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ABSTRACT The requirement for 3D scene classification and understanding has dramatically increased
with the widespread use of airborne Light Detection And Ranging (LiDAR). This paper focuses on precise
classification and object extraction based on point cloud data in complex scenes. There are usually gross
errors in the initial classification based on locally independent classifiers, due to the over- and under-
clustering in the feature extraction. We introduce a graph-cut based method to improve the classification
precision and eliminate errors by using contextual information. The intuition behind our algorithm is based
on the fact that nearby points have a high probability of belonging to the same object, while the distances
of points belonging to different objects will be large. Based on this assumption, objects of interest can be
precisely extracted, and we can thus optimize the classification results. The experiments undertaken in this
study proved that the classification method we propose can be effectively used for point cloud classification
in complex scenes.

INDEX TERMS LiDAR, point cloud classification, object extraction, graph cuts.

I. INTRODUCTION
LiDAR is an important and popular technology to acquire 3D
dense and accurate information. The basic and most critical
step is classifying the point clouds into categorical object
instances (e.g. building, ground and vegetation) for further
data processing [1]–[3].

A powerful mathematical tool for accurate perception of
environments is machine learning that can be used to clas-
sify pixel-based image and point-based data [4]. Recently,
with the development of deep learning, few works using
deep learning on classifying point clouds have been stud-
ied [5], [6]. Various locally independent classifiers exist for
classifying point clouds [7]–[9]. In these machine learning
algorithms, such as AdaBoost and Support Vector Machine
(SVM), feature vectors and corresponding training data
labels are used to automatically learn the classification rules.
Points, which are represented by features in locally classi-
fiers, are merely a consequence of the discrete representa-
tion of objects. When the extracted features discriminative,
good results can be produced. However, when the extracted
features are noisy, this approach can produce noisy clas-
sifications. In areas of lower point density, feature vectors
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are unstable. Thus, the local features containing a limited
amount of information, are often not sufficient to determine
the correct object label. Feature vectors might be unstable
at the boundaries. Thus, the classification results obtained
using local classifiers are prone to many misclassification
problems, most notably to ‘‘leaking’’ through weak spots in
object boundaries [10]. For further object modeling, we need
to improve the precision of the rough classification results
by post-processing [11]. Recently, by treating point set as
unordered sets, some deep learning methods also use local
based features for classification [5].

In addition to local features which are mainly geometric
primitive cues [12]–[14], high-level contextual information
can be used to extend classification and object extraction.
Regions, boundaries, etc., are effective high-level contextual
information [15], [16]. By combing local and contextual
information, Random Field (RF) based model is built for
generating rational classification results [17]. But, global
optimization of the RF models combining local features and
contextual information is usually NP-hard [18]. It only can be
solved efficiently in some special cases [19], [20]. Addition-
ally, the classical Potts model used in Conditional Random
Field (CRF) makes it favors smooth object boundaries [21].
Thus, it may fail at object boundaries [22]. Recently, deep
learning based methods used multi-scale and hierarchical
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information to build contextual models [6]. However, the spa-
tial relations and high-level information used is not readily
comprehensible.

In this paper, for improving classification accuracy,
we introduce noticeable high-level relation that neighbor-
ing points of an object are more reasonable to be seg-
mented together (within the same region), and different
objects should be divided with gaps (boundaries). By com-
bining region and boundary information, we can optimize
the classification results and extract objects precisely by
adopting the minimization of an energy function using graph
cuts [23]–[25]. We introduce an algorithm for which the intu-
ition behind it is that a good foreground segmentation consists
of points that are well connected to each other (belonging to
an object), but poorly connected to the background. This is
similar to the segmentation methods. However, the segmen-
tation studies that do exist mostly focus on the extraction of
geometric primitives of parts rather than entire objects [26].
Thus, based on this approach, we describe a fairly general
process using region and boundary properties, which are
combined with the rough classification results to generate
optimized classification results.

Contextual information, such as the co-occurrence and
geometric relationships between objects [10], [27], is usually
used in Markov random field (MRF) or CRF based methods.
However, processing all this kind of contextual information
together is a tough task. The inference task of CRF is NP-
hard [28]. It usually assigns a high potential value for point
cloud classification if all points are labeled the same, and
zero otherwise with Potts model and based on approximate
inference using α-expansion or α − β swap through graph-
cuts. However, in many applications, it is difficult to obtain
a group of sites (clique) that contain homogeneous labels.
Thus, the contextual information used in CRF or MRF is
restricted. In this way, a rounding procedure is performed
that achieves a rough approximation, rather than a robust one.
In the discussion section (Section IV), we compare the results
of CRF with those of our proposed method.

In the proposed method, we combine three types of infor-
mation (point, region, and boundary) to generate robust point
classification and object extraction results by the use of graph
cuts to find the nearly global optimization of an energy
function.

This optimized classification and object extraction method
can generate precise results, which can therefore be used for
further modeling. The main contribution of this paper are:

(1) An efficient energy cost function is constructed for the
optimization. By combining region and boundary informa-
tion, we introduce a well-defined energy function. By min-
imizing this energy function using graph cuts, nearly global
optimization of the classification can be precisely generated.

(2) Hard constraint setting simplifies the optimization
process. We introduce a highly specialized process to
automatically set hard constraints of the foreground and
background. In complex examples, it is necessary to control
the optimization properties by setting up appropriate hard

constraints (seeds) to further constrain the search space of the
possible solutions.

II. METHODOLOGY
The rough classification obtained using the classifiers based
on local features usually contain errors [1]. For each object of
interest, its neighbor may contain many misclassified points
in the rough classification results. Classification results can
be optimized by using object-level information (region and
boundary). As described in the introduction, within a region,
neighboring points belong to a same object with a strong
possibility, and points belonging to different objects are usu-
ally separate from each other (divided by boundaries). Thus,
the combined region and boundary information can be used
to optimize the classification results and precisely extract
objects. We impose an energy function based on the region
and boundary properties:

E (A) = λR (A)+ B (A) (1)

where A represents set of labels of the set of data elements P,
R (A) is the regional term, and B (A) is the boundary term.
We formulate the optimized point cloud classification and
object extraction as minimizing an energy function problem
using graph cuts by enforcing spatial coherence while pre-
serving appropriate sharp discontinuities.

A. OPTIMIZATION MODEL
There are many objects in a typical scenario, and processing
all the objects together is a tough task. Usually, approximate
approaches [18] based on α-expansion or α − β swap was
used, but cannot find global solution for multi-dimension
optimization. For simplification, we first process each object
individually. Then, by combining the results of all the objects,
the final classification results are obtained.

By combining the region and boundary information with
the initial classification results, we formulate such an opti-
mization problem as a binary (foreground/background) label-
ing problem for each object by adjusting the labels of its
neighbors’ misclassified points (Fig. 1). Thus, A is the labels

FIGURE 1. We optimize the initial classification (a) by formulating a
binary (foreground/background) labeling problem (b); the foreground
object is a building, and the other objects (mainly vegetation) are defined
as background. After optimization, errors can be eliminated by adjusting
the labels of the points.
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of the foreground or background for the object of interest,
which are not the labels of the point class.

Considering a point set P, we use all pairs {p, q} of neigh-
boring points in P to represent a neighborhood system.We set(
A1, . . . ,Ap, . . . ,A|P|

)
to be a binary vector. each component

Ap of A defines the assignment (foreground/background) to
point p in P.
By using binary optimization to enforce spatial coherence

while preserving appropriate sharp discontinuities, we formu-
late the optimized point cloud classification and object extrac-
tion as globally minimizing an energy function (1) through
a graph-cut algorithm which is an efficient optimization
tool [23], [29].

Finally, we adjust the optimized foreground points in P
to their specific class and generate optimized classification
results.

B. ENERGY FUNCTION
As seen in (1), by combining the region and boundary infor-
mation, the energy function has two parts:

1) REGIONAL PART
As described before, when using a classifier based on local
features, there may be many local classification errors, but
no major errors. The region information extracted from the
initial classification results thus can be used to assist design-
ing highly specialized algorithm for contextual classifica-
tion [30].

Objects by clustering points with the same labels are
extracted first. Using the initial classification results, we first
group nearby points with same labels by using region growing
algorithm. The size of the points in the region is used to
differentiate the objects as stable and unstable ones. Stable
objects generally have large sizes, in which the main points
are correctly classified. Otherwise, tiny objects are consid-
ered to be unstable (with classification errors).

The threshold for the stable objects is closely related
to the size of its initial target classes. Only stable objects
can be regarded as either foreground or background (shown
in Fig. 2).

The regional part R (A) is the combination of individ-
ual penalty for specifying each point p to a certain label
Ap (‘‘foreground’’ or ‘‘background’’) with Rp(Ap) using the
regional information. Thus, the regional part is defined as
R (A)=

∑
p∈P

Rp(Ap). Rp measures the penalty of how probable

for point p in a region by evaluating the distance. Given the
foreground and background region seed points (within stable
objects), we use the following function to define the regional
term:


Rp ("bkg")= 1−e

−

(
dbp
δ

)2

Rp ("obj")=1−e
−

(
dop
δ

)2 (2)

FIGURE 2. Sketch map of stable objects. The foreground object is shown
in yellow, and the background objects are shown in blue. Unstable
objects are shown in gray. Only one stable object is treated as foreground,
and there may be many other stable objects are treated as background.

where dbp is the closet distance of point p to the background
seed points, and dop is the closet distance of point p to the
foreground seed points. δ is the average distance of the points
in the dataset. There may be multiple background objects,
thus dbp is defined as the closet distance of point p to seed
points of all background objects.

The marginal points of regions usually contain errors and
entangle with points with other regions. Thus, a penalty P is
added to strongly punishment misclassified points belongs to
other regions to be labeled as foreground. We make a penalty
function out of the distance r to center location of object.

P=


1, r<r0
r
r0
, r>r0 and r<α × r0

α, r≥α×r0

(3)

where r0 is set to be an initial radius which contain 90%
points in the stable foreground object. Given a distance r ,
a soft foreground penalty P is created to punishment marginal
misclassified points. If the radius r is less than r0, the penalty
P is set to 1. The penalty then increases linearly if the distance
gradually enlarges when r < α × r0. Finally, when the
distance extends to a certain level (r≥α × r0), the penalty
stays at a certain stable value α.

The total regional term with penalty is defined as:{
Rpp ("obj") = P×Rp ("obj")
Rpp ("bkg") = Rp ("bkg")

(4)

The regional term of the background Rp ("bkg") is not
penalized.

2) BOUNDARY PART
The boundary term adds regularizing constraints that help
to enforce the spatial coherence between neighboring points
{p, q} ∈ N by minimizing the discontinuities between them.
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The boundary term is defined as:

B (A) =
∑
{p,q}∈N

Bp,qδAp 6=Aq (5)

where we define δAp 6=Aq =
{
1 if Ap 6= Aq
0 if Ap = Aq

.

Bp,q penalizes a lot for discontinuities between points
(δAp 6=Aq ) with a close distance. Bp,q is large when points p
and q are close, and Bp,q is close to zero when the distance
between the two points is very large. We do not use fine-scale
geometrical cues such as curvature in discontinuities, but
rather rely on the distance between points dp,q and the average
distance δ of points in the dataset. We define Bp,q as:

Bp,q = exp

(
−

(
dp,q
δ

)2
)

(6)

3) GRAPH CONSTRUCTION
As described in [31], [32], graph-cut based methods can
be used to minimize energy function (1). We first have to
construct a graph G = 〈= V ,E〉 representing the spatial
distribution of points in point cloud dataset. Neighbor points
with closer distances are connected more strongly in graphG.
V is a set of nodes in graph G. When used for the point

cloud classification optimization, the nodesV are represented
by an arbitrary set of points P. Two special terminal nodes
(source S and sink T ) are also added to the node set V =
{S,T }

⋃
P. In our point cloud graph construction, the special

terminal nodes S and T are extracted automatically based
on the rough classification results and region growing rule
(described in Section II- B).
E is a set of undirected edges that interconnect the points

and is constructed using a neighborhood system. Specifically,
a k-nearest neighbor (KNN) graph is constructed on the input
points to build an edge system. Because of the disarray and
sparsity, an R-tree [33] is used to index points and search the
neighboring points in the point cloud. Then, a set N of edges
by pairs {p, q} of the neighboring points are found. In the
neighborhood system, each graph edge e is assigned with
certain nonnegative weight we, the value of which is based
on the length of the edge. Finally, A graph representing the
structure of the point cloud is constructed, where the closer
points are more strongly connected.

Terminal nodes S and T are absolutely partitioned by a s-t
cut which is a subset of edges C ⊂ E . Then the complete
graph G become an induced graph G(C) = 〈V ,E\C〉. The
cost of a cut is defined as the sum of the costs of the edges
that it severs |C| =

∑
e∈C we. By construct a graph from

the input point cloud, the problem of minimizing an energy
function can be equal to find a min-cut/max-flow using graph
cuts [23].

There are two kinds of undirected edges E : n-links and t-
links. Each n-link connects two neighboring points {p, q} by
using KNN system. t-links connect point p to special terminal
nodes S and T to construct link {p, S} and link {p, T}. The
edges’ weights are given as follows:

(1) The weight of the n-link:

w{p,q} = Bp,q (7)

(2) The weight of the t-links:{
w{p,S} = λRp ("bkg")
w{p,T } = λRp ("obj")

(8)

We treat λ as a hyperparameter. Typically, it is set to 1.
The weights are defined based on the regional and bound-

ary terms. We compute the best cut that would give an ‘‘opti-
mal’’ solutionwhich preciselyminimizes the energy function.
Further details can be found in [23]. The object and boundary
properties can thus be reinforced for an optimal solution.

4) OPTIMIZATION PROCESS
The previous section described how an energy function is
constructed for optimized classification, and how the function
can be efficiently solved using graph cuts. The object and
boundary properties are used in the optimal classification to
encourage separation from foreground to background.

This section describes the details of the optimization pro-
cess (shown in Fig. 3). The optimization is processed for
every stable object and its adjacent points (containing suffi-
cient background seeds) in succession. For each foreground
object, this optimization is a binary labelling method.

Based on the initial classification results, region growing
is first used to gather point regions with the same label. For
every stable object, the optimization includes the following
steps.

A neighborhood is constructed for simplifying the graph
construction. For a stable object being processed, a minimum
3D sphere is firstly set up to contain the points in its region.
Then, the sphere is widened to contain the neighboring points
of the stable object being processed. By temporally eliminat-
ing other points which have not been processed recently, this
neighborhood is efficient for graph construction.

Hard constraints of the seed points have to be set for the
optimization. The seed points of foreground are set to be
the points in the stable object being optimized. Otherwise,
the seed points of background are defined as points in other
stable objects in the widened 3D sphere. The inaccuracy of
hard constraints can be penalized by adding a penalty.

After establishing the above neighborhood and hard seed
constraints, a graph for which the edges have weights that
decrease with distance is generated. We then implement clas-
sification optimization using the graph-cut algorithm. Finally,
the points of unstable objects that are segmented into fore-
ground are optimized.

For one stable object, the precise extraction of its points is
beneficial for the further modeling. By iteratively processing
all the stable objects in a scene, we turn the binary labelling
problem to a multiple labeling problem and the classification
results can be optimized.

The above described process of optimization is shown
in Fig. 3
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FIGURE 3. The optimization process.

III. EXPERIMENTAL RESULTS
Precise object extraction is important for further modeling,
which can be badly disturbed by noise or misclassified points.
We propose a method to optimize the classification results.
In this section, we evaluate our optimized method on several
examples. The results were obtained using two datasets.

The first dataset (Scene I) was provided by an air-
borne laser scanner Reigl Q560. This dataset was used for
power-line management and acquired in Hubei province,
China. There are many power facilities, such as pylons and
power-lines, and vegetations in Scene I. The point density
varies greatly and is approximately 10-30 points/m2 due to
the complex topography.

The second dataset (Scene II) was provided by Optech,
Inc., and was used by the ISPRS Test Project on Urban Clas-
sification, 3-D Building Reconstruction and Semantic Label-
ing [34]. The point density is approximately 10 points/m2.
There are a small number of trees and many skyscrapers in
Scene II where is a commercial district.

The rough classification results by using the local-based
classifier are first shown. We then describe the results
obtained by the method of automatic classification optimiza-
tion proposed in this paper. Finally, some examples of object
extraction and precise classification are provided.

A. CLASSIFICATION RESULTS BY USING
LOCALLY CLASSIFIER
The JointBoost algorithm using local features [1] was used
for classifying point cloud data. Before the classification
process, we first filtered out the ground points in the dataset
using Terrasolid software [35]. In order to avoid classification
fault caused by imbalance of training samples, we randomly
selected equal size of samples per class from the training

dataset. After calculating the local features, we trained a
JointBoost classifier [36] for classifying point cloud.

The points in Scene I were classified into pylon, building,
vegetation, and power line. As shown in Fig. 4, there are no
major errors in typical classification results.

There are a small number of trees and many skyscrapers in
Scene II where is a commercial district. Thus, the points in
Scene II were classified into building and vegetation. Typical
results are shown in Fig. 5.

Using the classifier based on local features which cannot be
precisely extracted, especially on the boundaries of objects,
many typical misclassified points are exhibited in the initial
classification results. Firstly, some points of building edges
are misclassified as vegetation (Fig. 6(a)). Because points
of building edges distribute scatteredly. Some misclassified
points have vegetation characteristics due to the normal of
these points in a neighborhood region varies greatly. Due to
a scattered distribution, incorrect classification of vegetation
points as building is also typical (Fig. 6(b)). When height
difference is small and point density is high, some vegetation
points may be misclassified as building. Some mislabeled
points of power lines and vegetations appear widely in pylons
(Fig. 6(c)).

B. IMPLEMENTATION DETAILS OF THE OPTIMIZATION
The workflow of the classification optimization process was
described in Section II. We describe the implementation
details in this section.

1) REGION INFORMATION EXTRACTION
Region information is important for energy function con-
struction and classification optimization. Region growing is
first used to detect and gather stable objects which contain
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FIGURE 4. Classification results of Scene I (red: building, green: vegetation, violet: power-line, blue: pylon).

FIGURE 5. Classification results of Scene II (red: building, green: vegetation).

points with a high probability of correct class labels. Region
growing is used to gather neighboring points by determining
whether the neighboring points should be added to the region.
As a general algorithm of data clustering, region growing
process is iterated to searching which neighboring points
should be merged.

Starting from selecting seed point set with same classifica-
tion label. These seeds construct an initial region. The region
then grows by adding adjacent points, following two criteria:
1) the distance of adjacent points should be within a certain
range; and 2) the labels of adjacent points should be the
same.

A 26-connected neighborhood is used to keep examin-
ing the adjacent points of seeds within a certain distance.
The distance range used for the region growing is based on
the average distance δ of points in the dataset (1.5×δ). If the
points have the same classification label as the seed points,
they are classified as new seed points. This is an iterative
process until there is no change in two successive iterative
stages.

Stable regions are defined as objects with the major points
having correct classification labels. While tiny objects are
unstable, we generally consider stable objects have large
sizes. Only stable objects can be regarded as foreground or
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FIGURE 6. Typical misclassification errors. (a) misclassified points in
building margins (mainly misclassified as vegetation); (b) misclassified
vegetation points (mainly misclassified as buildings); (c) misclassified
pylon points (mainly misclassified as power-lines and vegetations).

TABLE 1. The distance threshold for stable objects/m.

background. Because the size threshold is difficult to calcu-
late, we use the distance threshold to determine stable objects.
The distance threshold (Table 1) is defined as the largest
distance of the points in a region. Training dataset is used to
estimate the distance threshold for each class (Tab. 1).

The region growing results are shown in Fig. 7. Stable
objects are shown in various colors, while unstable objects
are shown in black.

After the region growing, each stable object is iteratively
selected to be optimized.

2) HARD CONSTRAINT SETTING
Seeds are hard constraints. B and O denote the seed subsets
which are a priori of a part of ‘‘background’’ and ‘‘fore-
ground’’. For precise object extraction, it is beneficial to
obtain the seed of foreground/background as accurately as
possible.

Boundary points usually contain errors. In order to elim-
inate wrong points in the hard constraints, only points with
correct class labels in stable objects should be selected.

FIGURE 7. Region growing results. Stable objects are shown in different
colors, while otherwise unstable objects are shown in black.

However, this strategy is difficult to implement. In the pro-
posedmethod, a penalty is added to strongly encourage points
in the object margin with errors not to be labeled as fore-
ground. In order to select the optimal penalty function (3),
we make the penalty as a function of the distance r to the
central location of the object.

The distance threshold r0 is set to the radius of stable
objects. The setting of parameter α is described in Section
IV. In this paper, α is set to 1.1.

3) OPTIMIZATION
By setting the hard constraints of an object, we have to
optimize the labels of its neighboring points. The main steps
are:

a: GRAPH CONSTRUCTION
The neighborhood should be first set for the graph construc-
tion. For a processing stable object, a minimum 3D sphere
is set up to contain the points of selected object. Then,
we expand the sphere by 3.0 times to hold all neighboring
points.

We construct a KNN graph on the input points to construct
the edge system. The value of k is important. If k is too
small, the neighborhood system cannot represent the structure
of the point cloud. Otherwise, an overlarge k value will
greatly influence the computational efficiency. We use the
26-neighborhood system for graph construction.

b: OPTIMIZATION USING GRAPH CUTS
After constructing the energy function and setting the graph
structure of the dataset, and given the constraints of the
foreground and background seed points, the optimization
problem is formulated as a binary labeling problem to be
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FIGURE 8. Object extraction for a building. (a) Initial classification based on JointBoost (red: building, green: vegetation, violet: power-line, blue:
pylon); (b) Seed points: foreground/yellow background/blue; (c) Object extraction results: foreground/yellow background/blue.

solved using graph cuts [23]. After implementing min-cut C ,
if {p,T } ∈ C , we set Ap= "obj". Otherwise, if {p, S} ∈ C ,
we set Ap= "bkg".

C. OPTIMIZED CLASSIFICATION AND OBJECT
EXTRACTION RESULTS
1) OBJECT EXTRACTION
For a single object, the further precise modeling [37], [38]
is dependent on the accuracy of the classification. Using the
method described previously, we first examine the extraction
results of some typical objects.

The initial classification usually contains errors, which
should be removed for further processing. For a stable object,
the precise extraction of its points is beneficial for the mod-
eling.

Given a stable region, we first calculate a 3D sphere to
hold all points. The neighborhood is then widened to contain
neighboring points of other stable objects. Hard constraints of
seed points have to be set for optimization. The foreground
seeds are set to be the points of processing stable object.
While, the other stable objects’ points in the neighborhood are
regarded as background seeds. A graph is formed in which the
edges have weights that decrease with the distances. By using
a min-cut algorithm, the optimization of energy function (1)
can be solved.

The object extraction results are shown in Fig. 8. It can be
seen many local errors have been eliminated and the object
extraction are smooth in the final results (c). The initial clas-
sification (a) ausing local features and JointBoost [1] usually
contain many noise points. Part (b) shows the segmentation
seeds setting. The building is stable object being processed.
Thus, the foreground seed points are selected by using build-
ing points, while the background seed points are using other
stable objects (vegetation, other building).

2) OPTIMIZED CLASSIFICATION
By optimizing the classification of all the stable objects as
foreground in a scene, the points that are adjusted to the
foreground are reclassified to the labels of the corresponding

stable objects. By adjusting the error points of all the stable
objects in the test region, the initial classification results are
optimized.

The proposed optimization method generates smoother
results than the initial classification. After the optimization,
some error points caused by classification using local features
will have been rectified.

Fig. 9 shows the optimized classification results of Scene I.
The optimized classification results are smooth, and many
tiny local errors have been eliminated. The typical objects,
such as pylons and buildings, are precisely delineated.

It is shown in Fig. 10 the optimized classification results of
Scene II. It can be seen that the typical buildings are mainly
correctly classified. The digital city modeling thus benefits
from the precise classification.

IV. DISCUSSION
In the following, we discuss the comparation of the results
obtained with the proposed method with those obtained using
other methods. Method I [1] was point cloud classifica-
tion method using JointBoost which is a locally classifier,
based on carefully hand-desighed features. Contextual infor-
mation, such as the co-occurrence and geometric relation-
ships between objects, is used in CRF. CRF can generate
more accurate classification results than classifiers only using
local features. However, the contextual information used in
CRF (Method II) is restricted [39], and it is difficult to
obtain a group of points (clique) that contains homogeneous
labels in many applications. Thus, there are also many local
errors.

Classification quality is usually represented by preci-
sion/recall. If more relevant results are returned than irrele-
vant results, it is means high precision is obtained. High recall
means that a classification method returned mostly relevant
results. The precision/recall, together with accuracy of the
different methods is shown in Table 2. The highest precision
and recall have been achieved by using our proposed method
in Scene I and II. The classification precision for the power
lines in Scene I obtained using the proposed method is much
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FIGURE 9. Optimized classification results for the test dataset of Scene I. (red: building, green: vegetation, violet: power-line, blue: pylon).

FIGURE 10. Optimized classification results for the test dataset of Scene II (red: building, green: vegetation).

higher than that obtained by the other methods. Therefore,
combining region and boundary features can better describe
the characteristics of the objects.

The proposed algorithm runs in an automatic regime.
In order to achieve optimized classification results, some hard
constraints for the foreground/background seeds need to be
made. In this paper, we only consider stable objects for opti-
mized classification. Thus, some tiny objects and connected
objects cannot be well processed.

Parameter sensitivity of our proposed model should be
Analyzed.

F1 measure (9) is a compound metric considering both
the precision and the recall to represent the classification
accuracy:

F1 = 2
Rc× Pr
Rc+ Pr

(9)

where Rc is recall and Pr is precision.
The value of α for penalty term in function (3) is crucial for

classification results. By setting different value,F1 measure is
used to analyze the impact of the parameter (shown in Fig.11).
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TABLE 2. The precision/recall and accuracy of the classification results.

FIGURE 11. The influence of different values of α on the classification
results.

To determine the proper value of α in penalty term, various
values of α, i.e., 1.05, 1.1, 1.15, 1.20, and 1.25, are set to
test the influence on the classification. We mainly tested it on
Scene I. As illustrated in Fig. 11, the F1 values of buildings
and vegetation are both greater than 0.94. While those of
power lines and pylons are small. Finally, power line has
smallest F1 value. Even though, that of power lines is always
larger than 0.87. If we set α = 1.1, the F1 value of power lines
is the highest.

V. CONCLUSION
The automatic classification of point cloud data is of impor-
tance for scene understanding andmapping. However, if there
are gross errors in the initial classification, further tasks such
as modeling, etc., will be critically influenced. Optimized
classification and precise object extraction should thus be
achieved. A graph-cut based optimization technique has been
introduced in this paper to improve the initial classification
results generated by local classifiers. In addition to local
features, effective high-level contextual information (such as
regions, boundaries, etc.) is helpful for precise classification.
By using the region and boundary properties, we describe

a fairly general process combining the rough classification
results to generate optimized classification results. Finally,
precise object extraction and classification can thus be
generated.

In practice, real-world data are noisy and some objects
may be entangled with others. Only using boundary and
region information may fail in some extreme cases. Thus,
no algorithm can guarantee 100% accuracy for classification
and object extraction. There are also some limitations to the
method proposed in this paper:

(1) Some tiny objects may be ignored. The optimization
uses reliable objects as seed points by the use of region
growing. Thus, some tiny objects are not processed further.
As a result, the rough classification errors in these tiny objects
cannot be corrected.

(2) Connected objects, especially with similar classes,
cannot be separated precisely. Some connected objects will
be entangled with others, and thus these objects cannot be
separated precisely using only region growing. The hard
constraint setting for the connected objects should thus be
improved.

There are also some shortcomings in the computational
efficiency. Thus, this method may not be suitable for fast or
real-time computing.

In the future, we will introduce multi-scale or stacked
hierarchical labeling skills [40]–[42] to further improve the
classification precision. Objects with different scales are
sometimes difficult to precisely extract with information of
only one level. Thus, combining low and higher-level infor-
mation by using Deep learning is a reasonable way to further
improve the classification results.
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