0, thus indicating
the presence of variety.

The framework relies on extensive per environment
training for accurate predictions of memory and time

232 GB (source 1 data size) + 1 GB (source 2 data size) + 4 GB (source
3 data size) = 7 GB.
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TABLE 4. Comparison with related works.

consumption. The detection requires prior knowledge of data,
application, and platform properties. For real big data work-
loads, both the application and platform properties are known
at compile time, but the data properties are not fixed. Such
workloads can only be detected at run time when the real data
properties are available. The run time detection is expected to
increase overheads.

VI. RELATED WORK
For efficient utilization of big data resources, numerous tech-
niques have been proposedwhich estimate the job’s execution
requirements. As it can be observed via Table 4, several
works predict execution time [13]–[15], [17], [31], [33], [63],
while others estimate memory consumption [16], [18], [29].
It can be observed that in [13]–[18], [63], the prediction is
done for big data workloads, whereas in [29], [31], [33], the
considered applications are routine ones. In [14], a perfor-
mance prediction framework Ernest is proposed, which can
predict the execution time on a hardware configuration, given
a job and its input. It has been tested on Spark. In [15], a
model is proposed to predict Spark job performance including
execution time, memory consumption, and I/O cost. In [13],
a machine learning approach is proposed for predicting the
execution time of Spark applications. Similarly, an empirical
model is proposed in [63], for estimating the completion
time of the Spark job on a cloud, with respect to cluster
nodes count, input data size, and the number of iterations.
The model predicts the cost optimal cluster configuration for
executing the Spark job on a cloud under the SLO (Service
Level Objective) specified completion deadline.

In [16], a machine learning-based model is presented to
predict an application’s memory requirement given its service
level agreement, which is evaluated on a Spark cluster. Sim-
ilarly, a machine learning based model is proposed in [17],
for predicting the completion time of convolutional neural
network (CNN) models implemented in a Spark cluster. The
prediction is done by analyzing the effects of data, task, and
resource characteristics. In [18], the resource usage param-
eters (CPU usage, memory usage, read rate, and write rate)
of MapReduce and Spark applications are predicted using
multivariate LSTM and multiple linear regression meth-
ods. It predicts the current resource usage using previous
time instant values, whereas our work can directly predict
the resource consumption at a specific instance by using

application, data, and platform properties. Additionally,
in [18] separate models are constructed for each application
resource prediction, whereas in our work a single generic
model is enough to predict a particular metric for all appli-
cations.

Furthermore, machine learning based metrics prediction at
compile time is reported in [31], [33]. In this regard, [33]
predicts the performance of HPC applications running in the
cloud through machine learning for selecting the best cloud
configuration before deployment. Similar to our proposed
approach, [33] relies on executing the instrumented code with
smaller sample and extrapolating the larger size using the
linear or neural network regression depending on application
complexity. Our work considers big data workloads which are
more complicated real-world application codes in compari-
son to [33], hence the direct complexity analysis is not possi-
ble. The large size metrics are extrapolated by observing the
growth pattern achieved via three smaller samples. The mean
relative error for time predictions reported in [33] is lesser in
comparison to the work presented in this paper because the
experiments are conducted using simpler benchmark codes
that are similar in nature, while this work considers complex
big data applications, possessing distinct behavior.

Similarly, in [31], the execution time of functions is pre-
dicted using machine learning, relying on instrumentation
for computing feature vector, which is tested using simpler
kernels involving no external datasets. Also, [31], [33] use
total instruction counts, whereas this work treats static and
dynamic counts separately, reducing the overall error rate.
Moreover, our instrumentation technique is simpler as com-
pared to [31], [33], as only the reachable functions and basic
blocks list is generated. For predicting memory consump-
tion, [29] estimates the stack frame size of a given task using
static compiler analysis similar to our approach.

As per Table 4, no existing work is found for estimating
the heterogeneity ratio. In comparison to existing works, the
proposed work appears to be the first framework that suc-
cessfully predicts all three big data metrics. Additionally, the
prediction models proposed in [13]–[18], [63] work for a spe-
cific platform like Spark and MapReduce. Whereas, similar
to [29], [31], [33], the proposed prediction model is generic
because it is implemented at the compiler stage. The proposed
model can work with any computational engine, because it
extracts core application features via compiler Intermediate
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Representation (IR), instead of using abstract application
properties present in specialized implementations. Addition-
ally, the proposed model has been tested with different types
of datasets like text, graph, and image.Whereas, mostly exist-
ing solutions [13], [14], [18], [29], [31], [33] are designed
for text datasets only, [17] for image dataset, few [15], [16]
for text and graph both, while only [63] considers graph,
image, and text. It can be observed via Table 4, the metrics
predictions in existing works have been done in a differ-
ent environment, using different techniques and workloads,
hence a direct comparison of these with proposed work is not
feasible.

The existing approaches predict individual metrics but
none of these detect the big data 3Vs as shown in Table 4.
The time, memory, and resource predictions are not enough,
instead, these predictions are required to be linked with 3Vs
thresholds for big data detection, which is missing from the
literature. For the first time, a generic 3Vs detection technique
has been presented in this paper, that can work with any
computational engine, due to the core application features.
Hence, our proposed framework can act as an offloading
technique for specialized big data hardware and software.

VII. CONCLUSION
The prior cost-benefit analysis of big data is necessary for
preventing the computational losses. In this regard, the first
framework has been proposed for detecting the big data work-
loads automatically, thus assisting the selective offloading of
these applications to dedicated hardware and software solu-
tions. The proposed framework can be useful for detecting
the big data (3Vs) characteristics for any application before
execution, through static code features, source data sizes,
data formats, sampling periods, and platform knowledge.
The detection approach saves the computational resources by
restricting the 3Vs (Volume, Velocity, Variety) optimizations
to detected workloads only. The framework appears to be
simpler yet effectivewithminimal overheads, lesser program-
mer interventions, higher usability, and portability. Hence,
the framework is generic enough to be easily adapted in third
party libraries and compilers, by passing the application, data,
and platform properties as input.
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