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ABSTRACT Currently, most consensus control approaches need each agent to access all its neighbors’ states
directly. The distributed consensus issue of second-order multi-agent systems subject to position constraints
is studied without such requirements. The only condition for the communication topology is to include a
directed spanning tree. An innovative reference position is provided to deal with the position constraints
while eliminating the need for neighbors’ velocity variables. An adaptive control method is designed by
constructing a sliding-mode-esque variable so that each agent’s transformed position can converge towards
the reference position. This new method can guarantee uniform boundedness of each closed-loop signal as
well as asymptotic consensus, and the requirements to meet the position constraints are satisfied at all times.
Numerical simulation verifies the correctness of the theoretical results.

INDEX TERMS Consensus, adaptive control, uncertain dynamics, directed graphs.

I. INTRODUCTION
Distributed control of multi-agent systems is a relatively
new research field that is of great interest because of its
wide range of potential applications, such as aerial sys-
tems, robotic systems, and collaborative surveillance. One
of the critical requirements is the distributed consensus of
a multi-agent system, where all agents attempt to arrive at
the same position utilizing only limited information [1]–[5].
The initial approach focuses on the consensus of simple
multi-agents, without considering the agent’s uncertainty.
These methods have then been generalized to the consensus
literature of complex uncertain multi-agent systems. With
the aid of neural network approximation and robust control
technology, an adaptive distributed controller is designed for
the first-order nonlinear multi-agent system under undirected
communication topologies [6]. Reference [7] has studied the
consensus control of first-order and second-order linearly
parameterized multi-agent systems with unknown identical
control directions. By constructing an auxiliary signal using
the consensus value estimation, the leaderless consensus
control issue of the uncertain nonlinear multi-agent system
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with different control directions has been addressed in our
previous work [8]. A limiting assumption that is usually
made on second- and higher-order multi-agent setups is that
each neighbors’ state must be available for the realization of
each agent’s controller [7], [8], which poses a considerable
challenge when only the neighbors’ position-like state can be
measured.

For a second-order multi-agent system, a distributed con-
sensus algorithm on a general directed graph has been pro-
posed without requiring velocity states from neighboring
agents in [9]. Furthermore, a consensus algorithm has been
presented in [10] with a simple static compensator struc-
ture to realize consensus, using only neighbors’ position-like
states, for a higher-order multi-agent system. However, these
works [9], [10] do not consider the position restrictions of
each agent. In reality, most of the physical system are subject
to environmental regulations, saturation or performance and
safety specifications, and their position should be limited
within a specific range. Therefore, it is of paramount impor-
tance to take position constraints into account when designing
distributed control laws. In recent years, a variety of solu-
tions have been provided to deal with output constraints of
single nonlinear systems [11]–[13]. For the first-order non-
linear multi-agent system in the presence of state constraints,
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a consensus controller is designed by using Laplacian matrix
symmetric positive semi-definiteness on the undirected con-
nected graph and state transformation technology in [14].
In addition, the results have been extended to higher-order
multi-agents with output limitations and unknown control
directions under an undirected graph [15]. With the further
development of the directed graph in [16], a desired output
is presented using a transformation strategy, and a consensus
control law is obtained in the backstepping framework.

This article considers the leaderless consensus issue of
uncertain second-order nonlinear agents, including position
constraints. The communication topology is a directed graph
including a spanning tree. A novel reference position is con-
structed for every agent, which plays a vital role in handling
the position limitations while eliminating the requirement of
neighbors’ velocity variables. Further, the control problem of
the multi-agent system becomes a single agents’ regulation
control issue. We derive an adaptive control input by con-
structing a sliding-mode-esque variable so that each agent’s
transformed position converges towards the reference posi-
tion. This new method can guarantee uniform boundedness
of each closed-loop signal and asymptotic consensus, and
the requirements to meet the position constraints are always
satisfied. Compared with state-of-the-art results, the novelty
and additive value of the present paper are:

(1) We construct a new dynamic signal to deal with the
position constraints, and at the same time, to relax the
limitations of the above relevant research by removing
the requirement of neighbors’ velocity measurements,
profiting from which the intricate leaderless consensus
issue of the position-constrained multi-agent system
under directed communication topologies can be inter-
preted into a single agents’ regulation control issue.

(2) Compared with the result of nonlinear multi-agent
systems [6]–[8], the considered multi-agent model,
including position constraints, is more practical
and incorporates a more comprehensive application.
All agent positions’ asymptotic consensus of the cur-
rent controller can be accomplished, contrary to the
uniformly ultimate boundedness result [6].

(3) Different from the position-constrained consensus con-
troller under the undirected graph [14], [15], this
innovative distributed method is able to address the
consensus issue and the position-constrained issue
under the directed topology condition. In addition,
neighbors’ velocity measurement required in [16] is
unnecessary.

The problem formulation and the basic graph theory are
described in Section II. Section III covers the novel reference
position, controller design, and stability and convergence
properties. Extensive simulation results and conclusion are,
respectively, provided in Sections IV and V.
Notation: For a vector function η(t), we say η ∈ L∞

[0, tf ) if sup0≤t<tf ‖η(t)‖ < ∞, and η ∈ Lp[0, tf ) if

(
∫ tf
0 ‖η(t)‖

pdt)1/p <∞, p = 1, 2. 1` and 0` are the `−vector

of all ones and all zeros, respectively. I` is the `× ` identity
matrix. diag{k1, . . . , k`} is the diagonal matrix with diagonal
entries k1 to k`.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. GRAPH THEORY
G = {V, E,An} denotes a directed graph modeling the topol-
ogy among theN agents, in which V = {1, . . . ,N } represents
the set of nodes, E ⊆ V × V is the set of directed edges, and
An = [aij] ∈ RN×N is called the adjacency matrix. An edge
(i, j) ∈ E suggests that node j can get data from node i, and
node i is a neighbor of node j. The set of all neighbors of
node i is denoted byNi. A directed path from node i1 to node
ip is a sequence of directed edges in the form of (im, im+1),
m = 1, . . . , p − 1. A directed graph is said to contain a
directed spanning tree if there exists at least a node from
which there is a directed path to each other node in G. aij > 0
if (j, i) ∈ E and aij = 0 otherwise. The Laplacian matrix Ln =
[lij] ∈ RN×N associated with G is defined as lii =

∑
j∈Ni

aij
and lij = −aij, i 6= j. Dn = diag{d1, . . . , dn} represents the
in-degree matrix with di = lii being the in-degree of node i.

B. PROBLEM FORMULATION
Amulti-agent group comprised of n(n ≥ 2) agents, labeled as
agents 1 to n, is considered under a directed communication
topology. The dynamics of the ith, i = 1, . . . , n, agent can be
represented by

ṗi = vi
v̇i = ui + ϕi(pi, vi)T θi + τi(pi, vi, t) (1)

in which pi ∈ R, vi ∈ R, and ui ∈ R are, respectively,
the position state, the velocity state, and the control input,
θi ∈ Rmi is an unknown constant vector, ϕi : R2 → Rmi

is a known smooth vector-valued function, τi ∈ R represents
the unknown piecewise continuous system uncertainty. In this
study, each agent’s position pi should be restricted to an open
set, namely, L < pi < U , where L and U (satisfying L < U )
are known constants.

The problem to be solved in this work is to develop a
distributed controller ui for each agent (1) so that (i) each
closed-loop signal remains bounded, (ii) the agent positions
achieve asymptotic consensus, i.e., limt→∞(pi(t)−pj(t)) = 0
and limt→∞ vi(t) = 0 for all i, j = 1, . . . , n, and (iii) the
requirements to meet the position constraints are satisfied at
all times, namely,

L < pi(t) < U , ∀t ≥ 0. (2)

In order to solve the above-mentioned multi-agent con-
trol problem, we make the following assumptions about the
agent (1).
Assumption 1: The functions τi(pi, vi, t), i = 1, . . . , n are

bounded by |τi(pi, vi, t)| ≤ τ ∗i , ∀[pi, vi, t]
T
∈ R2 × [0,∞),

where τ ∗i are unknown positive constants.
Assumption 2: The initial conditions pi(0) are inside the

constraint bounds, i.e., L < pi(0) < U for all i = 1, . . . , n.
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III. MAIN RESULT
This section introduces an adaptive control approach that
enables the agent position to achieve asymptotic consen-
sus without neighbor velocity variables. Before starting the
design, V is partitioned into two subsets as V1 and V2,
in which V1 = {i ∈ V|di 6= 0} and V2 = {i ∈ V|di = 0}.
To deal with the position constraints while eliminating the
need for the velocity variables of its neighbors, the new
dynamic policy to produce a reference position xi,1 for the
ith (i ∈ V1) agent is designed as

ẋi,1 = xi,2

ẋi,2 = γi
∑n

j=1
aijξj − λi,1xi,1 − λi,2xi,2 (3)

where ξj = ln((pj− L)/(U − pj)) is intentionally designed to
deal with the position constraints, λi,1 > 0 and λi,2 > 0 are
constants chosen to make the roots of s2 + λi,2sm−1 + λi,1 =
0 negative real numbers, and γi is set to γi = λi,1/di. Note
that no data of other agents can be obtained by the agents
in V2. The reference position of the agent in V2 is designed as
xi,1 = γi with ẋi,1 = xi,2 = 0, where γi is a constant.
The distributed control strategy for the ith, i = 1, . . . , n,

agent (1) is selected as

ui = −θ̂Ti ϕi(pi, vi)−4i −
kizi + ηivi − xi,2 + η̇ivi − ẋi,2

ηi
(4)

in which zi = ei + ėi is a sliding-mode-esque signal with
ei = ξi − xi,1, ki > 0 is a parameter representing the control
gain, ηi = U−L

(pi−L)(U−pi)
, 4i(t) = ω̂i tanh(ziηi/εi(t)) denotes

a robust term. εi(t) represents a positive smooth function
meeting

∫
∞

0 εi(t)dt ≤ ε̄i, in which ε̄i > 0 is a finite constant.
θ̂i and ω̂i are the estimates of unknown parameters θi and
(τ ∗i + (U − L)/4), respectively. The update strategies for θ̂i
and ω̂i are proposed as

˙̂
θi = 0iηiziϕi(pi, vi), ˙̂ωi = µiηizi tanh(ηizi/εi(t)) (5)

where 0i ∈ Rmi×mi denotes a positive definite adaptive gain
matrix and µi denotes a positive parameter.
Having developed the control method and reference posi-

tion, we are ready to state our main consensus results.
Theorem 1: Assume that the graph G includes a directed

spanning tree. A second-order nonlinear multi-agent system
consisting of n agents (1) is considered. Let Assumptions 1-2
hold. The proposed distributed control strategy (4) with the
reference position (3) and parameter update laws (5) guaran-
tees that: (i) the agent positions achieve asymptotic consen-
sus, namely, limt→∞(pi(t)−pj(t)) = 0 and limt→∞ vi(t) = 0
for all i, j = 1, . . . , n, (ii) each closed-loop signal remains
bounded, and (iii) the requirements to meet the position con-
straints are satisfied at all times, namely, L < pi(t) < U ,
∀t ≥ 0.

Proof: To begin with, we write the agents (1) with
control strategies (4) and adaptive parameters (5) in vec-
tor form. Towards this direction, let us define general-
ized states ζ = [pT , vT , xT1 , x

T
2 , θ̂

T , ω̂T ]T ∈ R5n+m,

where m = m1 + · · · + mn, p = [p1, . . . , pn]T ∈ Rn,
v = [v1, . . . , vn]T ∈ Rn, x1 = [x1,1, . . . , xn,1]T ∈ Rn, x2 =
[x1,2, . . . , xn,2]T ∈ Rn, θ̂ = [θ̂T1 , . . . , θ̂

T
n ]

T
∈ Rm, and ω̂ =

[ω̂1, . . . , ω̂n]T ∈ Rn. Then the closed-loop dynamical system
of ζ takes the form ζ̇ = f (ζ, t). The nonempty and open set
� = {ζ ∈ R5n+m|L < pi < U , i = 1, . . . , n} is defined.
Because of the piecewise continuity and boundedness of
τi(pi, vi, t) as well as smoothness of nonlinearities ϕi(pi, vi),
it follows from (3)-(5) that f (ζ, t) is piecewise continuous and
locally Lipschitz. That means a unique continuous solution
ζ over the set � exists as shown in [17, Th. 54]. Let the
maximum interval of existence be [0, tf ).
In view of the definition of ξi, we obtain ξ̇i = ηivi and

ξ̈i = η̇ivi + ηiv̇i. Noting (3) and zi = ei + ėi, we get

żi = (ξ̇i − xi,2)+ (ξ̈i − ẋi,2)

= ηi(ui + ϕTi θi + τi)+ η̇ivi − ẋi,2 + ηivi − xi,2. (6)

We now consider the Lyapunov function for the ith, i =
1, . . . , n, agent as

Vi =
1
2
z2i +

1
2
θ̃Ti 0

−1
i θ̃i +

1
2µi

(τ ∗i +
U − L

4
− ω̂i)2 (7)

with θ̃i = θi− θ̂i being the parameter estimation error. Taking
the derivative of Vi along (6) results in

V̇i = ziżi + θ̃Ti 0
−1
i (− ˙̂θi)+

1
µi

(τ ∗i +
U − L

4
− ω̂i)(− ˙̂ωi)

= zi(ηi(ui + ϕTi θi + τi)+ η̇ivi − ẋi,2 + ηivi − xi,2)

+ θ̃Ti 0
−1
i (− ˙̂θi)+

1
µi

(τ ∗i +
U − L

4
− ω̂i)(− ˙̂ωi). (8)

Substituting the control input (4) into (8), we have

V̇i = −kiz2i + ηiziϕ
T
i θ̃i + ηiziτi − ηizi4i(t)

+ θ̃Ti 0
−1
i (− ˙̂θi)+

1
µi

(τ ∗i +
U − L

4
− ω̂i)(− ˙̂ωi). (9)

The substitution of (5) into (9) shows

V̇i = −kiz2i − ηizi(τ
∗
i + (U − L)/4) tanh(ηizi/εi(t))+ ηiziτi

≤ −kiz2i −ηizi(τ
∗
i +(U−L)/4) tanh(ηizi/εi(t))+ ηi|zi|τ

∗
i

≤ κiεi − kiz2i − ηizi((U − L)/4) tanh(ηizi/εi(t))

where ηi|zi|τ ∗i − ηiziτ ∗i tanh(ηizi/εi) ≤ κiεi with κi =
0.2785τ ∗i is used [18]. Upon integration we arrive at

Vi(t) ≤ Vi(0)+
∫ t

0
κiεi(σ )dσ −

∫ t

0
kiz2i (σ )dσ

−

∫ t

0

U − L
4

ηi(σ )zi(σ ) tanh(
ηi(σ )zi(σ )
εi(σ )

)dσ

≤ Vi(0)+ κiε̄i. (10)

which leads us to the conclusion that Vi, zi, θ̃i, (τ ∗i +
(U − L)/4 − ω̂i),

∫ t
0 ηi(σ )zi(σ ) tanh(zi(σ )ηi(σ )/εi(σ ))dσ ∈

L∞[0, tf ) and zi ∈ L2[0, tf ). The conclusion that θ̂i(t) and
ω̂i(t) are bounded on [0, tf ) then follows from that θi and τ ∗i
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are constants. Viewing that ηi(t) ≥ 4/(U − L), ∀t ∈ [0, tf ),
it is easy to deduce

0 ≤
∫ t

0
|zi(σ )|dσ ≤

∫ t

0

U − L
4

ηi(σ )|zi(σ )|dσ

≤

∫ t

0

U − L
4

ηi(σ )zi(σ ) tanh(
ηi(σ )zi(σ )
εi(σ )

)dσ

+

∫ t

0

U − L
4

κ∗i εi(σ )dσ

which together with εi ∈ L1[0,∞) suggests that zi ∈
L1[0, tf ). Using the definition of zi, we can also conclude
ei, ėi ∈ L1[0, tf ) ∩ L∞[0, tf ).

Observing (3), we rewrite the dynamics of the reference
position as ˙̄xi = Aiγi

∑n
j=1 aijξi + Bix̄i, where i ∈ V1, x̄i =

[xi,1, xi,2]T , Ai = [0, 1]T , and

Bi =
[

0 1
−λi,1 −λi,2

]
.

The eigenvalues of Bi is represented by ci,1 and ci,2 in a
non-specific order. For analytical purposes, a transformation
matrix Ti is employed for the ith agent as

Ti =
[
1 0
1 −1/ci,1

]
.

Then, it holds that TiBi = FiTi, where

Fi =
[
ci,1 −ci,1
0 ci,2

]
.

Taking the state transformation q̄i = [qi,1, qi,2]T = Tix̄i for
i ∈ V1 and using ξi = ei + xi,1, we get

q̇i,1 = ci,1qi,1 − ci,1qi,2

q̇i,2 = ci,2qi,2 − (ci,2/di)
∑n

j=1
aij(qj,1 + ej) (11)

where ci,1 = λi,1/ci,2 and qi,1 = xi,1 are used.
There exists at most one agent with no neighbors since the

communication topology involves a directed spanning tree.
Two cases are considered: (C1) every agent can get data from
at least one other agent, i.e., V1 = V and (C2) there is an
agent that cannot obtain any data from any other agent.
C1: We start by defining the column vectors δ = [0Tn ,

δ1, . . . , δn]T and q = [q1,1, . . . , qn,1, q1,2, . . . , qn,2]T , where
δi = −(ci,2/di)

∑n
j=1 aijej, i = 1, . . . , n. It follows from (11)

that

q̇(t) = −L̄q(t)+ δ(t) (12)

where

L̄ =
[
−c1 c1
c2Ān −c2

]
(13)

c1 = diag{c1,1, . . . , cn,1}, c2 = diag{c1,2, . . . , cn,2}, and
Ān = D−1n An. Since L̄12n = 02n and each off-diagonal
entry of L̄ is a non-positive number, L̄ has the form of a
Laplacian matrix. Consequently, the system (12) can be seen
as a multi-agent group comprised of 2n agents which are
connected under the augmented directed graph Ḡ = (V̄, Ē).

Here V̄ = {1, . . . , 2n}, L̄ is the related Laplacian matrix,
and the edge set Ē is able to be obtained by (13). Noting
that rank(c2) = n and rank(c2(In − Ān)) = rank(Ln) =
n − 1, it is readily verified that rank(L̄) = 2n − 1. We get
from [1] that L̄ has a single zero eigenvalue and all other
eigenvalues have positive real parts. That implies there is
a finite constant m̄ enabling ‖e−L̄t‖ ≤ m̄ for all t ≥ 0
[19, p. 138]. Integrating (12) over the interval [0, t] yields
q(t) = e−L̄tq(0)+

∫ t
0 e
−L̄(t−σ )δ(σ )dσ . Employing ‖e−L̄t‖ ≤

m̄ and ei ∈ L1[0, tf ), we have q ∈ L∞[0, tf ). The statement
x̄i ∈ L∞[0, tf ) then follows from that Ti is a nonsingular
matrix. Noting ei = ξi − xi,1 and ei, ėi ∈ L∞[0, tf ), it can
be concluded that ξi, ξ̇i ∈ L∞[0, tf ). Thus, there is a constant
ξ∗i > 0 so that |ξi(t)| ≤ ξ∗i for all t ∈ [0, tf ). Performing the
inverse logarithmic operation on ξi results in

L < Li ≤ pi(t) ≤ Ui < U , ∀t ∈ [0, tf ) (14)

where Li = (Ue−ξ
∗
i + L)/(e−ξ

∗
i + 1) and Ui = (Ueξ

∗
i +

L)/(eξ
∗
i + 1). Noting ξ̇i = ηivi and ηi(t) ≥ 4/(U − L) for all

t ∈ [0, tf ), we have vi ∈ L∞[0, tf ). Note from vi, x̄i, θ̂i, ω̂i ∈
L∞[0, tf ) and L < Li ≤ pi(t) ≤ Ui < U for all t ∈ [0, tf )
that ζ (t) ∈ �∗ for all t ∈ [0, tf ), in which �∗ is a nonempty
and compact subset of �. As a result, no finite-time escape
phenomenon may occur. Hence, tf = ∞. From (4) and (6),
we have żi ∈ L∞[0,∞) for i = 1, . . . , n. Combining this
with zi ∈ L∞[0,∞) ∩ L2[0,∞), it follows from Barbalat’s
lemma that limt→∞ zi(t) = 0, whichmeans, in particular, that
limt→∞ ei(t) = 0 and limt→∞ ėi(t) = 0.

Next, it will show the agent positions achieve asymptotic
consensus. For this reason, the relative error vectors q̃ =
[q1 − q2, . . . , q2n−1 − q2n]T ∈ R2n−1 and δ̃ = [δ1 −
δ2, . . . , δ2n−1 − δ2n]

T
∈ R2n−1 are introduced, where q`

and δ` are, respectively, the `th element of q and δ for ` =
1, . . . , 2n. The dynamics of q̃ can be deduced from (12) as
˙̃q = −�q̃+ δ̃, where� ∈ R(2n−1)×(2n−1) is a constant matrix.
We get from rank(L̄) = 2n − 1 and [1] that Ḡ involves a
spanning tree. By [1, Th. 2.14], it can be obtained that the
system ˙̃q = −�q̃ is asymptotically stable. Note from [20, Th.
4.14] that if a linear time-invariant system is asymptotically
stable, then it is also exponentially stable. Combining this
with ei ∈ L1[0,∞) can have that limt→∞ q̃(t) = 02n−1.
Noting that xi,1 = qi,1, we have limt→∞(xi,1(t) − xj,1(t)) =
0, which together with limt→∞(ξi − xi,1(t)) = 0 yields
that limt→∞(ξi(t) − ξj(t)) = 0 for all i, j = 1, . . . , n.
According to the definition of ξi, we have over the set �∗

that limt→∞(pi(t)−L)(U − pj(t))− (U − pi(t))(pj(t)−L) =
limt→∞(U − L)(pi(t) − pj(t)) = 0,∀1 ≤ i 6= j ≤ N . This
together with the fact U − L > 0 yields limt→∞(pi(t) −
pj(t)) = 0. Since limt→∞(γi

∑n
j=1 aijξj(t) − λi,1xi,1(t)) = 0,

we can infer from (3) that limt→∞ xi,2(t) = 0, which, with
limt→∞(ξ̇i(t)− xi,2(t)) = 0, gives that limt→∞ vi(t) = 0.
C2: In such a situation, we suppose that the agent with

index 1 is the agent without neighbors. G with the node set
V = {2, . . . , n} and the edge set E ⊆ V × V is used to model
the topology between the agents 2 to n. An−1,Dn−1, and Ln−1
are, respectively, the adjacency matrix, the in-degree matrix,
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and the Laplacian matrix related to Gn−1. Thus, Ln related to
G can be separated as

Ln =
[
0 0Tn−1
h Ln−1

]
,

where h = [a21, . . . , an1]T ∈ Rn−1. Since G involves a
directed spanning tree, we get from [1] that rank(L) = n− 1.
This means that rank(Ln−1) = n− 1.

Let us define the vectors q1 = [ξ1,1, q2,1, . . . , qn,1]T ,
q2 = [q2,2, . . . , qn,2]T , δ = [0T2n−1, δ2, . . . , δn]

T , and q =
[qT1 , q

T
2 ]
T with i = 2, . . . , n and δi = −(ci,2/di)

∑n
j=1 aijzj,1.

Viewing (11) and the fact that x1,1 is a constant, we have

q̇(t) = −L̄q(t)+ δ(t) (15)

where

L̄ =
[
0 0T(n−1)m
h̄ L(n−1)m

]
(16)

with

h̄ = [0Tn−1, h
T ]T ∈ R2(n−1), L(n−1)m =

[
−c1 c1

c2Ān−1 −c2

]
,

c1 = diag{c2,1, . . . , cn,1}, c2 = diag{c2,2, . . . , cn,2}, and
Ān−1 = D−1n−1An−1. It can be seen that the matrix L̄ has the
form of a Laplacian matrix, as L̄12(n−1)+1 = 02(n−1)+1 and
each off-diagonal entry of L̄ is a non-positive number. The
system (15) can be seen as a multi-agent group comprised
of 2n − 1 agents which are connected under the augmented
directed graph Ḡ = (V̄, Ē), where V̄ = {1, . . . , 2(n −
1) + 1}, L̄ is the related Laplacian matrix, and the edge
set Ē can be deduced from (16). Since rank(c1) = n − 1
and rank(c2(In−1− Ān−1)) = rank(Ln−1) = n− 1, we obtain
rank(L2(n−1)) = 2(n − 1). By (16), it can be obtained
rank(L̄) = 2(n − 1). Proceeding in a fashion similar to C1,
it can be concluded that each closed-loop signal remains
bounded, limt→∞(pi(t)− pj(t)) = 0, and L < pi(t) < U for
all t ≥ 0, for all i, j = 1, . . . , n. Besides, as xi,1 is a constant
for i ∈ V2 in this situation, we have that limt→∞ pj(t) = γ ∗i
for all j = 1, . . . , n, where γ ∗i = (U+Le−γi )/(1+e−γi ). The
proof is complete.
Remark 1: Because of unknown technical challenges,

there exist still some unresolved points that deserve further
study. For example, this work does not consider actuator
failure. Due to the aging of components, actuator failures are
often encountered in practice. Following slidingmode control
methods proposed in [21]–[23], future work will solve the
consensus issue with actuator faults and model uncertainties.
Remark 2: Although our new method can guarantee uni-

form boundedness of each closed-loop signal, it is unclear
how the parameters affect the convergence speed. Intuitively,
increasing the control gain ki is able to speed up the con-
vergence of consensus. A rigorous analysis of that situation
requires further study. The designed control algorithm has a
clear structure, and there are not many requirements for its
parameters. Therefore, it is easy to implement in practical
applications.

Remark 3: Note that the proposed distributed consensus
algorithm requires all states of each agent. Constructing a
velocity observer for each agent is a promising way to elimi-
nate such requirements.
Remark 4: In recent work [24], the leaderless consensus

problem under directed communication topologies was stud-
ied by using a dynamic output design method. However,
it does not actually take into account the position constraint
requirement during operation, which is an essential consider-
ation in practice. We propose a new reference position to deal
with this problem, including position constraints and non-
linear transformations. To the best of our knowledge, there
has been no research so far to achieve asymptotic consensus
without requiring the velocity variables of neighboring agents
in the constrained control literature.

IV. SIMULATION STUDY
A multi-agent system consisting of four single-link robots is
considered. Each robot can be described by

Jiq̈i + Biq̇i +Mi sin(qi) = gi + τdi(t), i = 1, 2, 3, 4 (17)

in which Ji, Bi, and Mi denote system parameters that can
be found on [25, p. 190], qi is the angle of the link of
the ith robot, gi is the voltage input, and τdi represents the
uncertain disturbance. The simulation parameters are set to
Ji = 1.71− 0.0i, Bi = 0.45+ 0.01i,Mi = 0.82+ 0.01i, and
τdi(t) = 0.1 cos(t). The angle limitation of each robot is −1
(rad) < qi(t) < 1.4 (rad) for all t ≥ 0. The directed graph
is shown in Fig. 1. The initial configurations of the robots
satisfying Assumption 2 are q1(0) = 1.25 (rad), q2(0) = 0.31
(rad), q3(0) = −0.52 (rad), and q4(0) = −0.93 (rad). The
initial angular velocities are zero. Let pi = qi, vi = q̇i,
and ui = gi/Ji, i = 1, 2, 3, 4. By defining ϕi(pi, vi) =
[−vi,− sin(pi)]T , θi = [Bi/Ji,Mi/Ji]T , and τi(t) = τdi(t)/Ji,
model (17) can be transformed to (1). The design parameters
are set to λi,1 = 1, λi,2 = 2, ki = 1.5, 0i = 5I2, µi = 5, and
εi = e−0.05t .

FIGURE 1. Directed communication topology.

Figs. 2-5 show the validity of our proposed approach. The
angle and angular velocity profile of each robot is shown
in Figs. 2-3, from which we can observe that all robots have
reached a consensus and have always met the requirements
for robot angle constraints. Figs. 4-5 exhibit the evolution of
the reference positions. In the light of the simulation results,
regardless of the existence of angle constraints and uncer-
tain dynamic characteristics, our proposed control strategy
is able to complete the consensus task under the condition
of a directed topology and holds satisfactory closed-loop
performance.
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FIGURE 2. The angles pi for 1 ≤ i ≤ 4.

FIGURE 3. The angular velocities vi for 1 ≤ i ≤ 4.

FIGURE 4. Trajectories of xi,1 for 1 ≤ i ≤ 4.

FIGURE 5. Trajectories of xi,2 for 1 ≤ i ≤ 4.

V. CONCLUSION
The consensus issue of second-order multi-agent systems has
been carefully handled. A new reference position has been

designed for each agent to address the position constraints
while eliminating the requirement of neighbor velocity vari-
ables, and an adaptive control scheme has been developed on
this basis. It has been shown that the proposed control strategy
guarantees not only the convergence of the consensus error
to zero but also the boundedness of all closed-loop signals.
Simulations on four single-link robots validated the theo-
retical findings. Following the benchmark method designed
in this article, future work includes extending the results
to multi-agent systems including position constraints under
switching communication topologies.
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