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ABSTRACT Content-based human motion capture (MoCap) data retrieval facilitates reusing motion data
that have already been captured and stored in a database. For a MoCap data retrieval system to get practically
deployed, both high precision and natural interface are demanded. Targeting both, we propose a video-based
human MoCap data retrieval solution in this work. It lets users to specify a query via a video clip, addresses
the representational gap between video and MoCap clips and extracts discriminative motion features for
precise retrieval. Specifically, the proposed scheme firstly converts each video clip or MoCap clip at a certain
viewpoint to a binary silhouette sequence. Regarding a video or MoCap clip as a set of silhouette images,
the proposed scheme uses a convolutional neural network, named MotionSet, to extract the discriminative
motion feature of the clip. The extracted motion features are used to match a query to repositoryMoCap clips
for the retrieval. Besides the algorithmic solution, we also contribute a human MoCap dataset and a human
motion video dataset in couple that contain various action classes. Experiments show that our proposed
scheme achieves an increase of around 0.25 in average MAP and costs about 1/26 time for online retrieval,
when compared with the benchmark algorithm.

INDEX TERMS MotionSet, motion capture data retrieval, convolutional neural network, deep learning.

I. INTRODUCTION
There is a growing demand for motion capture (MoCap)
technology inmany fields including interactive virtual reality,
film production, animation and so forth. However, capturing
motions when needed is often not practical as motion capture
systems are expensive and the capture processes are complex
in general [1]. It is often desirable to retrieve and reusemotion
clips that have been captured before and stored in databases.
Straightforwardly, the retrieval may be done based on text
labels of motion clips. However, it may be hard to fully
characterize a motion segment of certain complexity by text
labels. Further, different text labels may be used to describe
the same motion, e.g., ‘leaping’ and ‘jumping’, ‘jogging’
and ‘running slowly’. Semantic analysis of text labels is
then required for precise motion retrieval, which itself is a
challenging task. This has motivated intensive research on
content-based retrieval of MoCap data instead, and we take
this line as well in this work.
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Content-based human MoCap data retrieval has drawn lots
of research attention in recent years with many good algo-
rithms proposed. In these algorithms, various modalities of
query have been used, which include MoCap clip [1]–[11],
hand-drawn sketch [12]–[14], puppet motion [15], [16],
Kinect skeleton motion [5] and video clip [17]–[19]. MoCap
clips are themselves hard to acquire. Hand-drawn sketches
vary much across users in quality and style of drawing.
Kinect skeletons have to be captured within a limited range
of distance and view angle. Puppets are hard to pose for
complex motions. Besides, Kinect and puppet devices may
not be readily available. By contrast, video clips provide a
means for natural and convenient specification of queries. For
instance, the user may act out a motion of his or her interest
in front of a video camera that readily comes with a laptop
computer or mobile computing device. As such, we adopt the
video modality of query in this work.

In this work, we propose a video-based human MoCap
data retrieval scheme, which takes as input a video clip
and retrieves similar MoCap clips from the repository. The
key contribution of this work is a novel holistic scheme for
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cross-modality motion data retrieval. As the novel core com-
ponent, it extracts discriminative cross-modality motion fea-
tures, which is achieved by converting the original video
or MoCap clips to binary silhouette sets and extracting
the motion features by a MotionSet network. The proposed
motion feature representation extends naturally for intra-
modality retrieval as well. Besides, this work contributes a
human MoCap dataset and a human motion video dataset in
couple.

It should be noted that, in this work, we presume that
the motion in a query video as a whole is to be searched.
Should motions in a long video sequence be searched in a
finer granularity, existing algorithms [20]–[23] may be used
first to segment the raw video sequence into smaller clips
that are then used as queries. Similarly, should motions in
a long MoCap sequence be described in a finer granularity,
segmentation may also be conducted [24].

The rest of this article is structured as follows. Related
work is briefly reviewed in Sec. II. Overview of the proposed
scheme is presented in Sec. III-A, with details of components
provided in Sec. III. Experimental results are given in Sec. IV
and conclusion is drawn in Sec. V.

II. RELATED WORK
For content-based MoCap data retrieval, various modali-
ties of query have been used, such as MoCap clip [1]–
[11], hand-drawn sketch [12]–[14], puppet motion [15], [16],
Kinect skeleton motion [5] and video clip [17]–[19]. Gen-
erally, all the aforementioned input modalities have their
pros and cons. With all factors taken into account, video-
based MoCap data retrieval shows its advantages of afford-
ability and user-friendliness. Using a commodity video cam-
era, it is easy to specify the query by recording the user’s
performance.

A. VIDEO-BASED MoCap DATA RETRIEVAL
We briefly review the video-based MoCap data retrieval
methods [17], [19], while a comprehensive survey of the
existing MoCap data retrieval algorithms can be found in the
reference [25].

Gupta et al. [19] make frame-by-frame alignment of the
query video clip to a portion of a longer MoCap sequence
using sub-sequence local normalization dynamic time warp-
ing (SLNDTW). They use the dense trajectories [26], [27]
for video and MoCap data description, which is effective but
time-consuming. Given a query video, Jiang et al. [17] recon-
struct a skeleton animation by a deep learning based 3D pose
estimation algorithm [28], compute a handcrafted motion
signature for the skeleton animation and compare it with the
motion signatures of the repository MoCap clips to get the
result. The performance of retrieval is highly dependent on
the quality of reconstructed 3D poses and the description
power of handcrafted motion signatures.

It is worth noting that Gupta et al. [18] also match
a video input to MoCap clips but their focus is on

cross-view action recognition. For the motion description,
they also adopt the time-consuming dense trajectory
features [26], [27].

B. VIDEO-BASED ACTION RECOGNITION
Another field closely related to video-based MoCap data
retrieval is video-based action recognition. For both fields,
the core part is to effectively describe motions in videos.
Recognizing human actions from video clips is an impor-
tant research topic and, in this context, many methods have
been proposed to describe human motions in video clips.
The classical motion energy image (MEI) and motion his-
tory image (MHI) representations are proposed in the ref-
erence [29]. MEI represents where motion has occurred in
an image sequence, while MHI is a scalar-valued image
where intensity is a function of the motion’s recency. These
two descriptors usually perform well for actions that are
performed in a fixed space without large movements. The
space-time shape feature is proposed in the reference [30]
for human action recognition. The template-based method
by a maximum average correlation height (MACH) filter is
proposed in the reference [31] for recognizing human actions.
Besides, gait energy image (GEI) targeting human walking
representation is proposed in the reference [32] for individual
gait recognition.

The motion descriptors described above are mostly hand-
crafted. Their descriptive power is still limited. In recent
years, deep learning techniques have been successfully
employed to extract motion features in videos. Among
various deep-learning-based video motion analysis algo-
rithms, the GaitSet work [33] is of particular interest to
us. Regarding a gait sequence as a set of silhouettes,
it extracts frame-level features by a convolutional neu-
ral network (CNN) on each frame, and set-level features
by set pooling the frame-level features. It is immune to
permutation of frames, and can naturally integrate frames
from videos filmed under different scenarios, adding to
the robustness of gait recognition. As a result, the GaitSet
work yields state-of-the-art performance for video-based gait
recognition.

III. METHODOLOGY OF THE PROPOSED ALGORITHM
A. OVERALL FRAMEWORK
We propose a novel scheme to retrieve human MoCap clips
from a database which contain motions similar to that spec-
ified in a query video clip. The flowchart of the proposed
scheme is shown in Fig. 1. It is composed of two parts: offline
pre-processing and online query.

In the offline pre-processing stage, we make a simple
3D avatar human model and animate it by each repository
MoCap clip. For each frame of an animation, we render the
posed model to several views and extract the binary human
silhouettes of the rendered images. As a result, we obtain a
set of silhouettes for each MoCap clip at each view. Next,
we input each silhouette set to the MotionSet network to get
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FIGURE 1. The flowchart of video-based human MoCap data retrieval via MotionSet network.

its motion feature. All these motion features are stored in
association with their MoCap clips to facilitate online queries
later.

In the online query stage, we extract the binary human
silhouette in each query video frame by background subtrac-
tion and obtain a set of silhouettes for the query video clip.
Next, we input this silhouette set to the MotionSet network to
get the motion feature of the query. It is then compared with
all the repository motion features to find the closest matches
which give the final result of retrieval.

B. PROBLEM FORMULATION
A MoCap clip M = {m1,m2, . . . ,mn} is converted to four
sequences of binary silhouettes at four view angles, respec-
tively, by B1(M, θi), θi ∈ {0, π/2, π, 3π/2}. A video clip
E = {e1, e2, . . . , en} is converted to a sequence of binary
silhouettes by B2(E).
Regarding the silhouettes for a n-frame motion clip as a

set, χ = {xi|i = 1, 2, . . . , n}, we extract the motion feature f
from χ by

f = H (S(F(χ ))) (1)

whereF is a CNN that extracts frame-level features from each
silhouette, S maps all the frame-level features of χ to a set-
level feature through set pooling and a convolutional network,
and H splices all the rows in the set-level feature map into a
1D motion feature vector.

For two motion clips, C1 and C2, with silhouettes
sequences, χ1 and χ2, respectively. Their motion features
are f1 = H (S(F(χ1))) and f2 = H (S(F(χ2))), respec-
tively. The similarity between C1 and C2 is measured by the
negated Euclidean distance between their motion features,
i.e., L(C1,C2) = −||f1 − f2||2.
Details about the silhouette extraction and the motion fea-

ture extraction are provided in the following subsections,
respectively.

FIGURE 2. The process of converting a MoCap clip to four binary
sihouette sequences.

FIGURE 3. Examples of binary silhouette sequence for two video clips.

C. SILHOUETTE EXTRACTION
For each MoCap frame, we make a simple 3D avatar human
model by fitting the head with a sphere and each of the
other bones with a cylinder for the skeleton as posed in the
current frame. Next, we render the posed 3D avatar model
by orthographic projection onto four views (i.e., front, back,
left and right) and binarize each rendered image to get the
avatar’s silhouette. As a result, we obtain four binary silhou-
ette sequences for each MoCap clip at four views, respec-
tively. This process of converting a MoCap clip to four binary
sihouette sequences is illustrated in Fig. 2.

The silhouette sequence representation for a video clip is
similarly obtained but the binary silhouette for each video
frame is obtained via background subtraction. Examples of
binary silhouette sequence for two video clips are shown
in Fig. 3.

D. MOTION FEATURE EXTRACTION
1) ARCHITECTURE OF MotionSet
In this section, we describe the neural network we use for
motion feature extraction. Essentially, we adopt the network
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FIGURE 4. The architecture of MotionSet. ‘SP’ represents set pooling and ‘HPM’ represents horizontal pyramid mapping.

proposed for gait recognition by Chao et al. [33]. We use
this network to describe a clip of arbitrary motion type
but not gait only. Therefore, we call the network Motion-
Set in this work. The architecture of MotionSet is shown
in Fig. 4.

As shown in Fig. 4, each silhouette frame is sent to a CNN
branch to extract frame-level features at various stages. Fur-
ther, at each stage, all the frame-level features are integrated
by set pooling (SP) to extract the set-level feature. The set-
level features are also processed by a CNN shown at the
top. Regarding the network structure, the set-level branch
and every frame-level branch have the same structure, except
that set-pooled frame-level features are integrated into the
data flow of the set-level branch as well. Finally, two feature
maps result from the set-level branch and the frame-level
branches, respectively, and these two feature maps are sent
to a horizontal pyramid mapping (HPM) module to extract
the motion feature.

2) SET POOLING
Set pooling aggregates motion information from a set of
frame-level features, formulated as z = S(V ) with z being
the set-level feature and V = {v1, v2, . . . , vn} being the set of
frame-level features. The mapping S should be permutation
invariant. Statistics functions usually meet this requirement.
Specifically, following Chao et al. [33], we use

S(·) = 1−1C(cat(max(·)+ mean(·)+ median(·))) (2)

where the statistics functions, max, mean and median, are
applied on the set dimension, cat means concatenate on the
channel dimension and 1−1C means a 1 × 1 convolutional
layer that weights the information extracted by the three
pooling methods properly. Further, attention mechanism is
uesd to improve the performance of set pooling, as illustrated
in Fig. 5.

FIGURE 5. The structure of Set Pooling using attention. ‘cat’ and ‘1−1C ’
represent concatenate and 1× 1 convolution, respectively. The
multiplication and the addition are pointwise.

3) HORIZONTAL PYRAMID MAPPING
In order to capture features that are existent at various scales,
we finally apply the horizontal pyramid mapping (HPM)
module to map the extracted motion feature to a discrimi-
native space. HPM was proposed by Chao et al. [33] which
improves the horizontal pyramid pooling (HPP) [34] by
replaying the 1 × 1 convolutional layer with fully connect
layers (FC). As shown in Fig. 6, S scales are used for HPM.
At each scale s ∈ {1, 2, . . . , S}, the feature map extracted
by SP is split to 2s−1 strips on the height dimension. On each
strip zs,t , t ∈ {1, 2, . . . , 2s−1}, global pooling is applied to get
a 1D feature by f ′s,t = maxpool(zs,t ) + avgpool(zs,t ) where
maxpool and avgpool mean global max pooling and global
average pooling, respectively. Finally, an independent FC is
applied on each f ′s,t , leading to the final motion feature f .

4) TRAINING AND TESTING
As explained above, the output of the MotionSet is a com-
bination of 2 ×

∑S
s=1 2

s−1 feature vectors. Following Chao
et al. [33], we use the corresponding features among different
samples to compute the loss, and use batch all (BA+) triplet
loss to train the network [35].

Given a video clip as the query, we input it to theMotionSet
network to extract its motion feature, which is then com-
pared with the motion features of all the MoCap clips in the
repository. MoCap clips whose motion features are closest to
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FIGURE 6. The flowchart of horizontal pyramid mapping. ‘GAP’ represents global average
pooling and ‘GMP’ represents global max pooling.

TABLE 1. Anthropometric measures of the volunteers for motion data collection.

the query’s are viewed as the most similar to the query and
returned as the result.

IV. EXPERIMENTS
In this section, we conduct a comprehensive performance
evaluation of the proposed video-based human MoCap data
retrieval scheme. This is done by 1) comparing with a state-
of-the-art method in video-based MoCap data retrieval, and
2) demonstrating the versatility and extensibility of the pro-
posed scheme.

A. PLATFORM AND PERFORMANCE METRICS
The proposed scheme in this article was implemented with
Python3.6. We run the code on a computer with NVIDIA
1080TI GPU and Ubuntu16.04 operating system.

In our experiments, the commonly used mean average
precision (MAP), precision-recall curve (P-R curve), preci-
sion at n (P@n) and confusion matrix are employed for the
performance evaluation.

B. DATASETS
We invited 7 volunteers, denoted as Actress, Actor#1,
Actor#2, Actor#3, Actor#4, Actor#5 and Actor#6, for the
motion data collection. They have significantly variant
anthropometric measures, as shown in Tab. 1.

1) HUMAN MoCap DATASET
We captured human motions by the Vicon motion capture
system to compose the MoCap dataset that we use for exper-
iments. For the motion capture, 12 cameras are used and
53 markers are attached to the suit, mostly around key joints
and ends of the body. The scene of motion capture and an
actor wearing the suit with markers are shown in Fig. 7(a) and
Fig. 7(b), respectively. Five volunteers, i.e., Actress, Actor#1,

FIGURE 7. The scene of motion capture and an actor wearing the suit
with markers.

Actor#2, Actor#3 and Actor#4 were employed for the motion
capture. Theywere asked to perform actions of 20 types. Each
person performed each type of action for 4 times. Hence,
400 MoCap clips were captured in total. Different MoCap
clips may have different frame counts, depending on the
durations of specific actions. The indexes and names of all
the actions are listed in Tab. 2.

2) HUMAN MOTION VIDEO DATASET
In companywith the humanMoCap dataset, we also compose
a human motion video dataset. Four volunteers, i.e., Actress,
Actor#1, Actor#5 and Actor#6 were employed for the video
recording. They were asked to act out the same 20 types
of motions in the MoCap dataset (see Sec. IV-B1). Each
person performed each type of motion for 5 times at each
of 4 viewpoints (i.e., front, back, left and right) in front of
a monocular camera. Hence, 400 video clips were collected
for each viewpoint and 1,600 video clips were collected in
total. Different video clips may have different frame counts,
depending on the durations of specific actions. Note that we
use video clips from multiple viewpoints to train the Motion-
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TABLE 2. MAP statistics of Jiang et al.’s method [17] and ours.

Set in order to accommodate an arbitrary viewpoint at which
the query video may be shot online. Example frames from
multiple video clips shot at various viewpoints are presented
in Fig. 11.

C. VIDEO-BASED MoCap DATA RETRIEVAL
1) BENCHMARK ALGORITHM
As reviewed in Sec. II, two algorithms [17], [19] con-
duct video-based MoCap data retrieval. Gupta et al. [19]
make fine-grained frame-by-frame alignment of the query
video clip to a portion of each longer MoCap sequence,
which is a time-consuming process. Similar to our algorithm,
Jiang et al.’s method [17] also conducts whole-sequence
similarity search without time-consuming frame alignment.
As such, Jiang et al.’s method [17] is of the same type
as ours, and we use it as the benchmark in performance
evaluation.

2) EXPERIMENTAL RESULTS
Each of the 400 MoCap clips in our human MoCap dataset
is converted to 4 binary silhouette sequences at 4 view-
points, respectively, by the method in Sec. III-C. As a
result, we obtain 1,600 synthetic silhouette sequences for
all the MoCap clips. Each of the 1,600 video clips in our
human motion video dataset is converted to 1 binary sil-
houette sequence by the method in Sec. III-C. As a result,
we obtain 1,600 real silhouette sequences for all the video
clips.

Firstly, we use the real silhouette sequences of two actors
and all the synthetic silhouette sequences to train the Motion-
Set network. Next, we use the video clips of the rest two actors

as queries and, for each of them, retrieve similar MoCap
sequences from the human MoCap dataset.

For this experiment, the MAP statistics of Jiang et al.’s
algorithm [17] and our algorithm are provided in Tab. 2, and
the P@N (n = 5, 10, 15, 20) statistics, the P-R curves and the
confusion matrices of the two algorithms are shown in Fig. 8.
should be noted that the numerical results of Jiang et al.’s
method in Tab. 2 are different from those reported in the
original paper [17] as we are using different datasets in this
work. From Tab. 2, we observe that our algorithm outper-
forms Jiang et al.’s algorithm [17] on most of the motion
classes. As also shown in Tab. 2, the average MAPs of
Jiang et al.’s algorithm [17] and ours are 0.6986 and 0.9501,
respectively, showing a big advantage of our algorithm. From
Fig. 8, we again observe significantly better performance of
our algorithm.

Regarding the time efficiency, it takes 0.056s with our
method and 1.5s with Jiang et al.’s method [17] on the
average for each online retrieval on our datasets. As the
motion features of the repository MoCap clips have been
computed offline, the online retrieval task involves computing
the motion feature of the query video (by the MotionSet net-
work) and matching the query video’s motion feature to those
of the repository MoCap clips. Roughly speaking, the online
retrieval time scales linearly with the number of MoCap
clips in the repository dataset, if no hashing technique is
applied.

D. VERSATILITY AND EXTENSIBILITY
The motion feature extracted using our proposed scheme (or
proposed motion feature for brevity) is versatile as it may be
used to characterize either a MoCap or a video clip. As such,
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FIGURE 8. The average P@N (N = 5, 10, 15, 20) results, P-R curves and confusion matrices of Jiang et al.’s method [17] and ours for video-based MoCap
data retrieval.

it naturally extends to support retrieval within either single
modality as well. In order to demonstrate the performance
of intra-modality retrieval with the proposed motion feature,
we design two experiments.

In the first experiment, we use the human MoCap dataset
and conduct MoCap-to-MoCap data retrieval. The MoCap
clips of three performers form the gallery and their silhou-
ette sequences are used to train the MotionSet network.
The MoCap clips of the rest two performers are used as
queries. In the second experiment, we use the human motion
video dataset and conduct video-to-video data retrieval. The
video clips of two performers form the gallery and their
silhouette sequences are used to train the MotionSet net-
work. The video clips of the rest two performers are used

as queries. The results of these two experiments are plotted
in Fig. 9 and Fig. 10, respectively, showing the outstanding
performance of intra-modality retrieval by the proposed
motion feature.

E. DISCUSSION
In order to investigate the performance of our proposed
scheme on repetitive motions and combined motions, we fur-
ther design two experiments as detailed below.

In both experiments, we use the same MotionSet model
and the same query video dataset as for the experiment in
Sec. IV-C2, but different repository MoCap datasets. For
the first experiment, we extend each clip in our original
MoCap dataset to two cycles by duplication. For the second

186218 VOLUME 8, 2020



T. Ren et al.: Video-Based Human Motion Capture Data Retrieval via MotionSet Network

FIGURE 9. The average P@N (N = 5, 10, 15, 20) statistics, P-R curves and confusion matrix using the proposed motion feature for MoCap-to-MoCap data
retrieval.

FIGURE 10. The average P@N (N = 5, 10, 15, 20) statistics, P-R curves and confusion matrix using the proposed motion feature for video-to-video data
retrieval.

experiment, we replace each volunteer’s ‘normal walking’,
‘normal running’, and ‘bending down’ clips in our origi-
nal MoCap dataset by ‘walking to running then bending’
clips, each formed by concatenating the original ‘normal
walking’, ‘normal running’ and ‘bending down’ clips, one
instance per each. As before, the motion features of all
the updated MoCap clips are then computed and stored
offline.

For the first experiment, the average MAP is 0.9425,
showing the robustness of our scheme against pure cycle
variance. For the second experiment, the average MAPs
for ‘normal walking’ and ‘normal running’ are as high as
0.9800 and 1.0000, respectively, while the MAP for ‘bend-
ing down’ is just 0.4400. The reason is that ‘normal walk-
ing’ and ‘normal running’ are similar to each other and
together account for the major portion of each ‘walking to
running then bending’ clip. As a result, query walking or

running video clips are well matched but bending down clips
are not.

In general, since our work focuses on holistic motion
retrieval, a sub-motion in a long clip may not be identified
especially when it has a short duration. Therefore, for our
scheme to get applied for sub-motion retrieval, it is advised
to firstly segment long MoCap or video clips to short ones
containing elementary motions.

Regarding the feature description of aMoCap clip, the pro-
posed method presumes that the captured subject has an
explicitly specified skeletal structure such that a 3D avatar
may be constructed and rendered, enabling the extraction
of binary silhouettes and the application of MotionSet for
feature extraction. As such, the proposed method applies to
both full body and half body MoCap clips, as both are well
structured. For less organized markers like those on a human
face for expression capture, our method is not well suited.
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FIGURE 11. Frame samples of various motions and at various viewpoints from the human motion video dataset.

V. CONCLUSION
A novel video-based MoCap data retrieval scheme is pro-
posed in this work. In order to make two different modalities
comparable, we propose a systematic approach to extract
motion features for both video and MoCap clips, and con-
duct the retrieval by comparing the video query’s motion
feature with those of the repository MoCap sequences. The
motion feature extraction works in two major steps. Firstly,
every motion clip (either a video or a MoCap clip) is con-
verted to a sequence of binary silhouettes. Secondly, regard-
ing a sequence of silhouettes as a set, we use a CNN
named MotionSet to extract the discriminative motion fea-
ture. Besides the algorithmic solution, we also contribute a
MoCap dataset and a video dataset in couple that contain
motion clips of 20 action classes. Experiments show that the
proposed scheme outperforms the state-of-the-art method of
the same type by large margins (i.e., an increase of about
0.25 for average MAP and a reduction to 1/26 for online
retrieval time) and extends naturally for video-to-video data
retrieval and MoCap-to-MoCap data retrieval.

In this work, we view frames in a motion sequence as a set.
Nevertheless, the proposed scheme may not work precisely if
the temporal order of frames is crucial to discriminate certain
motions. In the future, we will try to incorporate temporal
information into the CNN data flow as well to capture both
spatial and temporal characteristics of motion clips. Further,
the proposed scheme focuses on holistic motion but not sub-
motion retrieval. Sub-motion retrieval is planned for our

future research as well, which enables more flexible retrieval
of long and complex motions.
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