
Received September 6, 2020, accepted October 9, 2020, date of publication October 13, 2020, date of current version October 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030798

CSEFuzz: Fuzz Testing Based
on Symbolic Execution
ZHANGWEI XIE, ZHANQI CUI , (Member, IEEE), JIAMING ZHANG,
XIULEI LIU , AND LIWEI ZHENG
Computer School, Beijing Information Science and Technology University, Beijing 100101, China

Corresponding author: Zhanqi Cui (czq@bistu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1400402, in part
by the National Natural Science Foundation of China under Grant 61702041 and Grant 61601039, and in part by the Qin Xin Talents
Cultivation Program of Beijing Information Science Technology University under Grant QXTCP C201906 and Grant QXTCP B201905.

ABSTRACT Fuzz testing has been successful in finding defects of various software packages. These defects
include file parsing, image processing, Internet browsers, and network protocols. However, the quality of
the initial seed test cases greatly influences the coverage and defect detection capability of fuzz testing.
To address this issue, we propose CSEFuzz, a fuzz testing approach based on symbolic execution for
defect detection. First, CSEFuzz generates candidate test cases by symbolic execution and collects coverage
information of the test cases. Then, CSEFuzz extracts the test-case templates of the test cases and selects a set
of test-case templates according to specific coverage criteria. Finally, CSEFuzz selects test cases according to
the selected test-case templates, and the selected test cases are used as initial seed test cases for fuzz testing.
Experiments are conducted on 11 open-source programs. The results show that in comparison with afl-cmin,
which is the test-case selection command of Kelinci, CSEFuzz with a path coverage criterion reduces the
time costs of the initial seed test selection and verification by 94.26%. In addition, compared with afl-cmin,
32 more paths are covered and 16 more defects are detected by CSEFuzz.

INDEX TERMS Fuzz testing, initial seeds, symbolic execution, test coverage criteria.

I. INTRODUCTION
Fuzz testing is an automated testing method to find defects
by generating random inputs of the software under test and
monitoring its execution. Fuzz testing executes the software
dynamically and selects existing test cases to be mutated
according to the coverage information to generate new test
cases until no more program paths can be covered. The
defects and vulnerabilities of the software can be detected,
if some failures or abnormal behaviors are observed during
fuzz testing. Fuzz testing has achieved good results in find-
ing defects in various software packages, such as network
protocols [1], mobile apps [2], wearables [3], and deep nat-
ural networks [4]. For instance, as of June 2020, Google’s
OSS-Fuzz project has helped developers find 20,000 defects
in 300 open-source software packages.1 The fuzz tester

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Agostino Ardagna .
1OSS-Fuzz, https://github.com/google/oss-fuzz.

American Fuzzy Lop (AFL)2 developed by Zalewski success-
fully found multiple defects hidden in more than 150 soft-
ware packages, including PHP, OpenSSL, SQlite and Internet
Explorer. Studies have shown that the code coverage will be
affected by the quality of the initial seed test cases [5]. This
is because fuzz testing usually generates new test cases by
mutating the initial seed test cases. Initial seed test cases with
high quality can help the fuzz tester to generate new test cases
that can cover more and deeper paths more quickly. Among
the existing fuzz testing methods, the common method for
obtaining the initial seed test case set relies on designing test
cases manually or uses test cases provided by open-source
projects [6]. However, the quality of these test case sets
cannot be guaranteed, and the coverage of the program paths
is limited, which seriously restricts the effectiveness of fuzz
testing.

Symbolic execution partly solves the lack of test cases
in traditional test methods, and it has a good capability to

2American fuzzy lop (AFL). https://lcamtuf.coredump.cx/afl/

187564
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-5537-9236
https://orcid.org/0000-0002-9303-3682
https://orcid.org/0000-0001-7641-6369
https://orcid.org/0000-0001-7426-4795

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

FIGURE 1. The framework of fuzz testing based on symbolic execution.

find defects [7]–[9]. However, in the process of symbolic
execution, the tools usually generate a large number of test
cases that cover the same path. If the test cases are directly
provided to the fuzz tester as the initial seed test cases, much
time will be wasted as the fuzz tester validates the seeds,
which seriously affects the efficiency of the fuzz tester. For
example, when using symbolic Pathfinder (SPF) [10] to test
the experimental project rbt, 39,999 test cases were gener-
ated.When all of these test cases were directly provided to the
fuzz tester Kelinci [11], it took more than 10 hours to validate
the seed test cases. Although Kelinci also provides the seed
selection command afl-cmin to filter the initial seeds, the time
cost is still very heavy. For example, when using afl-cmin to
handle the test cases generated by SPF for the rbt project,
it still took more than 1 hour. Therefore, how to quickly select
effective initial seeds from the candidate test cases is a key
point in improving the efficiency of fuzz testing [6].

To solve this problem, this article proposes Coverage-
guided Symbolic Execution for Fuzz testing (CSEFuzz),
which is a defect detection approach based on combing sym-
bolic execution and fuzz testing. First, CSEFuzz uses the
symbolic execution technique to generate candidate test cases
with high code coverage and dynamically executes the pro-
gram to collect the coverage information of the candidate test
cases. Then, CSEFuzz generates a test case template for the
candidate test cases based on the coverage information and
selects a subset of test case templates according to specific
coverage criteria. Finally, CSEFuzz chooses the initial seed
test cases on the basis of the selected test-case templates to
perform fuzz testing. Experiments are conducted on 11 open-
source programs. The results show that compared with the
test case selection command afl-cmin provided by Kelinci,
CSEFuzz, using different coverage criteria, can reduce the

time cost for selecting and validating the initial seed test
cases by 94.52%∼99.50%. In addition, compared to afl-cmin,
5∼32 more paths are covered and 12∼16 more defects are
detected by CSEFuzz.

The main contributions of this article are as follows:
• We proposed a defect detection approach by fuzz testing
based on symbolic execution. The symbolic execution
generates test cases with high coverage for the program
under test, and the test cases are used as the initial seed
test cases for fuzz testing to improve the path coverage
and defect detection capability of fuzz testing.

• We proposed to select initial seed test cases based on
coverage information. The coverage of the test cases
is collected by instrumentation and execution, and the
initial seeds are selected according to specific coverage
criteria to improve the efficiency of fuzz testing.

• A prototype tool called CSEFuzz was implemented
based on the proposed approach, and case studies are
conducted on a group of open-source programs to verify
the effectiveness of the proposed approach.

The rest of this article is organized as follows:
Section 2 details the approach of defect detection by fuzz
testing based on symbolic execution, Section 3 introduces
the experimental design and evaluation, Section 4 introduces
related work, and Section 5 summarizes the paper.

II. FUZZ TESTING BASED ON SYMBOLIC EXECUTION
The framework of our approach is shown in Figure 1. First,
our approach generates candidate test cases for the program
under testing by symbolic execution. The test cases are used
to drive the execution of the program after instrumentation
and to collect the coverage information of each test case.
Then, our approach extracts he test case templates of the test

VOLUME 8, 2020 187565

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

case candidates based on the coverage information and selects
a subset of test case templates according to different coverage
criteria, such as decision coverage, conditional coverage and
path coverage. Finally, our approach selects representative
test cases according to the coverage of the test case templates.
The selected test cases are sent to the fuzz testing engine as
initial seeds to start fuzz testing.

A. CANDIDATE TEST CASE GENERATION
The quality of the initial seed test cases will greatly influence
the efficiency of fuzz testing. If a set of high-quality initial
seed test cases can be provided before starting fuzz testing,
this will help the fuzz tester to improve the path coverage and
detect more defects. To obtain a set of initial seed test cases
with high path coverage, this approach uses symbolic execu-
tion to collect program path constraints and uses a constraint
solver to solve the path constraints to generate corresponding
test cases.

During the symbolic execution, the tester first constructs a
control flow graph of the program under test. Then, the tester
starts traversing from the first statement of the program. If an
assignment statement is encountered, then the relationship
between the program variables and input variables will be
updated. If a conditional statement is encountered, then two
paths will be branched out. That is, the path with the current
conditional statement takes true and false values. Two dif-
ferent path statuses are extended: one path status is added
to the set of path statuses, which will be analyzed in the
future, and the constraint solver is used to solve the constraint
condition of the other path status. If the path condition is
solved, then a test case is generated and saved as a candidate
test case, and the next statement in the path is selected to
continue traverse. If the path condition cannot be solved, then
the analysis of the current path status is ended, and a new
path status is taken from the path status set to be analyzed
for symbolic execution. Finally, when the path status set is
empty, the symbolic execution is stopped.

In the program, the value of some path constraints will not
be affected by the changes of every input variable. However,
the test cases generated by symbolic execution only include
the values of the input variables that will affect the path
constraints. In this situation, the generated test cases may
lack the values of some input variables, which will cause
the values of the test case inputs to be out of order. We take
the following measures to solve this problem. First, all of the
input variables of the program are extracted as a sequence
V=<v1,v2,v3,. . . ,vi,. . .>, where vi represents the i-th input
variable of the program. Then, when generating the j-th test
case, the values of the input variables in the test cases are
stored in a sequence Vj according to the order of the input
variables in V. If the test case lacks the value of an input
variable vi, then the i-th input variable will be assigned with
a special value flag. Finally, a completed sequence Vj is
outputted as a test case.

For example, in the code snippet shown in Figure 2,
the path constraint of path 1-2-8 is y<=100. This path

FIGURE 2. Example of the relationship between path conditions and
input variables.

constraint is only affected by the input variable y, so the
test case generated by symbolic execution is y=100, and
the values of the input variables x and zz are not included.
To avoid the disorder of inputs when using the test case,
the missing input variable is assigned with a specific value
flag, that is, <x=flag, y=100, z=flag>.

B. TEST CASE TEMPLATE GENERATION
The test case template is used to describe the program cov-
erage information of test cases. Test cases that cover same
program elements, share the same test case template. Assum-
ing that test case t is used to execute the program under test
that has been instrumented, the program elements executed
by t are {item1, item2, . . . , itemi, . . .} (itemi can be any kind
of program element, such as branches, conditions, and paths).
Then, the test case template of t is described as template(t)=
{item1, item2, . . . , itemi, . . .}. Test cases with the same test
case template will cover the same program elements.

After extracting test case templates according to the pro-
gram coverage information of the test cases, a subset of
test case templates can be selected according to different
coverage criteria to achieve the goal of covering as many
program elements as possible with as few test case templates
as possible.

Following the coverage criteria of white-box testing, this
article uses 3 different coverage criteria to choose test case
templates: decision coverage, condition coverage and path
coverage. Among them, decision coverage tries to cover dif-
ferent branches of each decision in the program under test,
condition coverage tries to cover different values of each
condition of the decisions in the program under test, and path
coverage tries to cover every basic path of the program under
test. The process of selecting the subset of test case templates
based on specific coverage criteria is shown in Algorithm 1.

The input of Algorithm 1 is a set of test case templates
tcTemplate, and the output is a set of selected test case tem-
plates iniTemplates. First, all the program elements contained
in the test case template set tcTemplate are stored in the
program elements set Factors (Line 1). Then, template and
count are used to save the test case template that contains
the maximum number of uncovered program elements and
the number of the uncovered program elements that are cov-
ered by the current test case template (Lines 3-4). In lines
5-10, template, which can cover the maximum number of
elements inFactors, is added to the selected test case template

187566 VOLUME 8, 2020

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

Algorithm 1 Select a Subset of Test Case Templates Accord-
ing to Specific Coverage Criteria
Input: set tcTemplate;
Output: set iniTemplates;
1: set Factors:= all the program elements in test case tem-

plate set tcTemplate /*According to different coverage
strategies, the program elements can be decisions, condi-
tions, and basic paths*/

2: while (Factors != ∅) do
3: test case template; //to store the test case tem-

plate that covers the maximum number of elements in
Factors

4: count = 0; //store the number of program elements
that are covered by the current test case template

5: for each tc in tcTemplate do
6: num:= number of program elements in Factor that

are covered by the current test case template tc
7: if (num > count) then
8: template:= tc
9: end if
10: end for
11: initemplates.add(template);
12: Remove program elements contained in the test case

template from Factors
13: tcTemplate.delete(template)
14: end while
15: return iniTemplate

iniTemplates. In lines 11-12, template is removed from the
test case template set tcTemplate, and the program elements
contained in template are deleted from Factors. At this time,
the remaining uncovered program elements are stored in
Factors. The above steps are repeated until Factors is empty,
whichmeans the test case templates in iniTemplates can cover
all the program elements that can be covered by tcTemplate.
Finally, the selected test case template set iniTemplates is
output.

C. INITIAL SEED TEST-CASE SELECTION
After the test case templates are selected according to the
specific coverage criteria, the corresponding initial seed test
cases need to be selected. In the candidate test cases, multiple
test cases can cover the same program elements. One test case
can be randomly selected for each selected test case template
to form a set of initial seed test cases.

The fuzz tester will validate the initial test cases after they
are selected. Then, the validated initial seed test cases are
mutated to obtain new test cases. Bymonitoring the execution
of the program under test, the program path that is covered
and the defects that are detected will be added to the test
report.

The process of using initial seed test cases for fuzz testing
is shown in Algorithm 2. First, the initial seed test cases in
Seeds are validated by executing the program one by one. If an

uncovered program path is covered during execution, then the
test case is valid and is added to the effective seed test case
set effectiveSeeds (Lines 2-5). Then, a seed test case seed is
selected from effectiveSeeds to mutate and generate a new test
case newSeed (Lines 8-9). If newSeed covers an uncovered
path during execution, then the program path coverage infor-
mation in the test report testReport is saved (Lines 10-12).
If newSeed detects a defect during execution, then the defect
is saved in the test report testReport (Lines 13-14). If the
specified test time has been reached, then fuzz testing is
ended. Finally, the test report of the program under test is
output.

Algorithm 2 Use of the Initial Seed Test Cases for Fuzz
Testing
Input: tested program P, initial seed test case set Seeds
Output: test report testReport
1: effectiveSeeds = ∅; //Effective seed test case set
2: for each seed ∈ Seeds do

//Validate the seed test case
3: Execute(seed); //use the seed to execute the program

and monitor the execution result
4: if (a new program path is covered during seed’s exe-

cution) then
5: effectiveSeeds.add(seed);
6: end if
7: end for
8: while (true) do
9: seed := choose a seed test case from effectiveSeeds
10: newSeed :=mutate(seed); //generate a new test case

by mutating
11: Execute(newSeed); //use newSeed to execute the

program and monitor the execution result
12: if (newSeed covered a new program path during exe-

cution) then
13: save the new program path in test report testReport
14: end if
15: if (newSeed trigger crash during execution) then
16: save the defect in test report testReport
17: end if
18: if (reach the specific time) then
19: break;
20: end if
21: end while
22: return testReport

III. EXPERIMENTS AND EVALUATIONS
To evaluate the approach of fuzz testing based on sym-
bolic execution proposed in this article, we implemented the
prototype tool CSEFuzz and conducted comparative exper-
iments with Kelinci on a set of open-source programs in
terms of the initial seed test case selection and validation,
the number of paths covered and the number of defects
detected.

VOLUME 8, 2020 187567

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

A. TOOL IMPLEMENTATION
The CSEFuzz tool includes 3 modules: symbolic execution,
initial seed test case selection and fuzz testing. Among them,
the symbolic execution module collects path constraints and
uses a constraint solver to generate test-case candidates with
high path coverage. The initial seed test case selectionmodule
collects the corresponding coverage information of the candi-
date test cases by executing programs dynamically, generat-
ing test case templates according to the coverage information
and selecting the initial seed test cases based on the test case
templates. The fuzz testing module first validates the initial
seed test cases and thenmutates continuously to generate new
test cases.

The symbolic execution module of CSEFuzz is imple-
mented based on SPF.3 The fuzz testing module is imple-
mented based on Kelinci.4 SPF is a symbolic execution tool
for the Java programming language based on JPF [12]. SPF
collects the constraint conditions of different paths in a pro-
gram and uses constraint solvers to solve path constraints so
that we can determine the feasibility of the program paths and
corresponding test cases. Kelinci is a fuzz testing tool based
on AFL for Java programs. Kelinci collects program execu-
tion information through instrumentation and uses genetic
algorithms to generate new test cases iteratively to covermore
program paths.

The development and experimentation environment of
CSEFuzz is an Intel(R) Core(TM) i7-7700HQ, with 4 GB
RAM running Ubuntu 16.04 and Sun JRE 1.8 (64-bit mode).

B. EXPERIMENTAL OBJECTS
In the experiment, test objects provided by Memoise5 and
SPF are used as the sources of experimental objects. The
statistics tool cloc6 is used to count the code lines of the
test objects. In Table 1, the test objects provided by SPF are
categorized with respect to their size. The test objects with
sizes equal to or greater than 200 lines of code are chosen as
experimental objects.

TABLE 1. SPF test object code line statistics.

Memoise provided 7 test objects. Since the objects pro-
vided by Memoise and SPF both include Apollo and WBS,
we selected 11 experimental objects in total. Among all of the
experimental objects, the minimum and maximum number
of Java files are 1 and 54, respectively, and the minimum
and maximum sizes are 42 and 5957 lines of code. The

3SPF, https://github.com/SymbolicPathFinder/jpf-symbc.
4Kelinci, https://github.com/isstac/kelinci.
5Memoise, https://userweb.cs.txstate.edu/∼ g_y10/memoise/.
6cloc, https://github.com/AlDanial/cloc.

TABLE 2. The statistic information of experimental objects.

statistic information of the selected experimental objects is
listed in Table 2.

C. EXPERIMENTAL DESIGN
During the experiment, we compared CSEFuzz and afl-cmin
(afl-cmin is the command provided by Kelinci for selecting
initial seed test cases) according to the following aspects: (1)
time costs, by comparing the time costs of selecting the initial
seed test cases and verifying the validity of seeds; (2) test
efficiency, using initial seed test cases selected by different
methods for fuzz testing and comparing the difference in the
number of paths finally covered and the number of defects
detected in a limited time.

To evaluate the influence of selecting initial seed test cases
based on different coverage criteria, CSEFuzz implements
four different coverage criteria. Among them, CSEFuzznn
indicates that no test case selection is performed, and all
the test cases are used as seeds directly; CSEFuzzd indicates
that the initial seed test cases are selected based on decision
coverage; CSEFuzzc indicates that the initial seed test cases
are selected based on condition coverage; and CSEFuzzp
indicates that the initial seed test cases are selected based on
path coverage.

In the experiment and evaluation, we plan to answer the
following research questions.

RQ 1: Can the test cases generated by symbolic execution
help improve the efficiency of fuzz testing?

RQ 2: Compared with the afl-cmin command provided by
Kelinci, can CSEFuzz lower the time costs of selecting initial
seed test cases?

RQ 3: Compared with the afl-cmin command provided by
Kelinci, can CSEFuzz improve the paths covered and the
number of defects detected by fuzz testing?

RQ 4: Will different initial seed test case selection strate-
gies affect the efficiency of fuzz testing?

D. EXPERIMENTAL RESULTS AND EVALUATIONS
First, we counted the number of paths covered by Kelinci
and CSEFuzz and the number of defects detected by Kelinci
and CSEFuzz, as shown in Table 3. In the table, CSEFuzznn
indicates that the test cases generated by symbolic exe-
cution are used as the initial seed test cases for fuzz

187568 VOLUME 8, 2020

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

TABLE 3. Comparison of CSEFuzzn and Kelinci in terms of path coverage and defects detection.

TABLE 4. Time costs of initial seed test case selection and validation (in seconds).

testing directly. Considering the number of paths covered,
for 3 experimental objects (BankAccount, LoopExample, and
fuzz/gram/test), both Kelinci and CSEFuzzn cover the same
number of paths. However, for the remaining experimental
8 objects (TCAS_V30, Apollo, MerArbiter-v2, TwoLoopEx-
ample, WBS, rbt, TreeMapSimple, and MathSin), CSEFuzzn
covers 6, 1, 1, 3, 1, 30, 21, and 6more paths thanKelinci. Con-
sidering the number of defects detected, for BankAccount,
MerAribiter-v2 andWBS, CSEFuzzn detects 2, 1, and 3 more
defects than Kelinci, respectively.

Overall, the total number of paths covered by CSEFuzzn is
189, and the total number of paths covered by Kelinci is 120.
CSEFuzzn covers 69 (57.50%) more paths than Kelinci. The
number of defects detected by CSEFuzzn is 69, and the num-
ber of defects detected by Kelinci is 65. CSEFuzzn detects 4
(6.15%) more defects than Kelinci.Therefore, the answer to
RQ 1 is as follows: by using the test cases generated by
symbolic execution as initial seed test cases, more pro-
gram paths are covered and more defects are detected.
The efficiency of fuzz testing can be improved by using
seeds generated by symbolic execution.

Then, we compare the time costs of the test case selec-
tion for the different test methods. As shown in Table 4,

11 experimental objects are tested by using CSEFuzz with
different test-case selection strategies and the afl-cmin com-
mand provided by Kelinci. The time costs for selecting and
validating the initial seed test cases are compared.

In Table 4, CSEFuzzn does not perform initial seed test
case selection, so the time cost of seed selection is 0.
Considering the time cost of seed selection, CSEFuzzd ,
CSEFuzzc and CSEFuzzp are reduced by 99.35%, 99.34%
and 98.85% in comparison with afl-cmin, respectively.
Considering the time costs of seed validation, CSEFuzzd
costs the least amount of time, at 55.6 seconds. Compared
with afl-cmin, the time costs of CSEFuzzd and CSEFuzzc
in validating the seeds were reduced by 32.69% and
14.65%, respectively, while the time costs of CSEFuzzp and
CSEFuzzn in validating the seeds increased by 4.1 times and
699.12 times.

Considering the total time costs of initial seed test-case
selection and validation, CSEFuzzd costs 103.5 s, CSEFuzzc
costs 119 s, CSEFuzzp costs 429.1 s, afl-cmin costs 7478.7 s,
and CSEFuzzp costs 57747.6 s. Compared with afl-cmin,
the total time costs of CSEFuzzd , CSEFuzzc, and CSEFuzzp
were reduced by 98.62%, 98.41%, and 94.26%, respectively.
CSEFuzzn increased by 7.72 times.

VOLUME 8, 2020 187569

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

To analyze the reason for the time variations in the initial
seed test-case selection and validation, Table 5 analyzes the
number of initial seed test cases selected by the different
methods. The data in Table 5 are organized by the number
of initial seed test cases selected (the number of validated
test cases). Taking TCAS_V30 as an example, the number of
initial seed test cases selected and validated by CSEFuzzc
is 13(6), in which 13 represents the number of initial seed
test cases selected, and 6 out of 13 are valid test cases.
As shown in Table 5, CSEFuzzn selects the greatest num-
ber of initial seed test cases, which is 62549, followed by
CSEFuzzp, afl-cmin, CSEFuzzc andCSEFuzzd in descending
order. Compared with CSEFuzzn, the number of initial seed
test cases selected by CSEFuzzd , CSEFuzzc, CSEFuzzp and
afl-cmin decreased by 62,412, 62,349, 62,072 and 62,835,
respectively. Compared with afl-cmin, the total number of
initial seed test cases selected by CSEFuzzd and CSEFuzzc
decreased by 27 and 9, respectively. CSEFuzzp increased
by 313.

TABLE 5. Comparison of the number of initial seed test case selected and
validated.

It can be seen from Table 5 that the initial seed test-case set
selected by CSEFuzzn contains the greatest number of vali-
dated seed test cases, which is 117, followed by CSEFuzzp,
afl-cmin, CSEFuzzc, and CSEFuzzd in descending order.
Compared with CSEFuzzn, the validated seed cases selected
by CSEFuzzd , CSEFuzzc, CSEFuzzp and afl-cmin decreased
by 75, 61, 37, and 43, respectively. Compared with afl-cmin,
the number of validated seed test cases selected by CSEFuzzd
and CSEFuzzc decreased by 32 and 18, respectively, while
CSEFuzzp increased by 6.

From Table 4 and Table 5, which analyze the relationship
between the number of initial seed test cases and the time cost
of the test case validation, we find that the greater the size of
the initial seed test cases, the greater the time cost for test case
validation. Therefore, applying proper selection strategies to
the initial seed test cases before validation can reduce the time
cost of the initial seed validation and improve the efficiency
of fuzz testing.

The answer to RQ 2 is as follows: Directly using test
case candidates that are generated by symbolic execution
will consume too much time for validating test cases.
To improve test efficiency, proper selection strategies need
to be applied to the initial seed test cases. Compared with

TABLE 6. The number of paths covered by fuzz testing with different
initial seed test cases.

TABLE 7. The number of defects detected by fuzz testing with different
initial seed test cases.

the existing seed selection command afl-cmin, CSEFuzzd ,
CSEFuzzc and CSEFuzzp can effectively reduce 98.62%,
98.41% and 94.26% of the time cost, respectively, for the
initial seed test case selection and validation. Thus the
efficiency of fuzz testing is improved by CSEFuzz.

Next, we use different coverage criteria to select initial seed
test cases for conducting fuzz testing. The criteria are the
number of paths covered and the number of defects detected
by fuzz testing in a limited time, which is ten minutes (timing
is started after test case validation is finished). The experi-
mental results are listed in Table 6 and Table 7.

Table 6 lists the number of paths covered by fuzz testing
with different methods in a limited time. It can be seen
from Table 6 that CSEFuzzn covered the greatest number of
paths, 189, followed by CSEFuzzp, CSEFuzzc, CSEFuzzd ,
and afl-cmin in descending order. Compared with afl-cmin,
the total number of paths covered by CSEFuzzd , CSEFuzzc,
CSEFuzzp, and CSEFuzzn increased by 5, 6, 32 and 34,
respectively.

Table 7 shows the number of defects detected by fuzz
testing with different methods in a limited time. It can
be seen from Table 7 that the number of defects detected
by CSEFuzzp is the largest, 86, followed by CSEFuzzd ,
CSEFuzzc, afl-cmin and CSEFuzzn in descending order.
Compared with afl-cmin, the total number of defects detected
by CSEFuzzd , CSEFuzzc and CSEFuzzp increased by 15,
12 and 16, respectively.

In Table 7, for the experiment object TCAS_V30,
the defects detected by CSEFuzzd , CSEFuzzc and CSEFuzzp

187570 VOLUME 8, 2020

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

include 16 defects that were detected by the symbolic exe-
cution module. Meanwhile, afl-cmin and CSEFuzzn cannot
detect these defects. This is because when testing TCAS_V30,
the symbolic execution module found and generated 16 test
cases that could trigger program errors. However, in the seed
validation stage of afl-cmin and CSEFuzzn, which do not
select test-case candidates, the initial seeds that can cause
a program crash are deleted as invalid test cases. How-
ever, CSEFuzzd , CSEFuzzc and CSEFuzzp need to execute
test-case candidates and collect coverage information. Thus,
the test cases generated by symbolic execution that can trigger
crashes are validated by execution and are saved in the test
report. Compared with afl-cmin, CSEFuzzd , CSEFuzzc and
CSEFuzzp can make better use of the information obtained
by symbolic execution and detect 12-16 more defects in the
experimental objects.

FIGURE 3. Example of the relationship between path conditions and
input variables.

The code snippet shown in Figure 3 is used to explain the
why CSEFuzz covers more paths and detects more defects.
The code snippet is adapted from the experimental object
MathSin. In the code snippet, there are two paths and one
defect (Line 4). The results of using symbolic execution to
analyze the code are listed in Table 8. The symbolic execution
covered two paths, detected one program defect, and gener-
ated two test cases for the two paths.

TABLE 8. The number of defects detected by fuzz testing with different
initial seed test cases.

Test cases generated by symbolic execution may directly
trigger a program crash. When the test cases are provided
to the fuzz tester Kelinci, if some test cases that can cause
program crashes are included, then Kelinci will forcefully
interrupt the test process and stop the fuzz testing. As a result,
the initial seed test cases generated by symbolic execution
that can trigger a program crash need to be filtered out before
being sent to Kelinci. If afl-cmin is used to select the initial
seed test cases, test case 2 in Table 8, which can cause a
program crash, will be deleted from the initial seeds, and
only test case 1 can be sent to the fuzz tester. Since test
cases are randomly generated by fuzz testing, it is difficult

to generate test cases that can satisfy the constraint condition
‘‘x==100,276.’’ Therefore, if afl-cmin is used to process the
initial seed test cases generated by the symbolic execution
module, then the fuzz testing module can only cover one path
in a limited execution time (ten minutes), and the defect in
line 4 of Figure 3 cannot be detected.

To make full use of test cases generated by symbolic
execution, CSEFuzz’s initial seed test case selection module
collects the coverage information corresponding to candidate
test cases by dynamically executing the program. At the
same time, the module checks whether a program defect is
triggered. The test cases that can trigger program defects are
validated and added to the test report. Therefore, CSEFuzzd ,
CSEFuzzc, and CSEFuzzp can detect the defects in Figure 3.
Compared with CSEFuzzn, although the number of paths

covered by CSEFuzzd , CSEFuzzc, and CSEFuzzp is reduced
slightly, the time costs of the initial seed selection and val-
idation are reduced, and more defects are triggered. Tak-
ing CSEFuzzp as an example, compared with CSEFuzzn,
the number of paths covered by CSEFuzzp decreases by 2,
but the time costs of the initial seed test case selection and
seed validation are reduced by 99.26%, and the number of
detected defects is increased by 17. Compared with afl-cmin,
CSEFuzzd , CSEFuzzc, and CSEFuzzp not only increase the
number of paths covered and the number of defects detected
but also reduce the total time costs of the initial seed selection
and validation. Taking CSEFuzzp as an example, compared
with afl-cmin, CSEFuzzp not only increases by 32 paths
covered and 16 defects detected but also reduces the total
time costs of the initial seed selection and seed validation by
94.26%.

he answer to RQ 3 is as follows: compared with com-
mand afl-cmin, which was provided by Kelinci, CSEFuzz
is based on decision, condition and path coverage criteria
and can improve the path coverage of fuzz testing and the
number of defects detected. The answer to RQ 4 is as fol-
lows: different test case selection strategies will affect the
results of CSEFuzz. CSEFuzz based on a path coverage
criterion performs best in the covered paths and the total
time costs for initial seed selection and defects detected.
The efficiency of fuzz testing can be improved by choosing
proper seed selection strategies.

E. THREATS TO VALIDITY
In this subsection, we discuss the potential threats to the
validity of our experimental studies.

The threats to internal validity are mainly uncontrolled
internal factors that might influence the experimental results.
The main internal threat is potential faults introduced during
the implementation. To reduce this threat, we double-checked
the implementation of the tools and the experiments. More-
over, we implemented CSEFuzz based on Kelinci and SPF
to insure the correctness of the fuzz testing and symbolic
execution.

Threats to external validity indicate whether the observed
experimental results can be generalized to other subjects.

VOLUME 8, 2020 187571

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

To alleviate this threat, the experimental objects are selected
from both Memoise and SPF, which have been widely used.
The size of the objects varies from 42 to 5957 lines of code.
The performance and scalability of the CSEFuzz approach
can be evaluated by using more projects.

Threats to construct validity are about whether the per-
formance measures used in the experiments can reflect
real-world situations. In this article, CSEFuzz is compared
with Kelinci in terms of the time costs for seed selection
and validation, the number of paths covered and the defects
detected. In the future, CSEFuzz will be extensively com-
pared with other publicly available fuzz testers for Java
programs.

IV. RELATED WORK
This section summarizes the related work about fuzz testing
and symbolic execution.

A. SYMBOLIC EXECUTION
Symbolic execution was proposed by King [7] for software
analysis in 1975. The basic idea is to use symbolic values to
represent input variables, convert them into symbolic expres-
sions sentence by sentence in the process of running the pro-
gram, collect the corresponding path constraints, and obtain
test cases that meet the path constraints through the constraint
solver. Initially, the path coverage of symbolic execution
method was limited due to the capability of the constraint
solver. In recent years, with the continuous improvement
and optimization of symbol execution techniques, as well as
the enhancement of hardware, symbol execution has been
developed rapidly and is widely used in many fields.

Path explosion is one of the main factors that affect path
coverage of symbol execution. The main solutions to path
explosion are to optimize search algorithms and merge path
states. KLEE [8] combines the optimal code coverage algo-
rithm with the random path selection algorithm to achieve
high code coverage. JDart [9] and SPF [10] both apply
depth-first search algorithms. When dealing with loops, both
SPF and KLEE restrict the search depth to prevent infinite
loops. Godefroid [13] discussed the principle and problems
of merging states. Merging redundant states can effectively
reduce the number of paths to be searched, but new symbolic
expressions may be introduced in constraint processing and
parsing. In 2012, Kuznetsov et al. [14] proposed to auto-
matically select states to be merged in symbol execution to
improve the efficiency of symbol execution. In 2014, Avgeri-
nos et al. [15] proposed the concept of verifesting (i.e., state
fitting), which can reduce the state space of programs and
improve the availability of dynamic symbol execution.

When the number of path constraints that need to be solved
by the constraint solver is too complex, the symbol execu-
tion cannot cover the relevant paths. Therefore, EXE [16]
proposed a constraint independence optimization method.
The basic idea is to divide the set of constraints into multi-
ple independent subsets of constraints and discard irrelevant

constraints to simplify the constraint set and improve the
efficiency of constraint solving.

Because the precision of floating-point operations in pro-
grams is limited and the results of floating-point oper-
ations may be inconsistent in different system environ-
ments, it is difficult for the constraint solver to deal with
constraints related to floating-point operations. Therefore,
Botella et al. [17] designed a special solver for floating-point
operations, but it cannot handle constraints mixed with other
data types. Other approaches for solving constraints with
floating-point operations have been proposed, for instance,
Collingbourne et al. [18] presented KLEE-FP for cross-
checking an IEEE 754 floating-point program and its
SIMD-vectorized version as an extension to KLEE.

In this article, symbolic execution is used to generate initial
seed cases for fuzzy testing. The improvements in symbolic
execution techniques can be helpful in improving the effec-
tiveness of CSEFuzz.

B. FUZZ TESTING
Fuzz testing has been widely used as a software defect detec-
tion technology. The basic idea of fuzz testing is to generate
an input randomly, monitor whether the input can trigger
a program crash during execution, and thus find defects
in the program. To improve the efficiency of fuzz testing,
researchers have explored various solutions.

The early fuzz testing technique was simply a random test-
ing technique that found errors in many programs. In 1989,
Miller et al. [19] developed the first fuzz testing tool, Fuzz,
by inputting random generated data into software on the
UNIX system. Fuzz could crash more than 25-33% of the
utility programs on the UNIX system. In 2005, iDefense com-
pany developed the file format fuzz testing tool FileFuzz [20]
based on the Windows platform. COMRaider7 and AxMan8

were proposed for testing COM object interfaces.
After 2011, many related researchers combined machine

learning algorithms with fuzz testing to improve the effi-
ciency of generating test cases [21], such as the famous
fuzz testing engine AFL. AFL is a security-oriented gray-box
fuzz testing tool that uses genetic algorithms and byte-level
operations to change the input provided by the user. In 2019,
Zhou et al. proposed InsFuzz [22], which uses static analysis
technology to infer the bytes that will affect the comparison
instructions and called them key bytes. During execution,
InsFuzz analyzes key bytes and comparison instructions to
determine which bytes are worth mutating and how to mutate
them so that it can detect more defects and cover more code.
In 2018, Caroline Lemieux and Koushik Sen implemented
FairFuzz [23] based on AFL. FairFuzz can automatically
identify branches that can only be executed with rare inputs
and has a novel mutation algorithm that allows for test cases
to be mutated with a greater probability of executing rare

7COMRaider, http://sandsprite.com/iDef/COMRaider/
8AxMan ActiveX Fuzzer, https://www.hdm.io/tools/axman/

187572 VOLUME 8, 2020

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

branches. Experiments showed that FairFuzz can achieve
higher code coverage faster than AFL.

Taint analysis was also used to track taint data flows to
obtain program information [24]–[27]. In 2018, Chen and
Chen [28] proposed Angora to explore the state of a program
by solving path constraints without using symbolic execution.
Angora traces unexplored branches and tries to resolve path
constraints on these branches. Angora performs dynamic taint
tracing on the input and records into which conditional state-
ments the input bytes flow. Then, Angora only mutates the
bytes corresponding to the conditional statements that need
to be covered so that it can reduce the cost of taint analysis.
At the same time, new test cases can be quickly generated to
cover new branches.

In 2018, Noller et al. [29] proposed Badger, which uses
a hybrid test method of symbolic execution and fuzz testing
to achieve high code coverage. Badger detects a special kind
of defect that occurs when the program’s worst time com-
plexity or space complexity far exceeds the average level.
Stephens et al. [30] proposed Driller to combine Angr [31]
and AFL. The program under test is first tested by the fuzzer,
and then, the dynamic symbolic execution engine is invoked
when the fuzzer cannot find more paths. If new paths were
covered, then the corresponding test input is provided to run
the fuzzer again.

The CSEFuzz proposed in this article only needs to run
symbolic execution once. Traditional white-box fuzz test-
ing uses symbolic execution to solve when the fuzz testing
encounters constraints that cannot be covered. During the
entire testing process, symbolic execution needs to be per-
formed multiple times. In addition, various coverage criteria
are proposed to reduce the number of initial seed test cases
generated by symbolic execution and improve the efficiency
of fuzz testing.

V. CONCLUSION AND FUTURE WORK
The quality of initial seed test cases is an important factor
that affects the coverage and defect detection capability of
fuzz testing. In view of this issue, this article used symbolic
execution to generate candidate test cases and then selected
initial seed test cases for fuzz testing from the candidate test
cases according to specific coverage criteria to improve the
efficiency of fuzz testing. Based on the proposed approach,
this article implemented the prototype tool CSEFuzz, com-
pared it with Kelinci in terms of the time costs for initial seed
selection and validation, the number of paths covered and the
number of defects detected on a set of experimental objects
provided by Memoise and SPF. The experimental results
show that CSEFuzz not only greatly reduces the time costs
of initial seed selection and validation but also improves the
number of paths covered and defects detected. In the future,
we will improve the efficiency of initial seed selection and
use CSEFuzz to test more projects to verify the scalability of
CSEFuzz.

ACKNOWLEDGMENT
Parts of this work are based on the master’s thesis of the first
author [32].

REFERENCES
[1] T. L. Munea, H. Lim, and T. Shon, ‘‘Network protocol fuzz testing for

information systems and applications: A survey and taxonomy,’’Multime-
dia Tools Appl., vol. 75, pp. 14745–14757, 2016.

[2] H. Ye, S. Cheng, L. Zhang, and F. Jiang, ‘‘DroidFuzzer: Fuzzing the
Android apps with intent-filter tag,’’ in Proc. Int. Conf. Adv. Mobile Com-
put. Multimedia (MoMM), New York, NY, USA, 2013, pp. 68–74.

[3] E. Barsallo Yi, A. Maji, and S. Bagchi, ‘‘How reliable is my wearable:
A fuzz testing-based study,’’ in Proc. 48th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Luxembourg City, Luxembourg, Jun. 2018,
pp. 410–417.

[4] X. Xie, S. See, L.Ma, F. Juefei-Xu,M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li,
and J. Yin, ‘‘DeepHunter: A coverage-guided fuzz testing framework for
deep neural networks,’’ inProc. 28th ACMSIGSOFT Int. Symp. Softw. Test.
Anal. (ISSTA), Beijing, China, 2019, pp. 146–157.

[5] T. Yue, Y. Tang, B. Yu, P. Wang, and E. Wang, ‘‘LearnAFL: Grey-
box fuzzing with knowledge enhancement,’’ IEEE Access, vol. 7,
pp. 117029–117043, 2019, doi: 10.1109/ACCESS.2019.2936235.

[6] J. Li, B. Zhao, and C. Zhang, ‘‘Fuzzing: A survey,’’ Cybersecurity, vol. 1,
no. 1, pp. 6–19, Dec. 2018.

[7] J. C. King, ‘‘Symbolic execution and program testing,’’ Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[8] S. Michel, P. Triantafillou, and G. Weikum, ‘‘KLEE: A framework for
distributed top-K query algorithms,’’ in Proc. 31st Int. Conf. Very Large
Data Bases, Trondheim, Norway, 2005, pp. 637–648.

[9] K. Luckow, M. Dimjaevi, D. Giannakopoulou, F. Howar, M. Isberner,
T. Kahsai, Z. Rakamaric, and V. Raman, ‘‘JDart: A dynamic symbolic
analysis framework,’’ in Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Germany: Springer, 2016, pp. 442–459,
doi: 10.1007/978-3-662-49674-9_26.

[10] C. S Păsăreanu, W. Visser, D. Bushnell, J. Geldenhuys, P. Mehlitz, and
N. Rungta, ‘‘Symbolic pathfinder: Integrating symbolic execution with
model checking for java bytecode analysis,’’ Automated Softw. Eng.,
vol. 20, no. 3, pp. 391–425, Sep. 2013.

[11] R. Kersten, K. Luckow, and C. S Păsăreanu, ‘‘POSTER: AFL-based
fuzzing for Java with kelinci,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2017, pp. 2511–2513.

[12] W. Visser, C. S Păsăreanu, and S. Khurshid, ‘‘Test input generation with
Java PathFinder,’’ in Proc. ACM SIGSOFT Int. Symp. Softw. Test. Anal.
(ISSTA), Boston, MA, USA, 2004, pp. 97–107.

[13] P. Godefroid, ‘‘Compositional dynamic test generation,’’ in Proc. 34th
Annu. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. (POPL),
2007, pp. 47–54.

[14] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, ‘‘Efficient state merging
in symbolic execution,’’ in Proc. 33rd ACM SIGPLAN Conf. Program.
Lang. Design Implement. (PLDI), 2012, pp. 193–204.

[15] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley, ‘‘Enhancing symbolic
execution with veritesting,’’ Commun. ACM, vol. 59, no. 6, pp. 93–100,
May 2016.

[16] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, ‘‘EXE:
Automatically generating inputs of death,’’ ACM Trans. Inf. Syst. Secur.,
vol. 12 no. 2, pp. 1–38, 2008.

[17] B. Botella, A. Gotlieb, and C. Michel, ‘‘Symbolic execution of floating-
point computations,’’ Softw. Test., Verification Rel., vol. 16, no. 2,
pp. 97–121, 2006.

[18] P. Collingbourne, C. Cadar, and P. H. J. Kelly, ‘‘Symbolic crosschecking
of floating-point and SIMD code,’’ in Proc. 6th Conf. Comput. Syst.
New York, NY, USA: Association Computing Machinery, 2011,
pp. 315–328.

[19] B. P. Miller, L. Fredriksen, and B. So, ‘‘An empirical study of the reli-
ability of UNIX utilities,’’ Commun. ACM, vol. 33, no. 12, pp. 32–44,
Dec. 1990.

[20] M. Sutton and A. Greene, ‘‘The art of file format fuzzing,’’ in Proc.
BlackHat USA Conf., 2005, pp. 1–31.

[21] L. Cheng, Y. Zhang, Y. Zhang, C. Wu, Z. Li, Y. Fu, and H. Li, ‘‘Optimizing
seed inputs in fuzzing with machine learning,’’ in Proc. IEEE/ACM 41st
Int. Conf. Softw. Eng., Companion Proc. (ICSE-Companion), Montreal,
QC, Canada, May 2019, pp. 244–245.

VOLUME 8, 2020 187573

http://dx.doi.org/10.1109/ACCESS.2019.2936235
http://dx.doi.org/10.1007/978-3-662-49674-9_26

Z. Xie et al.: CSEFuzz: Fuzz Testing Based on Symbolic Execution

[22] H. Zhang, A. Zhou, P. Jia, L. Liu, J. Ma, and L. Liu, ‘‘InsFuzz: Fuzzing
binaries with location sensitivity,’’ IEEE Access, vol. 7, pp. 22434–22444,
2019.

[23] C. Lemieux and K. Sen, ‘‘FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,’’ in Proc. 33rd ACM/IEEE
Int. Conf. Automated Softw. Eng. (ASE), Montpellier, France, 2018,
pp. 475–485.

[24] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, ‘‘A taint based approach
for smart fuzzing,’’ in Proc. IEEE 5th Int. Conf. Softw. Test., Verification
Validation, Montreal, QC, Canada, Apr. 2012, pp. 818–825.

[25] Y.-H. Choi, M.-W. Park, J.-H. Eom, and T.-M. Chung, ‘‘Dynamic binary
analyzer for scanning vulnerabilities with taint analysis,’’Multimedia Tools
Appl., vol. 74, no. 7, pp. 2301–2320, Apr. 2015.

[26] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, ‘‘DTA++:
Dynamic taint analysis with targeted control-flow propagation,’’ in Proc.
Netw. Distrib. Syst. Secur. Symp., SanDiego, CA,USA, 2011, pp. 427–430.

[27] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, ‘‘Finding software vul-
nerabilities by smart fuzzing,’’ in Proc. 4th IEEE Int. Conf. Softw. Test.,
Verification Validation, Berlin, Germany, Mar. 2011, pp. 1–14.

[28] P. Chen and H. Chen, ‘‘Angora: Efficient fuzzing by principled search,’’
in Proc. IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA,
May 2018, pp. 711–725.

[29] Y. Noller, R. Kersten, and C. S Păsăreanu, ‘‘Badger: Complexity analysis
with fuzzing and symbolic execution,’’ in Proc. 27th ACM SIGSOFT Int.
Symp. Softw. Test. Anal. (ISSTA), Amsterdam, Holland, 2018, pp. 322–332.

[30] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, ‘‘Driller: Augmenting
fuzzing through selective symbolic execution,’’ inProc. Netw. Distrib. Syst.
Secur. Symp., San Diego, CA, USA, 2016, pp. 1–16.

[31] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna, ‘‘SOK: (State
of) the art of war: Offensive techniques in binary analysis,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), San Diego, CA, USA, May 2016, pp. 138–157.

[32] Z. Xie, ‘‘Detecting software defects based on fuzz testing and symbolic
execution,’’ M.S. thesis, Comput. School, Beijing Inf. Sci. Technol. Univ.,
Beijing, China, 2020.

ZHANGWEI XIE received the master’s degree
in computer technology from Beijing Information
Science and Technology University, in July 2020.
His research interest includes software analysis
and testing.

ZHANQI CUI (Member, IEEE) received the B.E.
and Ph.D. degrees in software engineering and
computer software and theory from Nanjing Uni-
versity, in 2005 and 2011, respectively. He was a
Visiting Ph.D. Student with the University of Vir-
ginia, from September 2009 to September 2010.
He is currently anAssociate Professor with Beijing
Information Science and Technology University.
His research interest includes software analysis
and testing.

JIAMING ZHANG received the bachelor’s degree
in software engineering from Beijing Information
Science and Technology University, in July 2020,
where he is currently pursuing the master’s degree.
His research interest includes software analysis
and testing.

XIULEI LIU received the Ph.D. degree in com-
puter science from the Beijing University of Posts
and Telecommunications, in March 2013. He was
a Visiting Ph.D. Student with CCSR, University
of Surrey, from October 2008 to October 2010.
He is currently anAssociate Professor with Beijing
Information Science and Technology University.
His research interests include semantic sensor,
semantic web, knowledge graph, and semantic
information retrieval.

LIWEI ZHENG received the Ph.D. degree in com-
puter software and theory from the Academy
of Mathematics and Systems Science, Chinese
Academy of Sciences, in 2009. He is currently
an Associate Professor with Beijing Information
Science and Technology University. His research
interests include requirement engineering and
trusted computing.

187574 VOLUME 8, 2020

