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ABSTRACT The fine-grained visual classification (FGVC) which aims to distinguish subtle differences
among subcategories is an important computer vision task. However, one issue that limits model performance
is the problem of diversity within subcategories. To this end, we propose a simple yet effective approach
named category similarity-based distributed labeling (CSDL) to tackle this problem. Specifically, we first
obtain the feature centers for various subcategories and utilize them to initialize the label distributions.
Then we replace the ground-truth labels in a Deep Neural Network (DNN) with the distributed labels to
calculate the loss and perform the optimization. Finally, the joint supervision of a softmax loss and a center
loss is adopted to update the parameters of the DNN, the deep feature centers, and the distributed labels
for learning discriminative deep features. Comprehensive experiments on three publicly available FGVC
datasets demonstrate the superiority of our proposed approach.

INDEX TERMS Fine-grained classification, label distributions, category similarity, distributed labels.

I. INTRODUCTION
Distinguishing subtle differences among fine-grained cate-
gories (e.g., different kinds of birds [3], aircrafts [9], or cars
[10]) is an extremely difficult computer vision task. Humans
can easily distinguish a dog from a cat as the two are sig-
nificantly different in appearance. However, it is challenging
to identify subtle differences among fine-grained subcate-
gories, even for an expert with specific knowledge. This is
because subcategories are visually similar to each other. For
example, both "Caspian Tern" and "Artic Tern" have a white
head with a black cap, a white neck, and gray wings. These
subcategories are thus difficult to distinguish for a non-expert
because they share a similar global appearance and can only
be differentiated by subtle differences in small regions. In
view of this, the distinction between FGVC and traditional
visual classification (e.g., ImageNet [60] categorization) lies
in two aspects: (i) subcategories are visually similar and
harder to distinguish, and (ii) there are fewer training sam-
ples for FGVC and therefore the training set might not be
representative of the practical scenario.
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Existing FGVC works can be roughly divided into three
categories [14]. The first category comprises strongly super-
vised methods which requires manually labeled bounding
boxes or part annotations [15]–[19], [21]. However, labeling
objects at the subcategory level tends to require expert knowl-
edge, which greatly limits the feasibility of using strongly
supervised FGVC algorithms for real-world applications. The
second category is webly supervised methods, which trains
FGVC models by directly leveraging web images [36], [37].
The advantage of these methods is that they eliminate the
human cost. Nevertheless, due to the influence of errorprone
automatic or non-expert annotations, web images are usu-
ally associated with noisy labels, and thus performances of
webly supervised approaches are far from satisfying. The
third category is weakly supervised methods, which employs
only image-level labels [20], [22]–[26]. Compared to strongly
supervised methods, the cost is greatly reduced. Compared
to webly supervised methods, the performances of weakly
supervised approaches are considerably better. In addition,
these methods don’t require a large number of training sam-
ples, making them the prevailing trend for the FGVC task.

The cross-entropy loss is the most commonly used loss
function in visual classification, especially in FGVC. By
using cross-entropy loss in a deep CNN, we can interpret the
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softmax result of the last fully connected layer as a probability
distribution for the input image. The typical strategy of cal-
culating the cross-entropy loss is to use the groundtruth label
to form a one-hot label distribution. By doing this, the deep
CNN is forced to evolve into a model whose final probability
for the input image belonging to the ground-truth category is
close to 1.While this strategy works nicely for coarse-grained
image classification, problems occur when it is leveraged
for the FGVC task. Coarse-grained classification benefits
from this strategy since the model can be pretty confident
in distinguishing basic-level categories (e.g., dogs, and cats
in ImageNet). However, even an expert would not be able
to always identify the specific subordinate categories in the
FGVC task. By using the cross-entropy loss, the deep models
will more easily over-fit since the objects are very difficult to
distinguish, and the models may start to focus on irrelevant
features (e.g., background content).

To cope with this limitation, the maximum-entropy loss
was adopted by [32] for FGVC. The motivation behind this
work came from the fact that, if a certain species of bird
tends to be photographed against a specific background,
memorizing the background will deteriorate the generaliza-
tion performance since the CNN will associate the back-
ground with the bird itself. By replacing the cross-entropy
loss with maximum-entropy loss, the deep CNN model
can degrade the confidence and result in better general-
ization abilities in the FGVC task. Nevertheless, [32] still
adopted the one-hot label distribution, along with its inherent
disadvantages.

In this work, we propose an approach named category
similarity-based distributed labeling to learn and capitalize
on discriminative feature representations in an end-to-end
fashion. Our main idea is to take the visual affinity among
fine-grained categories into account and learn training images
less confidently. Specifically, our approach is realized by a
center loss module and a distributed labeling module. The
center loss module calculates a center loss [38] to jointly
optimize the network with the conventional cross-entropy
loss for generating category center embeddings. The dis-
tributed labeling module leverages the produced category
center embeddings to formulate distributed labels. The cou-
pling of the center loss module and distributed labeling mod-
ule enables our approach to learn powerful representations in
a mutually reinforcing way, leading to superior performance
in finegrained visual classification. Moreover, an adaptive
weighting schema is adopted to combine the distributed label
and ground-truth label for guaranteeing proper ground-truth
guidance while alleviating the over-fitting. Extensive experi-
ments on CUB200-2011 [3], FGVC Aircrafts [9], and Stan-
ford Cars [10] demonstrate the superiority of our proposed
approach. The contributions of our work can be summarized
as follows:
• We propose a novel mechanism that regularizes FGVC

by assigning distributed labels. Meanwhile, the dis-
tributed labels are dynamically adjusted by calculating
the feature embedding centers.

• We propose to jointly leverage center loss as well
as cross-entropy loss to take inter-class and intra-
classdiversity into consideration for learning more dis-
criminative representations.

• Our proposed CSDL method can be easily integrated
with existing fine-grained classification approaches.
Our experiments show that the combination of CSDL
and existing methods can achieve state-of-the-art per-
formance.

The rest of this paper is organized as follows: the related
work is described in Section I and our approach is introduced
in Section II; we then report our evaluations on three pub-
licly available fine-grained datasets in Section III and finally
conclude our work in Section V.

II. RELATED WORK
A. FINE-GRAINED VISUAL CLASSIFICATION
Fine-grained visual classification essentially focuses on rep-
resenting visual differences between subcategories [48], [49].
The vast majority of researchers follow either a localization-
classification manner or an end-to-end encoding fashion.
Based on the extent of supervision, existing works can be
roughly organized into three categories.

The first one is primarily strongly supervised methods
[15]–[19]. Methods of this type adopt the localization-
classification pipeline and typically require manually labeled
object bounding boxes or part annotations, besides image
labels. Using these dense manual annotations, they manage
to localize key parts by directly learning a key-parts detector
[15], [17] or leveraging semantic segmentation methods [19].
After key parts are detected and localized, part features are
integrated as the final visual representation for fine-grained
classification. However, the practicality and scalability of
these methods are limited due to the demand for time-
consuming and labor-intensive manual annotation.

The second group is weakly supervised approaches. Dif-
ferent from strongly supervised methods, weakly supervised
methods cease to use bounding boxes and part annotations.
Instead, methods in this group only require image-level labels
during training [20]–[32], [39], [40]. Some of them also
follow a part-based pipeline but in a weakly supervised
manner. For example, Zheng et al. [39] proposed a trilin-
ear attention sampling network to learn fine-grained fea-
tures from part proposals in an efficient teacher-student man-
ner. Chen et al. [40] proposed a destruction and construction
learning framework, in which input images are ‘‘destructed’’
and then ‘‘reconstructed’’ for learning more discriminative
details. Others adopt an end-to-end training strategy (e.g.,
[26], [32]). Due to the fact that methods of this group con-
siderably reduce the cost of annotation, weakly supervised
methods are becoming the prevailing trend for fine-grained
tasks.

The third set is semi-supervised methods. These methods
leverage web images in training fine-grained classifi-
cation models. [35]–[37], [41], [42]. Although data is
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augmented without adding any manual labeling overhead,
these approaches still involve a certain level of human inter-
vention. Moreover, due to the inevitable label noise issue,
performances of these approaches are far from satisfying.

B. DISTRIBUTED LABELING
The idea of distributed labeling originates from the ‘‘Pseudo
Label’’ that is commonly used in semi-supervised learning.
Lee et al. proposed one-hot pseudo labeling as an efficient
approach for semi-supervised deep neural network learning
[43]. He trained networks in a supervised paradigm with
both labeled and unlabeled data. To be specific, the model
picks the class with the maximum predicted probability as the
true label for unlabeled data. Zheng et al. further extended
the one-hot pseudo-label scheme and proposed a uniformly
distributed pseudo label [44]. Huang et al. proposedMpRL to
assign pseudo labels to unlabeled data according to different
contributions [45]. Ding et al. proposed the affinity-based
pseudo-labeling method [46] to effectively leverage unla-
beled data generated by Generative Adversarial Networks
(GANs) [50]. However, these methods predominantly focus
on semi-supervised learning (pseudo labels are only adopted
on unlabeled data or synthetic data). We are inspired by this
idea and propose our distributed labeling to regularize FGVC
networks without any additional data.

C. LABEL SMOOTHING REGULATION
Our approach is motivated by label smoothing regulariza-
tion (LSR) [51]. The commonality between LSR and our
approach is that both encourage the model to be less confi-
dent. The differences between LSR and our approach lie in
two aspects. Firstly, LSR assigns a small probability value to
the ground-truth label and adopts a uniform distribution over
all non-ground-truth categories, while our approach takes the
similarities among categories into account. In other words,
LSR treats all non-ground-truth categories equally, while our
proposed approach considers the fact that some categories
share more similarities with the ground-truth category than
other categories. Secondly, to update the feature centers (used
for computing similarities among categories) during train-
ing and encourage the model to learn more discriminative
features, we adopt a center loss along with the conventional
cross-entropy loss to jointly supervise the optimization of the
neural networks.

III. THE PROPOSED APPROACH
The activation vector in deep convolutional neural networks
produced by the classifier is normalized by softmax to a
pseudo-probability vector:

pj(x) =
eW

T
j x+bj∑N

k=1 e
W T
k x+bk

, (1)

whereW and b are the weight and bias parameter of the clas-
sifier, respectively. The pseudo-probability vector in conven-
tional CNN-based image classification approaches is treated

as the predicted probability distribution of the input image
with respect to all categories in computing the cross-entropy
loss. For simplicity, we call this pseudo-probability as the pre-
diction probability hereafter. Specifically, the cross-entropy
loss is defined as

LCE = −
∑
i

qi(x) log(pi(x)). (2)

pi(x) and qi(x) are the prediction probability and ground-truth
probability, respectively. The most commonly used ground-
truth label distribution is one-hot distribution. Specifically,
if the input image x belongs to the k-th category, then we
have

qi =

{
1, i = k
0, i 6= k.

(3)

The one-hot label distribution is perfect for coarse-grained
visual classification because visual differences among coarse
categories are significant so that ‘‘peaky’’ prediction distri-
butions (i.e. over-confident predictions) have little influence
on the model’s generalization ability [47]. However, com-
pared to conventional coarse-grained categories, fine-grained
categories are more visually similar. When using one-hot
label distribution in a fine-grained visual classification task,
the network predominantly focuses on increasing the confi-
dence in prediction, while neglecting the fact that the visual
alikeness among fine-grained categories makes it impossible
to have nearly 100% prediction confidence. The network
would start to focus on irrelevant features or sample-specific
artifacts (e.g., background content) in order to achieve higher
prediction confidence. Thus, using one-hot label distributions
is more likely to cause overfitting in fine-grained classifica-
tion tasks.

Therefore, instead of expecting an over-confident predic-
tion (i.e., a prediction probability vector with pk = 1 and
pi = 0 (i 6= k)), we propose to train a less confident
model to mitigate the overfitting issue caused by similarities
among fine-grained subcategories. To be specific, we expect
the model to produce less certain prediction probability in
which 0 < pk < 1, while 0 ≤ pi < pk (i 6= k). The intuition
behind this is that, when classifying a fine-grained image x,
we are not entirely confident in its prediction result, as it may
share too many features with other subcategory images.

To this end, we propose a simple yet effective weakly
supervised approach, namely category similarity-based dis-
tributed labeling (CSDL), whose main idea is to (1) adopt
the center loss to promote feature compactness and obtain
class centers; (2) perform distributed labeling based on the
feature similarity between class centers to mitigate over-
confident predictions; (3) dynamically update the distributed
labels throughout the whole training process. The framework
of our proposed approach is presented in Fig. 1.

A. CENTER LOSS MODULE
To enhance CNN’s feature representations and obtain as
much inter-class diversity and intra-class compactness as
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FIGURE 1. The architecture of our category similarity-based distributed labeling model. The feature vector E is extracted by a backbone network
(e.g., VGGNet16) and then sent into two parallel modules. The center loss module calculates the center loss between feature vector E and the class
center C. The classification loss module computes the classification loss (e.g., cross-entropy) using E , as well as the final label distribution.
Specifically, the final label distribution is obtained by calculating the weighted sum of the ground-truth label and the distributed label (generated
from C). The loss function for our proposed model is a weighted sum of the classification loss and center loss.

possible, we adopt the center loss [38] to supervise the model
training in conjunction with the conventional cross-entropy
loss. The center loss function is defined as:

LC =
1
2

∑
i

||xi − cyi ||
2
2, (4)

where xi denotes the deep feature representation of the i-th
training sample that belongs to the yi-th category. cyi repre-
sents the deep feature center of the yi-th category. Following
[38], class centers {cj} are dynamically updated via:

cT+1j = cTj − α ·1c
T
j , (5)

in which α is the center updating rate used to avoid large
perturbations caused by a few mislabeled samples. Different
from the update equation in [38], we propose a weighted
update mechanism to adjust class centers. More precisely, our
update equation of 1cj is defined as:

1cj =

∑m
i=1 δ(yi = j) · (cj − βi · xi)
1+

∑m
i=1 δ(yi = j)

. (6)

m denotes the total number of training samples and the weight
parameter βi is designed as the maximum predicted probabil-
ity of sample xi:

βi = max p(xi). (7)

The center loss module is adopted for the following three
purposes: (1) enhance the intra-class representation compact-
ness and keep features of different classes distinguishable; (2)
acquire class centers for later distributed labeling; (3) update
class centers based on each mini-batch instead of the entire
training set, so that themodel is trainable and easy to optimize
in CNNs. Furthermore, compared to the original center loss
[38], we encourage the center update process to favor samples
with higher prediction confidence by introducing our weight-
ing mechanism. Intuitively, samples with lower confidence

are more likely to approach the classification boundary, thus
their representations are more likely to consist of features
that are confusing or hard to distinguish. Resorting to our
weighting design, more confident samples are emphasized so
that the acquired class centers are more representative and
discriminative.

B. DISTRIBUTED LABELING MODULE
The motivation behind leveraging distributed labeling comes
from the label smoothing regularization (LSR) technique
[51]. The smoothed label distribution is formulated as:

q′i =

{
1− ε, i = k
ε/(N − 1), i 6= k

(8)

where ε is the smoothing parameter and N is the number
of categories. LSR can be deemed as a type of distributed
labeling method, which reduces the prediction confidence
score by assigning equal probabilities to non-target classes.
Different from the LSR way of generating distributed labels,
we take the category similarity in the feature space into
account. Therefore, the class label of input sample x is not
only decided by the ground-truth label but also contributed to
by the category similarity. In our work, we adopt the follow-
ing cosine similarity function as the default measurement for
the category similarity:

Scosine(ci, cj) =
ci · cj
||ci||||cj||

. (9)

ci and cj denote the deep feature center for the i-th and j-th
category, respectively. In the ablation study section, we fur-
ther compare the cosine similarity function with another com-
monly used one (i.e., euclidean based similarity).

By calculating the similarity between the k-th category
center ck and all category centers, we can obtain a similarity
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vector V , whose each element Vi is

Vi =
ci · ck
||ci||||ck ||

=

{
1, i = k
v, i 6= k

(10)

in which v ∈ [0, 1). Subsequently, a softmax function is
applied to normalize V to the category similarity-based label
distribution of the k-th category as follows

q̂i =
eVi∑N
j=1 e

Vj
. (11)

To make the most of the prior knowledge of ground-truth
labels and endow our model with correct guidance during
the model optimization process, the final label distribution
is designed as a weighted sum of the category similarity-
based label distribution and the smoothed ground-truth label
distribution:

q̃i = (1− w) ∗ q′i + w ∗ q̂i, (12)

where w is the hyperparameter that controls the tradeoff
between the category similarity-based distributed label and
the ground-truth label during the model learning procedure.
It should be noted that, when the smoothing parameter ε is 0,
the smoothed label is equivalent to the one-hot ground-truth
label.

C. DYNAMICAL WEIGHTING MODULE
In Eq. (12), the weighted sum of the category similarity-
based label distribution and smoothed ground-truth label dis-
tribution are leveraged to supervise the training process. The
hyperparameterw is used to balance the two distributions. For
obtaining further performance gains, we propose a dynam-
ical weighting module to dynamically adjust w for better
regularizing the model. To be more precise, we define the
hyperparameter w as follows:

w(T ) =


winit , T = 0

winit +
wend − winit

Tk
T , 0 < T ≤ Tk

wend , T > Tk

(13)

The ‘‘memorization’’ effect of deep CNNs demonstrates that
deep neural networks tend to learn simple patterns in initial
epochs, resulting in limited classifying capability in the early
stage. With the increase of training epochs, the model will
be empowered with an increasingly robust discriminating
capability. Therefore, we set winit > wend in Eq. (13), so that
we emphasize the category similarity more in early epochs
and then gradually let the ground-truth label dominate the
model training. In the early epochs, the model has a limited
classification capability. Resorting to our dynamical weight-
ing module, a higher w is adopted to emphasize the category
similarity and depreciate the ground-truth label. Accordingly,
the prediction confidence score is reduced. The pace of the
model fitting to the training set is subsequently slowed down
and therefore the model is driven to learn more representative
features. As the training proceeds, w gradually decreases so

that the ground-truth label will progressively dominate the
learning process and thus result in better classification perfor-
mance with stronger ground-truth guidance. We investigate
both fixed w and dynamic w(T ) in the ablation study section.

D. CATEGORY SIMILARITY-BASED DISTRIBUTED
LABELING
To summarize, we focus on the fine-grained visual tasks and
propose our category similarity-based distributed labeling.
To be more specific, we first extract features by feeding
training samples into a backbone network. Then class centers
are acquired via the process of optimizing the center loss.
Subsequently, distributed labels for all training samples are
updated based on class centers. Afterward, we compute the
classification loss by using distributed labels to calculate the
cross-entropy.

LCE = −
1
m

m∑
i=1

N∑
j=1

q̃j(xi) log pj(xi). (14)

Finally, we train the model by adopting joint supervision of
the center loss and classification loss.

L = LCE + λLC

= −
1
m

m∑
i=1

N∑
j=1

q̃j(xi) log pj(xi)

+λ ·
1
2

∑
i

||xi − cyi ||
2
2 (15)

where λ is a tradeoff parameter to balance the effect of the
cross-entropy loss and the center loss.

E. ADVANTAGES
Our proposed approach provides three major innovations:

1)We propose to leverage the center loss and cross-entropy
loss to jointly supervise the deep features learning. Com-
pared with solely using the cross-entropy loss, our proposed
approach can drive the learned deep feature representations
closer and thus encourage the model to learn more repre-
sentative features. Meanwhile, class centers are obtained in
the process of optimizing the center loss for later distributed
labeling. Moreover, we introduce a weighted update mecha-
nism to update class centers for making them more represen-
tative by favoring high confidence samples.

2) We propose to use additional knowledge (category
similarity) for generating distributed labels instead of only
utilizing one-hot ground-truth labels for model optimization,
resulting in a more robust model.

3) We propose a dynamical weighting module to dynami-
cally adjust w in Eq. (12) from large values to small ones over
the course of the training process. Resorting to this module,
the model learns more slowly in the beginning to build a
solid foundation. As the training continues, the value of w
decreases, and the ground-truth label will progressively dom-
inate the learning process and result in better classification
performance with stronger guidance.
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IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
In this section, three most commonly used fine-grained
benchmark datasets (i.e., CUB200-2011 [3], FGVC Aircraft
[9], and Stanford Cars [10]) are employed to evaluate the
effectiveness of our proposed CSDL method.

1) DATASETS
• CUB200-2011 [3] is the most widely used fine-grained
classification dataset, which is designed for classifi-
cation within 200 species of birds. It contains 11788
images in total, including 5994 images in the training
set and 5794 images in the test set. Each image is
annotated with one image-level subcategory label, one
object bounding box, 15 part locations, and 312 binary
attributes. In our experiment setting, only image-level
subcategory labels are leveraged in the training proce-
dure.

• FGVC Aircraft [9] contains 10000 images of 100 dif-
ferent aircraft model variants. Conventionally, we divide
this dataset as follows: 6667 images in the training set
and 3333 images in the test set. The aircraft in every
image is labeled with a tight bounding box and a hierar-
chical airplane model label. We also only adopt image-
level subcategory labels in our training process.

• Stanford Cars [10] is another widely used fine-grained
classification dataset, which consists of 16185 images
of 196 classes of cars. The data is split into 8144 training
images and 8041 testing images, where each class has
been split roughly in a 50-50 split. Each image is labeled
with an image-level subcategory label and an object
bounding box. The same with the aforementioned two
datasets, we only use the image-level subcategory labels
in our experiments.

2) EVALUATION METRIC
We adopt the average classification accuracy (ACA) as the
evaluation metric to assess the classification performance of
our proposed CSDL approach. Each experiment is repeated
five times and their average is reported eventually.

B. IMPLEMENTATION DETAILS
We leverage three standard deep CNN frameworks: VGG16
[57], GoogleNet [58], and ResNet50 [59]. Specifically, all
of these frameworks are pre-trained on ImageNet [60] and
we replace the 1000-dimensional softmax layer with a σ -
dimensional one. σ is the number of categories in the fine-
grained datasets (e.g., 200, 100 and 196 for CUB200-2011,
FGVC Aircraft and Stanford Cars, respectively). For the
center loss, we follow the settings in [38] and set λ to
0.003 and α to 0.5. We initialize the feature centers {ci}
with features extracted from the pre-trained model. During
training, we first resize training samples to ensure the shortest
edges are 448 while keeping the aspect ratio of the images.
We then apply a random horizontal flipping to these resized

training samples. Finally, we crop training samples into 448×
448. We fine-tune the pre-trained models through Stochastic
Gradient Descent (SGD) by setting momentum to 0.9. The
learning rate, batch size, weight decay, and epochs are set
to 0.01, 64, 0.0001, and 120, respectively. The learning rate
is halved every 10 epochs. Our experiments are conducted
on one NVIDIA V100 GPU card and the implementation is
based on PyTorch.

C. BASELINES
We compare our proposed CSDL with Cross-Entropy
[57]–[59] and Max-Entropy [32] by fine-tuning VGG16,
GoogLeNet, andResNet50 on the CUB200-2011, FGVCAir-
craft, and Stanford Cars datasets. Performances of baseline
methods are directly from Maximum-Entropy [32]. We also
compared our proposed CSDL with state-of-the-art weakly
supervised fine-grained methods, including BCNN [26], Ker-
nel Pooling [30], MA-CNN [20], NTS-Net [24], DFL-CNN
[25], iSQRT-COV [31], Part Model [56], TASN [39], DCL
[40]. Performances of existing methods are all taken directly
from their original papers.

TABLE 1. Comparison with state-of-the-art weakly supervised methods
on three benchmark datasets.

D. EVALUATIONS
1) COMPARISON WITH SOTA METHODS
As stated above, our CSDL method can be integrated with
existing fine-grained methods and achieve state-of-the-art
performance. Table 1 shows the performance when integrat-
ing our CSDL with the existing fine-grained method iSQRT-
COV [31]. As shown in Table 1, compared with state-of-
the-art weakly supervised methods, our approach achieves
the best performance on FGVC-Aircraft and Stanford Cars
dataset. Although its performance on the CUB200-2011
dataset is not the optimal, the result is fairly comparable with
other state-of-the-art methods. This is due to our leveraging
of the center loss and cross-entropy loss to jointly supervise
the deep feature learning. Compared with solely using cross-
entropy or max-entropy loss, our approach can drive the
learned deep feature representations closer and thus encour-
age the model to learn more representative features. Besides,
we utilize additional knowledge (category similarity) to
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TABLE 2. (A-C) present the performances of three fine-tuning loss functions (Cross-Entropy, Max-Entropy, and CSDL) on different datasets. Each loss
function is combined with three different backbone networks (VGGNet16, GoogLeNet, and ResNet50). Improvement over the baseline model is reported
as (1). (D) presents the average performance over three models (i.e. VGGNet16, GoogLeNet, and ResNet50) on different datasets. (E) presents the average
performance over three fine-grained datasets (i.e. CUB200-2011, FGVC Aircraft, and Stanford Cars) on different modes. (A) CUB200-2011. (B) FGVC Aircraft.
(C) Stanford Cars. (D) Different Datasets. (E) Different Models.

dynamically generate distributed labels, rather than only
using one-hot ground-truth labels for model optimization.

2) COMPARISON WITH DIFFERENT LOSS FUNCTIONS
Table 2 presents the performance comparison using different
loss functions. From Table 2, we find that, with the exception
of the ResNet50model on Stanford Cars, our proposed CSDL
approach achieves a significantly higher performance than
the other two loss functions across all three datasets, for all
three backbones.

V. ABLATION STUDIES
A. EFFECTIVENESS ON REDUCING PREDICTION
CONFIDENCE
Our main idea of CSDL is to introduce the category simi-
larity to make model predictions less confident, so that the
overfitting caused by overconfidence can be mitigated. The
smoothness of the label distribution generated by CSDL guar-
antees the predicted logit vector to be smoother, benefiting
generalization performance. We use the backbone network
VGGNet16 on the CUB200-2011 dataset as an example.
Fig. 2 presents four images from CUB200-2011 and com-
pares the prediction confidence of Cross-Entropy (denoted as
CroEnt) and CSDL-Cross-Entropy (denoted as CSDL). From
Fig. 2, we can see that, by adopting our CSDL, the prediction
confidence is significantly reduced and the prediction logit
vector is considerably smoother.

TABLE 3. Comparison between LSR and our CSDL. Compared to LSR, our
CSDL obtains a larger performance boost in fine-grained datasets (except
using ResNet50 on Stanford Cars).

B. COMPARISON WITH LABEL SMOOTHING
REGULARIZATION
Our approach is inspired by label smoothing regularization
(LSR) [51]. Similarly, LSR and our method both encourage
the model to be less confident to avoid peaky predictions.
We compare the performance of LSR and our CSDL in
Table 3 and observe that our proposed CSDL outperforms
label smoothing on fine-grained tasks. It should be noted that
the results of LSR in Table 3 did not involve center loss.
We have also conducted further experiments to explore the
case of LSR using center loss. When using VGGNet16 as the
backbone, results of LSR using center loss on CUB200-2011,
FGVC Aircraft, and Stanford Cars are 79.51%, 82.99%, and
85.24%, respectively. From the experimental results, we can
notice that our approach works better than LSR.
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FIGURE 2. The upper four images are samples from four categories in CUB200-2011 (class index: 8, 55, 124, and 176). The bottom four graphs show
comparisons of prediction confidence score between CroEnt and CSDL (for ease of presentation, we clip the x-axis to display only 50 categories).

FIGURE 3. Performance comparisons between CroEnt-VGG16Net and
CSDL-VGG16Net on CIFAR-10 (a) and CIFAR-100 (b). Under identical
experimental settings, the performance improvement on the CIFAR-100
dataset is much higher than on CIFAR-10.

C. CIFAR-10 AND CIFAR-100
In order to demonstrate that our proposed CSDL capitalizes
on the nature of fine-grained datasets, we investigate the
performance of our CSDL on two coarse-grained datasets
(i.e., CIFAR-10 and CIFAR-100 [2]). The 10 categories in
CIFAR-10 dataset are completely different from each other
On the contrary, categories in CIFAR-100 can be grouped
into 20 super-categories and each super-category consists of
five finer divisions. Given these two datasets, categorizing
CIFAR-10 can be viewed as a coarser task while classifying
CIFAR-100 can be deemed as a relatively finer task. Experi-
mental results are shown in Fig. 3. As shown in Fig, 3, a larger

FIGURE 4. Comparison between CSDL-VGGNet16 (using fixed w) and
CSDL-VGGNet16 (using dynamic w(T ) with winit = 0.7, wend = 0.1,
Tk = 10).

performance improvement can be observed on CIFAR-100
compared to CIFAR-10, demonstrating that our proposed
CSDL works better in the finer-grained task. While lower
prediction confidence resulted from CSDL benefits the gen-
eralization ability in fine-grained tasks, coarse-grained tasks
gain no advantage from CSDL because categories in coarse-
grained datasets share few visual similarities between each
other.

D. INFLUENCE OF DIFFERENT SIMILARITY FUNCTIONS
The cosine similarity and euclidean distance-based similarity
are two commonly used similarity measurement. To investi-
gate the influence of adopting different similarity functions,
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FIGURE 5. The parameter sensitivities of fixed w (a), as well as winit (b), wend (c), and Tk (d) for dynamic w(T ) in Eq. (13) w.r.t. ACA. (The default setting
for dynamic w(T ) is winit = 0.7, wend = 0.1 and Tk = 10. When we conduct experiments to investigate one parameter, the other two are fixed.).

FIGURE 6. Feature compactnesses under the sole supervision of the cross-entropy loss (a), joint supervision between the cross-entropy loss and center
loss (b), and our CSDL (c) are visualized using t-SNE graphs respectively.

TABLE 4. The ACA (%) of two models using different similarity functions
(Cosine and Euclidean-based).

we train CSDL-VGGNet16 and CSDL-ResNet50 using the
cosine similarity function and euclidean similarity function,
respectively. Experimental results are shown in Table 4. We
can observe that while performances are on par with each
other, the cosine similarity function yields slightly better clas-
sification results. Therefore, the cosine similarity function is
selected as the default similarity measurement in our method.

E. CHOICE FOR WEIGHT OF DISTRIBUTED LABEL
In this subsection, we first analyze the performances when
using different fixed weights w for the distributed labels.
Then, we look at the sensitivity of each parameter in Eq. (13)
when dynamically selecting the distributed label weight w.
Finally, we compare performances obtained using fixed and
dynamic weights.

For fixed w, we evaluate its performance by sequen-
tially selectingw in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
Experimental results are given in Fig. 5 (a). From this figure,

we can see that our approach is robust when w ≤ 0.7. How-
ever, as w increases beyond this, the performance decreases
sharply. Towards the sensitivity of wint , wend , and Tk in
Eq. (13), results are presented in Fig. 5 (b) - (d). To compare
performances of using fixed and dynamic weights, we choose
the fixed w to be 0.2 and 0.8 and train CSDL-VGGNet16
models. We also train the CSDL-VGGNet16 model with a
dynamic w(T ).

From Fig. 4, we can observe that training with a
dynamic w(T ) slows down the training process in the early
epochs but produces a better result in the end. In con-
trast, training with a large fixed value for w slows down
the training process too much and also prevents the model
from taking full advantage of the ground-truth guidance,
thus ultimately leading to a worse performance than using a
dynamic w(T ).

F. EFFECTIVENESS OF USING DISTRIBUTED LABELING
In our proposed method, the final loss function is the
weighted sum between the center loss and classification
loss. To demonstrate the effectiveness of using distributed
labeling as we proposed, we compare results between the
case of using the ground-truth label in the final loss func-
tion and the case of using our proposed distributed labeling.
We choose VGGNet16 as the backbone. The result of using
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the ground-truth label is 78.51%, lower than using distributed
labeling (82.31%). This verifies the effectiveness of using our
proposed distributed labeling.

G. EFFECTIVENESS OF ENHANCING FEATURE
COMPACTNESS
To update our distributed labels and drive the learned visual
representations closer, we adopt the center loss in our CSDL.
The center loss module produces loss penalties based on
feature distances between images and their category cen-
ters, leading to compact feature representation in the training
process. We use the backbone network VGGNet16 on the
CUB200-2011 dataset as an example. Fig. 6 uses t-SNE to
illustrate the compactness of learned visual representation
in a 2-dimensional feature space. As presented in Fig. 6,
compared with features under the sole supervision of the
cross-entropy loss, the adoption of the center loss contributes
to closer feature representations. Furthermore, by employing
the center loss along with our distributed labeling, the feature
representation compactness is even further enhanced, demon-
strating that the center loss module benefits the distributed
labeling module.

VI. CONCLUSION
In this work, we presented a simple yet effective approach for
fine-grained visual classification. Specifically, we propose
to reduce the prediction confidence by assigning dis-
tributed labels for regularizing FGVC models. Addition-
ally, we adopted joint supervision from the center loss and
cross-entropy loss to learn more discriminative deep features.
Through in-depth analysis, we have quantitatively and qual-
itatively validated the effectiveness of our CSDL on regu-
larizing fine-grained classification. Experiments also showed
that our proposed CSDL can be integrated with existing fine-
grained methods and obtain state-of-the-art performance.
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