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ABSTRACT In today’s cyber world, worms pose a great threat to the global network infrastructure.
In this paper, we propose a worm detection system based on deep learning. It includes two main modules:
one worm detection module based on a convolutional neural network (CNN) and one automatic worm
signature generation module based on a deep neural network (DNN). In the CNN-based worm detection
module, we propose three kinds of data preprocessing methods: frequency processing, frequency weighted
processing, and difference processing, and use CNN to train themodel for worm detection. In the DNN-based
worm signature generation module, there are two phrase: DNN is firstly utilized for training the model with
worm payloads and their corresponding signatures as input in the training phrase. After worm payloads
are fed into the trained DNN model in the test phrase, worm signatures are generated by our proposed
Signature Beam Search algorithm. In the experiment, we firstly analyzed the impact of different data
preprocessing methods and the number of convolution-pooling layers in the CNN model on the worm
detection performance. Then we analyzed the effects of different signatures in the DNN algorithm on the
automatic generation of worm signatures. Experiments show that the generated signatures have a good
detection performance.

INDEX TERMS Network security, worm detection, worm signature automatic generation, deep learning.

I. INTRODUCTION
Cyber threats from Internet worms are not new, but how to
effectively detect and defend against them still remains an
ongoing challenge. For example, global financial and eco-
nomic losses from the ‘‘WannaCry’’ attack that crippled com-
puters in at least 150 countries could swell into the billions
of dollars, making it one of the most damaging incidents
involving the so-called ransomware [1].

One of the most common and effective ways to detect
worm attacks is to implement a signature-based intrusion
detection system (IDS). However, signatures are usually ana-
lyzed and generatedmanually by security experts after worms
have already launched attacks and caused severe damage.
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Furthermore, it is easy to fool signature-based solutions by
obfuscation [2]. This technique simply skirts around the sig-
nature database stored in the IDS, giving the hacker an ideal
opportunity to gain access to the network. As a result, the key
to worm signature generation is to find matching invariant
strings from worm payloads as soon as possible.

In recent years, there are a large number of researches
on the automatic generation of worm signatures. Kaur and
Singh [2] provided a detailed survey to outline the research
efforts to the detection of modern zero-day malware in the
form of zero-day polymorphic worms. Aljawarneh et al. [3]
investigated the current automatic methods used to generate
efficient and accurate signatures to create countermeasures
against attacks by polymorphic worms. Bayoǧlu et al. [4]
proposed a new polymorphic worm signature scheme called
Conjunction of Combinational Motifs (CCM). CCM utilizes
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common substrings of polymorphic worm copies and also
the relation between those substrings through dependency
analysis. Tang et al. [5] designed a network-based signature
generation (NSG) system—PolyTree, to defend against poly-
morphic worms. They observed that signatures from worms
and their variants are relevant and a tree structure can accu-
rately reflect their familiar resemblance. Mondal et al. [6]
declared an automatic method that will generate signatures
for the detection of polymorphic worms, and they applied
Principal Component Analysis (PCA) for determining the
critical substrings that appear mostly and are pooled amongst
the instances of polymorphic worms for using them as sig-
natures. Eskandari et al. [7] proposed a signature generation
scheme based on token extraction and multiple sequence
alignment. However, these methods are usually based on the
features manually presented, and then design an algorithm
to detect worms. As a result, the performance is much more
dependent on those manually pre-defined features which may
become the bottleneck.

Nowadays, significant achievements have been achieved
in the fields of image processing, video processing, and
natural language because of the remarkable technological
breakthrough in feature learning in deep learning [8], [9].
Researchers feed the computer a learning algorithm, expose it
to data to train it, and then allow the computer to figure out by
itself how to recognize the desired objects, words, sentences,
or speeches. Therefore, the cybersecurity academic commu-
nity has begun to pay attention to the application of deep
learning in intrusion detection. Zhu et al. [10] introduced
DeepFlow, a novel deep learning-based approach for iden-
tifying malware directly from the data flows in the Android
application. Özkan et al. [11] contributed the CNN features to
overcome themalware detection problem. Kim et al. [12] pro-
posed a convolutional gated recurrent neural network model
that is capable of classifying malware to their respective fam-
ilies. Although there are already some researches on malware
detection that utilizes deep learning to detect malicious code,
most of them are classification. They can not help security
products, for example virus products, detect attacks.

Worms spread over networks by payloads to exploit vulner-
abilities in operating system or installed software. Payloads
usually perform actions on affected computers. Therefore,
payloads can distinguish worms. Due to the capacity of deep
learning on learning features automatically, we choose to use
deep learning to detect worms and extract worm signatures.

In this paper, we propose a novel worm detection system
based on deep learning, which can detect worms accurately
and generate worm signatures automatically. It includes two
core parts: one CNN-based worm detection module and
one DNN-based worm signature generation module. In the
CNN-based worm detection module, three payload prepro-
cessing methods are proposed: frequency processing, fre-
quencyweighted processing, and difference processing. CNN
is utilized for training the model with processed payloads as
inputs. In the DNN-based worm signature generation mod-
ule, DNN is used to learn from worm payloads and their

corresponding signatures to obtain the DNN model. Then we
present a new signature generation algorithm called Signature
Beam Search. Worm payloads are fed into the trained DNN
model, and the Signature Beam Search algorithm is used
to generate worm signatures. In the experiments, we firstly
analyzed the effects of different preprocessing methods and
the number of convolution-pooling layers used by CNN on
detection. Then we analyzed the performance of DNN to
extract signatures. Experiments show that the generated sig-
natures have both low false positives and low false negatives.

The rest of the paper is organized as follows: we discuss the
related work of worm detection in Section II. We introduce
the system architecture of the worm detection system based
on deep learning in Section III. Section IV introduces the
worm detection approach based on CNN. The DNN-based
automatic worm signature generation approach is described
in Section V. Section VI discusses our extensive experiments
in evaluating the proposed worm detection system. In the end,
section VII draws the conclusion.

II. RELATED WORK
There are two types of intrusion detection systems:
anomaly-based and signature-based intrusion detection sys-
tems. Anomaly-based intrusion detection system regularly
monitors events and compares themwith the statisticalmodel.
The signature-based detection method used by intrusion
prevention systems involves a dictionary of uniquely iden-
tifiable signatures located in the code of each exploit. A vital
advantage of this method is that signatures are easy to develop
and understand for security experts. However, signatures are
usually generated after worms have caused damage, so there
are researches on automatic generation methods for worm
signatures.

References [3], [13] investigated the current automatic
methods used to generate efficient and accurate signatures
to create countermeasures against attacks by polymorphic
worms. Nahmias et al. [14] presented TrustSign, a novel,
trusted automatic malware signature generation method
based on high-level deep features transferred from a VGG-19
neural network model pre-trained on the ImageNet dataset.
Szynkiewicz et al. [15] developed an efficient algorithm for
token extraction and a novel method for automatic multi-
token signature composition. Wang et al. [16] proposed an
automatic signature extraction algorithm for polymorphic
worms based on the improved Term Frequency-Inverse Doc-
ument Frequency (TF-IDF). Afek et al. [17] presented a basic
tool for zero-day attack signature extraction.

Due to the capacity of learning features automatically
by deep learning, researchers apply deep learning to intru-
sion detection to resolve the characteristic dependence prob-
lem mentioned above. Nguyen et al. [18] built an IDS
platform based on a convolutional neural network (CNN)
called IDS-CNN to detect DDoS attacks. Experiments have
shown that the CNN-based DDoS detection method outper-
forms traditional methods such as KNN, SVM, and Naive
Bayes. Vinayakumar et al. [19] modeled network traffic as
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FIGURE 1. System architecture.

time-series, in a predefined time range with supervised learn-
ing methods.

Researchers have presented some DNN-based approaches
to detect malware that have shown better results. Venkatra-
man et al. [20] proposed a novel and unified hybrid deep
learning and visualization approach for the effective detection
of malware. Zhong et al. [21] proposed a Multi-Level Deep
Learning System (MLDLS) that organizes multiple deep
learning models using the tree structure.

III. THE SYSTEM ARCHITECTURE
The architecture of our proposed worm detection sys-
tem based on deep learning is shown in Figure 1. It is
mainly divided into four modules, including a data collec-
tion engine, CNN-basedworm detectionmodule, DNN-based
worm signature automatic generation module, and a worm
alarm module.

The data collection engine is responsible for collecting net-
work traffic and extracting payloads. The CNN-based worm
detection approach detects worms by the payloads processed
by the data collection engine. It distinguishes worm payloads
from normal payloads based on CNN. If it detects worm,
the corresponding payloads are submitted to the DNN-based
worm signature generation module, which is responsible for
generating signatures automatically. The DNN-based worm
signature generation module is trained by learning the char-
acteristics of worm payloads based on historic known worm
traffic. Worm payloads are fed into the trained DNN network
to generate corresponding signatures. All the results from the
three components above are submitted to the worm alarm
component, which helps to manage the system. Since the data
collection engine and worm alarm are the auxiliary compo-
nents of the system, this paper will not describe them in detail,
but elaborate on the two core components of the CNN-based
worm detection method and the DNN-based worm feature
generation module.

The formal definitions of the detection process can be
described as follows:

TABLE 1. Notations.

Definition 1: pl = {pl1,. . . , pli, . . . , plM}, i ∈ (1, M )
represents a payload, each pli represents one byte, M is the
length of the payload;
Definition 2: The payload set PL = {pl | pl is the payload

collected by the data collection engine}
Definition 3: The CNN payload set CPL = {cpl | cpl
∈cnn(pl)3 pl ∈ PL}, where cnn is the function which rep-
resents worm payloads detected by the DNN-based worm
signature generation module.
Definition 4: The signature set SIG = {sigcpl| sigcpl ∈

dnn(cpl)3cpl ∈ CPL}, where dnn() is the function that rep-
resents signatures generated by DNN-based worm signature
automatic generation module, and sigcpl represents the gen-
erated signature of the payload cpl.

The description of the notations used in this paper is given
in Table 1.

IV. CNN-BASED WORM DETECTION
With the in-depth research of CNN, it has achieved out-
standing classification performance in image recognition.
To capture the critical characteristics of worm payloads,
we choose to use CNN for worm detection. The variable
length of payloads should be first converted to a fixed length
because CNN can only deal with fixed-length data. Although
vectors, two-dimensional and three-dimensional matrices can
all be considered as input to CNN, vectors have the following
advantages: they can decrease the storage space and reduce
the calculation during training. Therefore, we convert pay-
loads into vectors as the input of CNN.
Definition 5: prep = preprocess(pl), where pl is the pay-

load in Definition 1 and preprocess(pl) is the preprocessing
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function which coverts the payload pl to the generated vector
prep.

We use the following three methods to process payloads:
frequency processing, frequency weighted processing, and
differential processing.

Frequency Processing: payloads are processed by count-
ing the number of occurrences of each byte in the payload.
Algorithm 1 illustrates the detailed procedure.

Frequency Weighted Processing: both the byte value
and its frequency are considered in this method. Firstly, the
frequency of each byte in the payload is counted, and then
the weighted operation is performed by multiplying the byte
value with its frequency. Algorithm 2 is the specific process-
ing procedure.

Algorithm 1 Frequency Processing
Input: q
Output: data[], the data after preprocessing
for i = 1, . . .M do

data [q[i]] = data [q[i]] + 1
End
for j = 0, . . . 255 do

data [j] = (data [j]) / n
End

Algorithm 2 Frequency Weighted Processing
Input: q
Output: data[], the data after preprocessing
for i = 1, . . .M do

data [q[i]] = data [q[i]] + 1
End
for j = 0, . . . 255 do

data [j] = (data [j] ∗j) / n
End

Algorithm 3 Difference Processing
Input: q
Output: data[], the data after preprocessing
for i = 1, . . .M − 1 do

data [q[i]] + = q[i+ 1] – q[i]
End
for j = 1, . . . n do

data [j] = (data [j]) / n
End

Difference Processing: based on the 2-gram model, two
adjacent bytes in worm payloads are closely correlated. As a
result, we process payloads by calculating the difference
between two adjacent bytes in the payload. The detail is in
Algorithm 3.

Frequency processing represents the byte distribution of
payloads. Frequency weighted processing represents the
combination of the value and its frequency. Difference pro-
cessing exploits the relationship of two adjacent bytes. All

FIGURE 2. CNN model.

the methods above can reflect the features of payloads from
different perspectives. And they can convert payloads to the
corresponding format. We input the corresponding data to
CNN to detect worm attacking. Although we tried to utilize
other approaches to process payloads, they did not work after
the processed data was input to the CNN network.

We established multilayer convolution-pool CNN models
to study the effectiveness of the CNN-based worm detec-
tion. In this section, we introduce a three-layer convolution-
pooling CNN model as an example, which is shown in
Figure 2. The input in the figure represents the preprocessing
vector, and Conv-∗ represents the convolutional layer, Pool-
∗ represents the pooled layer, and Fc-∗ represents the fully
connected layer. The processed payloads are fed into the
CNN network as input for training. The convolution layer
extracts features through a convolutional operation. The pool-
ing layer down-samples the extracted feature maps. The fully
connected layer combines the extracted features into a vector,
and the SoftMax layer classifies and outputs the category.

The computational complexity of CNN is

o(
D∑
l=1

M2
l K

2
l Cl−1Cl), where D is the number of layers in

CNN, and l is the l-th convolutional layer, and M is the size
of feature maps, K is the size of convolutional kernels, and
Cl is the output channels of l-th convolutional layer.

V. DNN-BASED WORM SIGNATURE GENERATION
The automatic signature generation helps shorten the
response time for identifying malware by dynamically
extracting signatures of unknown worms without human
intervention. With the development of deep learning, Deep
Neural Network (DNN) models have yielded many state-of-
the-art results in natural language processing. We choose to
use DNN to extract worm signatures automatically, because
worm signature generation is also a sequence-to-sequence
task, and both payloads and signatures can be considered as
a special text.

The whole process for automatic generation of worm sig-
natures is divided into two parts: training the DNN model
and generating worm signatures. In the training phase, both
worm payloads and their corresponding signatures are fed
to the DNN network for training. At the stage of gener-
ating signatures, worm payloads are input into the DNN
network model, and our newly proposed Signature Beam
Search algorithm is used to generate their corresponding
signatures.
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A. MODEL
Definition 6: The input a is a sequence of M bytes

(a1, a2, . . . , aM ) and represents a worm payload.
Definition 7: A sequence b (b1, b2, . . . , bN ) represents a

signature, where bi(1 < i <= N ) is also one byte.
Definition 8: X represents the set of all worm payloads, Y

represents the set of all possible signatures.
The signature generation algorithm takes worm payloads

as input and outputs its corresponding signature. There is a
scoring function s: X × Y → R and the algorithm aims to
find signatures b’ ∈ Y so that:

b′ = argmax
b∈Y

s(a, b) (1)

When the score function takes the window into account,
it can be approximately represented as:

s(a, b) ≈
∑N−1

i=0
dnn (bi+1, a, bc) (2)

where bc , b[i-c+ 1, . . . , i] represents the signature context
with window C, and function dnn() represents the prediction
function. The scoring function s(a, b) can be expressed as
the form of conditional log-probability: s(a, b) = log p(b|a;
θ ) ≈

∑
p(b|a, bc; θ ), where i refers to the index of posi-

tion in signatures. We make a Markov hypothesis on bc and
suppose that when i <1, bi is a start symbol <s>. From
the above scoring function, we need to model the probability
distribution of the local condition: p(bi+1|a, bc; θ ). We utilize
machine translation to parameterize the conditional probabil-
ity distribution into a neural network, including a DNNmodel
and a conditional signature generation encoder.

1) DNN MODEL
We construct a deep neural network model with four hidden
layers based on the standard feed-forward neural network
language model (NNLM) [22]. There are two reasons why
we choose to use rectified linear unit(ReLU), for the hidden
layer activation function. Firstly, it is more computationally
efficient to compute than Sigmoid like functions, because
ReLU does not perform expensive exponential operations as
in Sigmoid. Secondly, it may reduce the likelihood of the
gradient to vanish. The DNN model is as follows:

p (bi+1 | bc, a; θ) ∝ exp
(
Vh′′′′ +W ∗ enc (a, bc)

)
(3)

b̃c = [Ebi−C+1, · · · ,Ebi] (4)

h′ = relu
(
Ub̃c

)
(5)

h′′ = relu
(
U′h′

)
(6)

h′′′ = relu
(
U′′h′′

)
(7)

h′′′′ = relu
(
U′′′h′′′

)
(8)

where enc() is an attention-based encoder that returns a vector
of sizeH , which represents the context of worm payloads and
corresponding signatures. The parameters are θ = (E, U, U’,
U’’, U’’’, V, W) where E ∈ RD×V represents an embedding
matrix for signatures,U ∈R(CD)×H ,U’,U’’,U’’’ ∈RH×H ,V
∈ RV×H , W ∈ RV×H are weight matrices. D represents the

FIGURE 3. DNN model.

size of the byte embedding, V is the size of the vocabulary
composed of worm payloads, H represents the number of
neurons in the hidden layer, and C represents the context size
in signatures. Figure 3 gives a schematic diagram of a deep
neural network model, where a represents worm payloads,
and b represents corresponding signatures. Four hidden lay-
ers are selected because the performance of the model with
fewer layers is worse and the performance of the model with
more layers is almost the same. Therefore, the computational
complexity is o( |E|+|U|+|U’|+|U’’|+|U’’’|+|V|+|W|),
where |P| is the size of P.

2) ATTENTION-BASED ENCODER
Signatures, which may be composed of multiple consecutive
sub-strings, are the key information to identify worms. As a
result, we only need to focus on the context of a limited
number of bytes instead of the entire text. Therefore, we use
an Attention-based encoder [23] that can construct repre-
sentations based on worm payloads and signatures. Given a
worm payload, there is a sliding window of size Q which is
moving from the very left of the payload to the very right in
the encoder. Each time the sliding windowmoves right by one
byte. The specific formulas are described as follows:

enc (a, bc) = pTā (9)

p ∝ exp
(
ãPb̃′c

)
(10)

ã = [Fa1, . . . ,FaM ] (11)

b̃′c = [Gbi−C+1, . . . ,Gbi] (12)

∀iāi =
i+Q∑

q=i−Q

(ãi/Q)×
1
M

(13)

In formulas (9-13), G in RD×V represents an embedding
of the signature context, P ∈ RH×(CD) is a weight matrix,
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F ∈ RH×V represents the embedding matrix of payloads;
Q is the size of a smoothing window and configured as ten
optimized by the data driven method. a is the input(payloads)
where a = [ a1, a2, . . . ,aM ]; ã can be computed by equation
(11), and ãi is the element of ã; ā can be calculated by
equation (13) and āi is the element of ā; pT is the transpose
of p. Therefore, the computational complexity is o(|F| +
|G|+2|P| + |ãi|-Q), where |U| is the size of U.

We define the model above as p(yi+1|x, yc; θ ), and then the
loss function can be defined as follows:

NLL(θ ) = −
J∑
j=1

log p(y(j)|x(j); θ ),

= −

J∑
j=1

N−1∑
i=1

log p(y(j)i+1|x
(j), yc; θ ). (14)

where x(j) is the input (payloads), and y(j) is the corresponding
signatures.

B. WORM SIGNATURE GENERATION
The signature generation algorithm needs to find an optimal
signature b’ ∈ Y as follows:

b′ = argmax
b∈Y

∑N−1

i=0
dnn(bi+1, a, bc) (15)

Machine translation is an NP problem, but the compu-
tation cost is not large when generating worm signatures.
The dictionary V is composed of 256 ASCII in the worm
signature generation. Furthermore, the location of the signa-
ture in the worm payload is orderly and sequential. Using
the above characteristics of signatures, we propose a new
method—-Signature Beam Search algorithm to solve argmax
function when generating signatures.

The Signature Beam Search algorithm uses a global search
to generate worm signatures. In the search process, the appro-
priate bytes are selected by judging whether the predicted
bytes are adjacent to the previously predicted bytes in worm
payloads. When generating worm signatures, we select K
bytes to the previously predicted bytes for each position
in signatures. Before outputting the predicted signatures,
the best signature is selected by sorting the log-probability
of the candidate K signatures. As a result, the maximum
time complexity of the Signature Beam Search algorithm is
O(KNV). Signature Beam Search algorithm is described in
Algorithm 4.

VI. EXPERIMENTS
In our experiments, we implemented both CNN and DNN
algorithms for worm detection and signature generation
based on the Torch framework [24]. Since most related and
well-known methods (like Polygraph and PolyTree) evalu-
ate their performance using synthetically generated payloads
which are based on real-world exploits, we follow the same
evaluation approach.

We used three synthetic worm payload datasets which are
presented by Polygraph: Apache-Knacker [25],

Algorithm 4 Signature Beam Search Algorithm
Input: a, K ; a represents the worm payload, K represents
the size of beam
Output: sig; sig represents theN×K dimensional signature
Initialize: sig[0][K ] = {<s>}
for i = 1, . . .N do

for k = 1, . . .K do
bpredict = {b1, b2,. . . , bV } = dnn(bi+1, a, bc)
for v = 1, . . .V do

if b−i1−index == b−i−index +1 then
sig[i][k]= bi+1
break

Else
continue

End
end for
if v == V then

sig[i][k] = ’u’
End

end for
end for

return sig

ATPhttpd [26], and TSIG [27]. Each payload dataset contains
about 5000 records. All synthetically created worms use
either the HTTP protocol or DNS protocol, so we collected
real-world normal traffic data under the HTTP and DNS
protocols. First of all, we collected a 10-day HTTP trace
from our campus network gateway. Secondly, we utilized a 5-
day DNS trace from a DNS server that served in a company.
Finally, the worm payload datasets were randomly combined
with the real-world traffic traces.

We randomly divided 80% of the dataset as the training
dataset and 20% as the testing dataset in the experiment. For
the learning phase, we used a k-fold cross-validation method:
the training dataset was partitioned into k subsets randomly.
A single subset was retained as the validation dataset for
testing the model, while the remaining k-1 subsets of the
original dataset were used as training data. We repeated the
process for k = 10 times, which was the same as [29], [30];
each one of the k subsets had been used once as the validation
dataset. To obtain a single estimate, we computed the average
of the k results from the folds.

A. CNN-BASED WORM DETECTION
To explore the validation of the CNN model to detect worms,
we performed the CNN algorithm by binary classification.
Binary classification is to distinguish worm attacks from
normal traffic. There are additional experiments, including
known and unknown worm detection. For known worm
detection, there are both worm and normal payloads except
Code Red II worm payloads in the training and test dataset.
For the unknownworm detection, the test dataset is composed
of all five CodeRed II worm payloads and a private worm
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TABLE 2. Accuracy of the test set in binary classification.

payload dataset, and the training dataset consists of both
worm payloads which do not contain payloads in the test
dataset and normal payloads.

We use accuracy, false positive rate(FPR), false negative
rate (FNR), Precision, Recall, F1-score, and AUC to evaluate
CNN model as follows:

Accuracy is the fraction of predictions that our model is
right. It is defined as follows:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(16)

where TP = True Positive, TN = True Negative, FP = False
Positive, FN = False Negative.

FPR is computed as the ratio between the number of neg-
ative events incorrectly classified as positive and the total
number of actual negative events:

FPR = FP/(FP+ TN) (17)

FNR is the proportion of positives that yield negative
prediction:

FNR = FN/(FN+ TP) (18)

Precision is defined as (19), which is the fraction of rele-
vant samples between the retrieved samples:

Precision = TP/(TP+ FP) (19)

The Recall is the fraction of positive samples that are
correctly classified as ‘positive’:

Recall = TP/(TP+ FN) (20)

The harmonic mean of precision and recall defines as F1-
score:

F1− score = 2 ∗ TP/(2 ∗ TP+ FP+ FN) (21)

Area Under Curve (AUC) measures the trade-off between
misclassification rate and FPR:

AUC = 0.5 ∗ (TP/(TP+ FP)+ TN/(TN+ FP)) (22)

The loss function is defined as follows:

loss = −
∑n

j=1
Yj log yj (23)

where n denotes the number of output; Y denotes the output.

1) DATA PREPROCESSING METHODS
In this section, we trained CNN models with data pro-
cessed by three different methods proposed in Section IV
to assess the performance under the condition of one
convolution-pooling layer.

The results for binary classification are shown in Table 2.
The accuracy of frequency, frequency weight, and differ-
ence processing methods are 98.72%, 99.01%, and 99.27%,
respectively. The accuracy of the difference processing
method is the best. It also outperforms the other two process-
ing methods in other metrics. Therefore, the difference pro-
cessing approach outperforms the other approaches in binary
classification. Figure 4 shows the accuracy trend of three
processing methods in binary classification as execution time
progresses for the 10-fold cross-validation on the dataset.
Considering the accuracy of training data and validation data
in binary classification, we observe that the accuracy is steady
after the epoch is larger than 6. There are similar results in
other metrics, so we do not report the corresponding curve.

2) CONVOLUTIONAL-POOLING LAYERS
We configured the CNN model with one, two, and three
convolution-pooling layers to evaluate the effect of the num-
ber of layers on the accuracy of the CNN model. We choose
the frequency processing method as an example while others
hold similar results.

The results achieved by 10-fold cross-validation criterion
in binary classification are presented in Table 3 to expound
the performance of different layers, and also reveal the gen-
eral information of the relation between the number of lay-
ers and the prediction accuracy for worm detection. The
accuracy of one, two, and three layers are 98.72%, 99.07%,
and 99.25%, respectively. Generally speaking, the number of
convolution-pooling layers has little effect on the accuracy,
because the accuracy is only improved by 0.5%. There are
similar results to other metrics. Although more layers might
improve the accuracy further, we do not report the result since
it becomes trivial to simply addmore layers, and the improved
performance might not compensate for the increased com-
putational cost. However, the less the layers are, the less the
parameters are. As a result, one convolution-pooling layer is
a good choice due to less occupation of system resources.

B. WORM SIGNATURE GENERATION
In this experiment, we used signatures generated by Poly-
graph [11], CCM [4], PolyTree [5] which are shown in
Table 4, Table 5, and Table 6. Perplexity is utilized to study
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FIGURE 4. Accuracy of binary classification.

TABLE 3. Accuracy of known worm detection with the frequency
processing method in binary classification based on different layers.

the performance of the DNN model. The formula is as
follows:

Perplexity(S) = P (w1w2 · · ·wN )
1
N

=
N

√√√√ N∏
i=1

1
p (wi | w1w2 · · ·wi−1)

(24)

TABLE 4. Signature generated by polygraph.

TABLE 5. Signature generated by CCM.

TABLE 6. Signature generated by PolyTree.

TABLE 7. DNN model generated signatures and accuracy.

where wi represents the ith byte in the predicted signatures,
and p(wi|w1w2. . .wi−1) indicates the probability of wi. As a
result, the smaller the perplexity is, the better the performance
of the model is.

In addition, accuracy is used to evaluate the effect of the
DNN algorithm on extracting worm signatures. The accuracy
can be obtained by matching the signatures extracted by
the DNN algorithm and the original signatures. Accuracy’s
formula is as follows:

Accuracy =
matchTrue

matchTrue+ matchFalse
(25)

where matchFalse denotes the number of bytes generated by
the DNN algorithm that does not match the original signa-
tures, matchTrue represents the number of bytes generated
by the DNN algorithm that matches the original signatures.

1) SIGNATURE GENERATION OF KNOWN WORMS
We use signatures that Polygraph [11], CCM [4], PolyTree
[5] extracted, and their corresponding polymorphic worm
payloads as training data to evaluate the performance of DNN
model by the accuracy. The results are shown in Table7,
Table 8, and Table 9. The accuracy of Apache-Knacker,
ATPhttpd, and TSIG is 98.7%, 98%,99.3%, respectively.
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FIGURE 5. Worm signature automatic generation training results based on polygraph.

FIGURE 6. Worm signature automatic generation training results based on CCM.

FIGURE 7. Worm signature automatic generation training results based on PolyTree.

TABLE 8. DNN model generated signatures and accuracy.

It suggests that the DNN model has a good performance
for accurate signature generation. The selection of proper
signatures has little influence on the signature generation
accuracy.

TABLE 9. DNN model generated signatures and accuracy.

Figure 5, Figure 6, and Figure 7 show the loss and per-
plexity curve of three signatures as the epoch progresses on
the training dataset. Considering the loss and perplexity of
training, we observe that both of them converge quickly at the
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TABLE 10. Worm detection results.

beginning of training and stay in a small range. That means
the DNN model can be trained easily.

2) SIGNATURE GENERATION OF UNKNOWN WORMS
We used 10-fold cross-validation to train the model with three
signatures extracted by Polygraph, CCM, PolyTree, and also
usedCodeRedworm payloads not previously utilized in train-
ing to explore the utility of our approach to detect unknown
polymorphic worms. The payloads of unseen payloads
(CodeRed worm payloads) and dataset payloads had different
distribution, and the generated signatures are shown in Table
10. To test the accuracy of signatures, we combined the
CodeRed worm packets with the real traces randomly. Then
Snort implemented by the generated signatures monitors the
network the combined traces are replayed to. The correspond-
ing accuracy is 97.5%,96.5%,97%. That means that the signa-
tures generated by the DNNmodel have a good performance.

Although we have a private worm payload dataset of a
company(3000 worm payloads), we cannot show the gen-
erated signatures due to the privacy. We wrote the Snort
rules based on the generated signatures of the private payload
dataset and conducted the same experiment with CodeRed
worm payloads above. The accuracy is 95.1%, which means
that the DNN model can construct high-quality signatures of
unknown worms.

We experimented with the DNNmodel which had less than
four hidden layers, and the results were very bad. On the
contrary, if we selected the model which had more than four
layers, the results were almost the same. So we selected the
DNN model with four hidden layers. The results are very
similar to the results shown in Table 9 and 10, thus we do
not show the results here again.

3) COMPARISON
To test the feasibility of our proposed model, we compared
the DNN model with the hybrid method [31]. The results
are shown in Table 10. The DNN model outperforms the
hybrid method.That means that it holds great superiority in
generating signatures of worms.

VII. CONCLUSION
In this paper, we propose a worm detection system based
on deep learning. It includes a CNN-based worm detection

module and a DNN-based worm signature automatic gen-
eration module. In the CNN-based worm detection module,
we propose three data preprocessing methods: frequency pro-
cessing, frequency weight processing, and differential pro-
cessing, and use the CNN model to detect worms based on
the three kinds of preprocessed data. In the DNN-based worm
signature automatic generation module, worm payloads are
input into the trained DNN model, and worm signatures are
generated by the proposed Signature Beam Search algorithm.
In the experiments, we firstly analyzed the effects of differ-
ent elements on the worm detection performance. Then we
analyzed the effects of different signatures on the automatic
generation of worm signatures. Experiments show that the
generated signatures have both low false positives and false
negatives. Further research is needed, for example, on the
signature generation of other attacking methods.
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