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ABSTRACT Most of shielding devices currently used for SERF magnetometers are multilayer cylindrical
magnetic shielding barrels. This article studies a new multilayer spindle shaped magnetic shielding barrel for
the spin exchange relaxation free (SERF) magnetometer shielding system and uses finite element method
(FEM) to compare the analysis results. The results show that the shielding effect of the spindle shaped
magnetic shielding barrel is better than the traditional cylindrical magnetic shielding barrel, while the volume
is reduced by about 1/5 and the weight is reduced by about 1/4. Therefore, we expect that a small-sized, light-
weight, low-cost and more efficient magnetic shielding device can be obtained.

INDEX TERMS Atomic magnetometer, spindle shaped, magnetic shielding, SERF.

I. INTRODUCTION

Highly sensitive magnetic field sensors have a wide range of
applications in fields such as space science, detection technol-
ogy, magnetic metrology, geomagnetic navigation, and weak
magnetic biology [1]-[9]. An atomic magnetometer operat-
ing in the spin-exchange relaxation-free (SERF) regime has
achieved the highest sensitivity in low-frequency magnetic
field measurement 0.16 fT / Hz'/? [10]. The SERF
magnetometer needs to work in SERF regime which requires
efficient laser pumping, weak magnetic fields environment
and uniform high temperature environment [11]-[13]. Laser
pumping technology achieves the spin polarization of alkali
metal atoms, so that the alkali metal atomic spin direction
is consistent; the weak magnetic field environment is the
precondition of the atomic SERF regime, while the uni-
form high temperature environment is for high density and
even distribution of alkali metal atoms. However, the stray
magnetic field in the environment would cause the atomic
transition frequency to drift, thereby it reduces the perfor-
mance of SERF magnetometers [14], [15]. In order to achieve
ultra-sensitive magnetic field measurement, the relaxation of

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

alkali metal atoms must be fully inhibited. It is an effec-
tive method to reduce the magnetic field in the atomic gas
chamber using magnetic shielding, which can not only shield
the external stray magnetic field, but also reduce the ambi-
ent magnetic field noise, magnetic field gradient and field
offset [16]. Therefore, during the development of a high-
sensitivity atomic magnetometer, for avoiding interference
with the specific magnetic field needing in the experimental
study, the external stray magnetic field must be shielded
[17], [18]. The passive magnetic shielding device can shield
the internal magnetic field to a stable space of almost zero
field. According to the actual research situation or applica-
tion requirements, ferromagnetic materials with high mag-
netic permeability are usually made into spherical shells or
cylindrical barrels. In this way, the interference of external
magnetic field to sensitive sensors can be effectively shielded
[19]-[21].

In practical applications, the shielding device cannot be
completely closed. From the perspective of metal fabrication
and processing, cylindrical shape is easiest to manufacture,
thus becoming the most used design structure [22]. The spin-
dle shaped magnetic shielding barrel has more advantages
than the cylindrical magnetic shielding barrel. Spindle shape
is easier to manufacture than spheres [23]. In this article,
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FIGURE 1. Magnetic field distribution around the magnetic shielding
device.

a spindle shaped magnetic shielding barrel model is proposed,
based on the optimization design of the cylindrical magnetic
shielding barrel. When the total axial length is constant,
the two models are compared by finite element analysis
and spindle-shaped magnetic shielding barrel provide better
shielding, the noise generated by both magnetic shielding
barrels is about 15fT / Hz!/2. Making the two ends of the
shield barrel into a spindle shape can reduce the volume of
the shield barrel by about 1/5 and the weight by about 1/4.

Il. MAGNETIC SHIELDING THEORY AND MODEL
ESTABLISHMENT
The principle of magnetic shielding can be explained with the
concept of a parallel magnetic circuit. As shown in FIGURE.
1, when the magnetic shielding device is placed in the external
magnetic field, the wall of the shielding shell and the air in
the cavity surrounded can be regarded as parallel magnetic
circuit. The magnetic permeability of air is close to the vac-
uum permeability o = 47 x 107’N/A2, while the magnetic
permeability of the shielding device is much larger than 1.
The magnetic resistance of the cavity is much larger than that
of the shielding device.

The evaluation indexes of shielding effectiveness of mag-
netic shielding device include magnetic shielding coefficient
S and magnetic shielding effectiveness Sg:

H()ut
S = 1
. )]
Sg = 20log S 2)

where: H;, and H,,,; are the magnetic field strength inside and
outside of the shield [25].

A. MAGNETIC SHIELDING MODEL
There are differences in the shape and size of the axial section
and the radial section of the magnetic shielding barrel. The
magnetic shielding barrel has axial and radial shielding coef-
ficients.

The radial shielding coefficient S; of the single-layer mag-
netic shielding barrel is:

1 Ry,
S~ 1+ ZI«Lr[1 - (R_

where: w, is the relative permeability of the material, R;, and
R,,; are the internal and external radii of the cross-section
circle of the shielding barrel respectively [25].
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out

VOLUME 8, 2020

The axial shielding coefficient S, of single-layer magnetic
shielding barrel is:
1+ 4NS
So= o)
1+R/L
where: R is the average value of R, and R, L is the inner
length of single-layer magnetic shielding barrel, N is the
demagnetization factor which is expressed:

1 P
(p2—1)]{

where: the parameter p = %, generally 1 < p < 40 [26].

According to (3) and (4), the radial magnetic shielding
coefficient of the magnetic shielding barrel is several times
larger than the axial magnetic shielding coefficient, so the
axial magnetic shielding coefficient is the main factor that
limit the magnetic shielding effect of the magnetic shielding
barrel.

The shielding coefficient of multilayer magnetic shielding
barrel is Sy :

" 1)I}In[p+(pz—1)51—1} 5)
—1)2

N=[

n—1 R:
Sior = Sn [ [ Sill = (z—— 6

ot U 1= (=7 6)
where: R; represent the magnetic shielding coefficient and
radius of the i-th layer respectively. It is stipulated that R;
is smaller than R; 1. When j = 1, S;, represents the axial
shielding coefficient of the single-layer. magnetic shield bar-
rel. The length L; of the shielding barrel replaces R; from (6).
Whenj = 2, Sy, represents the radial shielding coefficient of
the multilayer shielding barrel [25].

B. MAGNETIC NOISE ANALYSIS

In SERF magnetometers, the noise generated in magnetic
shielding devices is generally dominated by Johnson mag-
netic noise. Johnson magnetic noise is caused by the thermal
motion of free electrons present in the material. Usually
the material has excellent conductivity. Therefore, there is
inevitable magnetic noise. The magnetic noise of the common
mu-metal magnetic shield is mainly dominated by Johnson
magnetic noise Bjy;s

wNkTot [2G
Bjy = VO T ™)
r 37

where: i, is the relative magnetic conductivity; k is the Boltz-
mann constant; 7 is the temperature; o is the conductivity; ¢
is the thickness of the magnetic shield; r is the radius of the
magnetic shield; G is a constant related to the aspect ratio of
magnetic shielded shapes [17], [18], [26], [27].

C. SERF ATOMIC MAGNETOMETER AND MAGNETIC
SHIELD DESIGN

As shown in FIGURE.2, the alkali metal gas chamber is
the core component of the SERF magnetometer. During the
detection process, we need magnetic shielding to prevent
interference from external factors. The pattern of magnetic
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FIGURE 2. Essential composition and schematic diagram of the SERF
atomic magnetometer.

TABLE 1. Size parameters of cylindrical magnetic shielding barrel.

Parameter name Parameter value
Innermost axis length 250 mm
Innermost radius 65 mm
Axial length difference between two
. 10 mm
adjacent layers
Radius difference between two
. 10 mm
adjacent layers
Layer thickness 0.4 mm
Number of layers 4

shielding consists of two parts. One is the active magnetic
compensation coil. The other is a high-performance passive
magnetic shielding device, which is the focus of this article.
A beam of circular polarization pumped light irradiates the
alkali metal gas chamber in the direction of the Z-axis and
the alkali metal atoms generate polarization in the gas cham-
ber. In the action of the magnetic field, the spin-polarized
alkali metal atoms produce the larmor precession. A beam
of line polarization detection light detects the puller intake
of alkali metal atoms in the X-axis direction. The larmor
precession frequency is proportional to the strength of the
external magnetic field, thus measuring the strength of the
magnetic field [22].

D. MODEL ESTABLISHMENT

In order to analyze the change trend of remanence in the
magnetic shielding barrel, two simplified finite element mod-
els are established and analyzed. Equation (6) contains the
size parameters that affect the shielding coefficient of the
magnetic shielding barrel.

The size of the magnetic shielding barrel is shown
in Table 1 and Table 2.

In FIGURE. 3 and FIGURE. 4, the sectional views of four-
layer of cylindrical magnetic shielding barrel and four-layer
of spindle magnetic shielding barrel are respectively shown.
In practical application, the magnetic shielding device for
passive shielding SERF magnetometer needs to open several
ports to provide pumping light, detection light, wire, and
other channels. This model is built in the presence of these
openings, and the material of the magnetic shielding barrel
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TABLE 2. Size parameters of the spindle magnetic shield barrel.

Parameter name Parameter value
Innermost side wall length 159.6 mm
Innermost side wall difference 6.6 mm
Innermost total axis length 250 mm
Innermost radius 65 mm
Total axial length difference
. 10 mm
between two adjacent layers
Radius difference between two
. 10 mm
adjacent layers
Layer thickness 0.4 mm
Number of layers 4
o} 2R

FIGURE 3. Sectional view of four-layer cylindrical magnetic shield barrel.

2R

L

FIGURE 4. Sectional view of four-layer spindle-shaped magnetic shield
barrel.

is mu-metal. Maximum permeability un, is about 250000
mH/m.

The axial shielding coefficient S, of single-layer spindle
shaped magnetic shielding barrel is:

S, ~ (1 +4NS;) )

1+ (%R+2ZLlem9))

where: R is the average value of R;, and R,,;, L is the total
inner length of single-layer magnetic shielding barrel, N is
the demagnetization factor, L’ is the length of the cylindrical
part, L” is the length of the spindle part, 0 is the angle between
the spindle part and the cylindrical part.

E. GEOMAGNETIC FIELD SIMULATION

In this simulation experiment, three-dimensional Helmholtz
coil is used to simulate the geomagnetic environment.
According to the parameters setting in the three-dimensional
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FIGURE 5. Three-dimensional finite element model of four-layer
cylindrical magnetic shielding barrel.
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FIGURE 6. Three-dimensional finite element model of four-layer spindle
shaped magnetic shielding barrel.
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FIGURE 7. Simulation results of axial section magnetic field distribution
of the innermost layer of four-layer cylindrical magnetic shielding barrel.

coil, 48.323 T magnetic field can be generated at the center
point.

The shielding performance of two kinds of magnetic
shielding barrels are verified by experiment and simulation.
As shown in FIGURE. 5 and FIGURE. 6, in order to make
the residual magnetism in the barrel as small as possible, it is
necessary to place the through hole towards the Y-axis and
the vacuum hole towards the Z-axis.

IIl. EXPERIMENTAL RESULT

After setting the boundary conditions and excitation sources,

we obtain the final magnetic shielding simulation results.
As shown in FIGURE.7 and FIGURE.S8, the magnetic field

distribution of the innermost axial section and transverse
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FIGURE 8. Simulation results of magnetic field distribution in the
innermost transverse section of four-layer cylindrical magnetic shielding
barrel.
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FIGURE 9. Simulation results of magnetic field distribution of axial
section in the innermost layer of four-layer spindle magnetic shielding
barrel.
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FIGURE 10. Simulation results of magnetic field distribution of inner
most transverse section of four-layer spindle shaped magnetic shielding
barrel.

section of the four-layer cylindrical magnetic shielding barrel
is shown respectively.

As shown in FIGURE.9 and FIGURE.10, the magnetic
field distribution of the innermost axial section and transverse
section of the four-layer spindle shaped magnetic shielding
barrel is shown respectively.
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FIGURE 11. Axial remanence curve in the center area of the innermost
layer of the magnetic shield barrel. When the layer thickness is 0.4mm.
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FIGURE 12. Radial remanence curve in the center area of the innermost

layer of the magnetic shield barrel. When the layer thickness is 0.4mm.

The shield barrel is made of high magnetic conducting
material. The shortest path of magnetic resistance leads to the
enrichment of magnetic field in the position of light passing
hole, therefore its magnetic induction intensity is stronger
than the environmental magnetic field. However, with the
increase of the number of layers of the shielding barrel,
the magnetic field lines inside the magnetic shielding would
be less and less. The uneven distribution of remanence in the
magnetic shielding barrels may be caused by the holes in the
barrel cover for placing wires and the lack of accuracy of the
software and the computer. From the radial and axial cross-
sections, the spindle-shaped magnetic shielding barrel has
better shielding effect and more uniform internal remanence.
Especially in the axial section, the spindle-shaped magnetic
shielding barrel has a better shielding effect near the lid due
to its shape advantage.

The magnetic shielding effectiveness Sk of the cylindri-
cal magnetic shield barrel is 140.8 and the spindle-shaped
magnetic shield barrel is 151.4. As shown in FIGURE.11 and
FIGURE.12, it can be seen from the experimental results that
the shielding effect of the spindle-shaped magnetic shield bar-
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rel is significantly better than that of the cylindrical magnetic
shield barrel.

Because of the motion of the electrons, shielding bar-
rels made of mu-metal mainly produce Johnson noise.
Noise is related to the radius, thickness, length and diam-
eter ratio and temperature of the shielding barrel. In the
innermost shield, the noise produced by the two shield-
ing barrels is basically the same. When the radius of the
shielding barrel is 60 cm and the temperature is 330K,
the noise generated by both magnetic shielding barrels is
about 15fT / Hz!/2.

IV. CONCLUSION

The highly sensitive measurement of SERF has a high
requirement for magnetic shielding. The effect of magnetic
shielding depends on the structure design of the device to
a great extent on the premise that the magnetic material is
consistent with its processing technology. The remanence of
the high performance magnetic shielding barrel at the center
is very important for the super sensitive measurement of
SEREF. In this article, by means of magnetic shielding model
calculation and finite element analysis, a spindle shaped mag-
netic shielding barrel is studied. Compared with the tradi-
tional cylindrical magnetic shielding, the shielding effect in
the central area is equivalent. In the process of manufacturing,
the volume is about 1 / 5 smaller and the weight is about 1 /
4 smaller. At the same time, it has the advantages of good
shielding performance, large volume, light weight, low cost,
and more efficiency.
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