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ABSTRACT Space robots are in free-flying or free-floating mode, motions especially attitude motion
of the base and motion of the manipulator are strongly coupled. Regarding to the uncertainties of the
target’s inertial parameters and variation of the base’s inertial parameters, this paper presents a novel online
one-step parameter identification method to estimate all the inertial parameters of the target and the base
simultaneously. Momentum- and force-based identification equations are derived from the linear and angular
momentum equations of the system and their derivation, and the modified recursive least square method
is used for solving the equations efficiently. Compared with the traditional methods, the momentum-based
equation can estimate all the inertial parameters of the base and the target simultaneously at each steps, while
the force-based equation does not require torque of the joints. To verify the validity and feasibility of the
proposed methods, 2D and 3Dmodels with different targets and initial velocities are simulated and analyzed.
The results show that all the estimated values show convergence to their ideal values and the method can be
easily achieved online via recursive techniques.

INDEX TERMS Space robot, parameter identification, target and base, online one-step.

I. INTRODUCTION
According to the Orbital Debris Quarterly News from The
National Aeronautics and Space Administration (NASA),
number of space debris is constantly increasing [1], and
fragmentation or collision of them would enlarge their popu-
lation, even if all space launches are stopped immediately [2].
Every year, it is necessary to remove at least five at 1 to
8 ton range debris to keep the population of the debris stable
for further space missions [3]. Researchers have devoted a
lot to space debris removal missions, details and comparison
of different removal methods are showed [4]. At April 2nd,
2018, the RemoveDebris Platform was launched into Inter-
national Space Station (ISS); technologies including being
deployed from ISS, snaring space debris by net, reconnais-
sance and navigation test have been demonstrated, details can
be found [5].

The associate editor coordinating the review of this manuscript and
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The space robot, robotic manipulator (arm) mounted on
the servicing satellite (base), is regarded as one of the most
promising methods for space debris removal missions [6].
Space robots including the ETS-VII and the Orbit Express
have been launched successfully [7], [8]. For a space robot,
the base is free-floating or free-flying, motion of the manipu-
lator and the base is strongly coupled, estimating the inertial
parameters of the captured unknown target is beneficial for
path planning, as well as the control system [9].

Generally, there are two kinds of estimation methods for
space robots, the momentum- and the force-based methods.
Momentum-based method, which is based on the momentum
theorem, only requires position, velocity of the base and
angle, angular velocity of the joints. It was first conducted
by Murotsu [10], with the assumption that the initial linear
and angular momentum of the whole system including the
base and the target are zero after capture. Thai et al. pre-
sented the method for estimating the inertial parameters of
the unknown target in postcapture, initial linear momentum of
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TABLE 1. Comparison of the different meethods.

the whole system is zerowhile angular momentum is not [11].
Zhang et al. conducted an identification technique for a space
robot with unknown target, initial angular or linear momen-
tum of the system is not zero [12], [13]. Ma et al. used motion
of the robotic arm to estimate the inertial parameters of the
base [14], [15]. With the combination of momentum theorem
and integration of the contact force, a two-step identifica-
tion equation was derived by Chu to avoid the accumulated
errors of measurements, and recursive least square (RLS)-
affine projection sign algorithmwas used for the equation [9].
Feng et al. only used the conservation of angular momentum
to derive the identification equation, and the probability dis-
tribution evolution algorithm was used to identify the inertial
parameters of the target [16]. Generally, the momentum-
based method can only estimate inertial parameters of one-
body (the base or the target) at each steps.

Compared with the momentum-based method, the force-
based method utilizes dynamics of the system. Same as
the momentum-based method, the force-based method was
also first conducted by Murotsu [10]. Besides space robots,
the force-based method can also be applied for ground robots
and the identification technique can estimate inertial param-
eter of more than one body at each steps. For example,
with the help of matrix set, Chashmi et al. derived the
identification equation for estimating inertial parameters of
all the bodies, including the base and all the links of the
arm, the equation was written in the linear regression form
which can be easily solved by standard methods including
RLS method [17]. Ayusawa et al. conducted the estimation
equation for the base’s parameters (the minimal set of inertial
parameters that describes the dynamics of the system) of the
legged systems [18]. Xu et al. utilized the combination of the
force- and the momentum-based methods to estimate inertial
parameters of all the bodies step by step [19], [20]. The
whole system was regarded as one-body first, as all the joints
were considered locked; then the thrusters begun to work
for maneuvering, and the estimation equation for the one-
body was derived from the Newton-Euler equation, which
belongs to the force-based method. At every sub sequential
step only one joint was driven to move along the desired
trajectory under the free-floating mode, and the momentum-
based identification equation was used to estimate the inertial
parameters of the selected body step by step. The force-based
method requires torque of the joints, which is difficult to be
measured accurately considering dead-zone or friction of the

joints. Comparison of the momentum- and the force-based
methods is showed in Table.1.

Measurements of the momentum-based methods gener-
ally show higher accuracy, because acceleration of the base
and angular acceleration of the joints are often obtained by
numerical difference of velocity or angular velocity, which
are more sensitive to noise, but the momentum-based method
can only identify inertial parameters of a single body (the
base or the target). Inertial parameters of all the bodies can
be estimated, but only inertial parameters of the selected
one can be estimated at each steps [19], [20]. Dynamics of
multibody systems can bewritten in a linear formwith respect
to the inertial parameters [21], besides motion of the system,
if force and torque of the bodies and torque of the joints
can be measured, inertial parameters of all the bodies can be
identified. However, estimated results of the linear form from
the equation do not show convergence to their ideal values
in some situations [22], [23]. So, researchers transformed
the identification problem into optimization problem, which
can be solved by optimization method. Vyasarayani et al.
solved the identification equation by homotopy optimiza-
tion method, the method was useful for estimating nonlinear
parameters with partial measurements [24]. For the method
presented by Sousa, physical feasibility of the estimated
inertial parameters was written as the framework of linear
matrix inequality, the estimation equation can be solved with
semidefine programming techniques [25]. Lauß adapted the
discrete adjoint method for discretization of Hilber-Hughes-
Taylor-solver to obtain the optimal solution of the identifica-
tion equation [26]. Particle swarm optimization method was
used to solve the identification equation by Xu [19], [20]. The
optimization method plays significant roles in practice, but
they are of high computational complexity.

For space robots, because of fuel consumption, payload
deployment and such, inertial parameters of the base would
change [14], [15]; therefore they cannot be obtained accu-
rately from the ground experiments. It is essential to estimate
the inertial parameters of the base as well as the captured
unknown target to improve the performance. This paper
presents an online one-step momentum-based method for
identifying the base’s and the target’s inertial parameters
simultaneously. Based on it, the force-based method, which
does not require torque of the joints of the arms, is also con-
ducted. Regarding to the difficulty in measuring torque of the
joints, the presented method surpasses the traditional ones.
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Through out the entire process, the identification equation
is written in the linear form with respect to the inertial
parameters being identified, and the modified RLS method
conducted by Zhang [13] is used to estimate all the inertial
parameters simultaneously at every step. This paper focuses
on the inertial parameter identification of the base with the
target after capture, the contact and orbital dynamics are not
considered here.

After introduction to the background, kinematics and
dynamics of a space robot will be introduced for further
analyzing, and the momentum-based method for estimating
the inertial parameters of the base and the target will be
derived in Section III, followed by the force-based method.
Next, the modified RLS method is introduced basically. The
2D and the 3D models with different initial velocities are
simulated to verify the identification technique.

II. MODELING OF SPACE ROBOTS
To present the momentum- and force-based identification
equations, the basic information about recursive kinematic
and dynamics of a space robot is introduced first.

A. REGULAR LABELLING
Regular labelling [27] is introduced here to conduct recursive
kinematics and dynamics in the next part. The number of
bodies and joints are regularly labelled, or precisely, body j is
connected to its inboard body i by joint j and i < j as showed
in Fig.1. Suppose there are n bodies for the whole system, the
base is labelled as 1 and the target is labelled as n.

FIGURE 1. Diagram of two adjacent bodies.

It is defined that:
Aj andAi: the directional cosine matrices of j−th and i−th

body;
ωj and ωi: the absolute angular velocity of j− th and i− th

body;
β j and β i: the absolute angular acceleration of j − th and

i− th body;
rj and ri: the position vectors of the mass center of j − th

and i− th body;
vj and vi: the velocity of j− th and i− th body;
aj and ai: the acceleration of j− th and i− th body;
Cj and Ci: the mass centers of j− th and i− th body;
Q and P: the joint definition points on body j and i;
hj: the relative motion of the joint j.

Generally, the parameter is described in the inertial frame,
and the superscript ′means that it is in the corresponding body
frame.

B. KINEMATICS AND DYNAMICS
As illustrated in Fig.1, relationship between the kinematical
and the dynamical parameters of the i − th and j − th body
can be written as:

ri = rj + hi + ρ
Q
j + ρ

P
i (1)

vi = vj + ḣi + ωj × hi + ωj × ρ
Q
j + ωi × ρ

P
i (2)

ai = aj + ḧi + β j × hi + 2ωj × ḣi

+β j × ρ
Q
j + ωj × ωj × ρ

Q
j + β i × ρ

P
i

+ωj × ωj × hi + ωi × ωi × ρPi (3)

Ai = AjAi
j (4)

ωi = ωj + ω
i
j (5)

β i = β j + β
i
j (6)

Angular momentum P(t) and linear momentum L(t) of the
whole system can be written as:

P(t) =
n∑
i=1

mivi,t (7)

L(t) =
n∑
i=1

Ii,tωi,t + miri,t × vi,t (8)

wheremi and Ii are mass and inertia tensor of i− th body, and
t refers to time.

III. IDENTIFICATION EQUATION
Here, it is assumed that only the inertial parameters of the
base and the target are going to be identified. For the arm,
all the inertial and geometrical parameters are known, while
for the base, position of the sensor is regarded as the assumed
mass center.

A. MOMENTUM-BASED METHOD
When external force and torque are applied, the correspond-
ing linear and angular momentum can be written as:

P(t)− P(t0) =
∫ t

t0

i=n∑
i=1

Fi(τ )dτ (9)

L(t)− L(t0) =
∫ t

t0

∑i=n

i=1
Mi(τ )dτ

+

∫ t

t0

∑i=n

i=1
ri(τ )× Fi(τ )dτ (10)

where Fi and Mi refer to the external force and torque of the
i− th body.

1) IDENTIFICATION OF MASS AND MASS CENTER
Combine Eqs.(7) with (9) together, after variable separa-
tion with mass and mass centers of the base and the target,
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the identification equation for them can be written as:

[B(t)− B(t0)]


m1
m1b′1
mn
mnb′n

 = C(t)− C(t0) (11)

where m1 and mn are the mass of the base and the target, b′1
is the position vector from the sensor (assumed mass center)
to mass center of the base in the body frame of the base, b′n is
the position vector from the end-effector to mass center of the
target in the body frame of the target. Details of the functions
in Eq.(11) are as follows:

B(t) =
[
v1,t ω̃1,tA1,t vn,t ω̃n,tAn,t

]
(12)

C(t) =
∫ t

t0
Fsum(τ )dτ −

n−1∑
i=2

mi(t)vi(t) (13)

ṽ indicates the following cross matrix for a vector
v = [v1, v2, v3]T .

ṽ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (14)

2) IDENTIFICATION OF INERTIA TENSOR
Suppose only the base is equipped with gas jet thrusters, and
position of the thrusters relative to the sensors in the body
frame of the base r′jet is known, then the control force term in
the right side of Eq.(10) can be written as:∫ t

t0

i=n∑
i=1

ri(τ )× Fi(τ )dτ =
∫ t

t0
r1(τ )× F1(τ )dτ

=

∫ t

t0
[rb(τ )+A1(τ )r′jet ]×F1(τ )dτ

(15)

Via Eqs.(8) and (10), after variable separation, the identi-
fication equation for inertial tensor of the base and the target
can be written as:

[D(t)− D(t0)]
[ [

I′1#
][

I′n#
] ] = E(t)− E(t0)

−H1 (t)m1J
(
b′1
)

−Hn (t)mnJ
(
b′n
)

(16)

where

D(t) =
[
A1,t

[
#(AT

1,tω1,t )
]
An,t

[
#(AT

n,tωn,t )
] ]
(17)

E(t) =
∫ t

t0
{Msum(τ )+ [rb(τ )+ A1(τ )r′jet ]

×F1(τ )}dτ

−

∑i=n−1

i=2
[miri(t)× vi(t)+ Ii(t)ωi(t)]

(18)

miri,t × vi,t = Hi (t)miJ
(
b′i
)
(i = 1 or n) (19)

[#•] indicates the following operation matrix for a vector v =
[v1, v2, v3]T .

[#v] =

 v1 v2 v3 0 0 0
0 v1 0 v2 v3 0
0 0 v1 0 v2 v3

 (20)

The vector [•#] indicates the following operation vector

[I#] =
[
I11 I12 I13 I22 I23 I33

]
(21)

for a symmetric matrix

I =

 I11 I12 I13
I12 I22 I23
I13 I23 I33

 (22)

J
(
b′i
)
=

[
1 b′x b

′
y b
′
z b
′
x
2 b′xb

′
y b
′
xb
′
z b
′
y
2 b′yb

′
z b
′
z
2
]T

(23)

Details of the matrices H1(t) and Hn(t) are showed in
APPENDIX A.

B. FORCE-BASED METHOD
According to [28], derivation of the directional cosine matrix
with respect to time is:

dA
dt
= ω̃A (24)

So, it is easily written that:

d(Iω)
dt
=
d(AI′A′ω)

dt
= Iβ + ω̃Iω + Iω̃ω (25)

Derivate Eqs.(7) and (9) with respect to time together:
i=n∑
i=1

Fi,t =
i=n∑
i=1

miai,t (26)

With the help of Eqs.(24) and (25), derivate Eq. (10) with
respect to time, it can be obtained that:∑n

i=1
Mi,t +

∑n

i=1
ri,t × Fi,t =

∑n

i=1
Ii,tβ i,t

+ωi,t × (Ii,tωi,t )+ miri,t × ai,t (27)

As with the momentum-based method, the force-based
identification equations can also be obtained after variable
separation. The identification equations for mass, mass center
and inertia tensor are obtained separately.

1) IDENTIFICATION OF MASS AND MASS CENTER
The identification equation for mass and mass centers of the
base and the target is showed first. Via Eq.(26), after variable
separation, the identification equation can be written as:

G(t)


m1
m1b′1
mn
mnb′n

 = K(t) (28)

where

G(t) = [a1,t (β̃1,t + ω̃1,t ω̃1,t )A1 an,t (β̃n,t + ω̃n,t ω̃n,t )An]

(29)

K(t) =
n∑
i=1

Fi,t −
n−1∑
i=2

miai (30)
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2) IDENTIFICATION OF INERTIA TENSOR
The identification equation for inertia tensor of the base
and the target is showed here, as with the momentum-based
method, via Eq.(27), it can be written as:

Q(t)
[ [

I′1#
][

I′n#
] ] = R(t)− S1 (t)m1J

(
b′1
)
− Sn (t)mnJ

(
b′n
)
(31)

where

Q(t) =
[
Q1(t) Qn(t)

]
(32)

R(t) =
∑n

i=1
Mi,t +

∑n

i=1
ri,t × Fi,t

−

∑n−1

i=2
[Ii,tβ i,t + ω̃i,tIi,tωi,t

+ Ii,t ω̃i,tωi,t + miri,t × ai,t ] (33)

Details of the matrices Q1(t), Qn(t), S1(t) and Sn(t) are
showed in APPENDIX B and APPENDIX C. Compared
with the momentum-based method Eqs.(11) and (16), for
the force-based method Eqs.(28) and (31), integration is not
required here. At every step of identification, for the force-
based method, origin of the reference frame is the position
of the sensor of the base; which varies with motion of the
base, while for the momentum-based method, origin of the
reference frame is origin of inertial frame because of the inte-
gration term in Eq.(18).

IV. SOLUTION METHOD
The traditional RLS method can be used in real time applica-
tions because of its low computation complexity [29], how-
ever, when it is utilized to solve the identification equations
as Eqs.(11) and (16) or (28) and (31), they can only be solved
by two steps. The modified RLS method has been presented
by Zhang et al. [13], which can be used to solve Eqs.(11)
and (16) or (28) and (31) in one-step. The method is utilized
here to obtain the inertial parameters of the base and the
target simulataneously, it is briefly introduced here. For the
identification equations presented in this paper Eqs.(11) and
(16) or (28) and (31), the standard form can be written as:

Aµ = b (34)

φθ = y+ ψD (µ) (35)

where the regressor matrices A, φ, the output vectors b, y
and the matrix ψ vary with time. Here, µ represents m1,
b′1, mn and b′n, while θ represents the estimated values of
inertia tensor

[
I′1#
]
and

[
I′n#
]
. The term ψD (µ) is from the

second-order term m1r1×v1 and mnrn×vn in Eq.(8) for the
momentum-based method, and their derivates in Eq.(27) for
the force-based one.
For the traditional RLS method, estimated values of µ are

obtained first by solving Eq.(34), then the RLS method is
applied again to estimate values of θ . However, estimating all
the inertial parameters by two-step method is not beneficial
for online identification because it would cost more time for
the space robot to move or more storage to save the data.
Suppose there are N sets of data, and the results obtained

TABLE 2. Parameters of the 2D model.

by the traditional two-step identification technique are µN
and θN separately. If a new set of data is applied, the corre-
sponding estimated results are µN+1 and θN+1. It is obvious
that µN+1 can be obtained easily with one-step iteration by
the traditional RLS method. However, for obtaining θN+1,
iteration needs to be done from beginning again according to
the original two-step method. To avoid it, the modified RLS
method is showed here and θa,b is introduced, the subscript a
means that the result is obtained after a-step iteration, while
b means that the estimated result corresponds to µb.
According to the traditional RLS method [13], [29], for

Eq.(35), it can be easily written that:

θN ,N+1 − θN ,N =M (N )
[
D
(
µN+1

)
− D

(
µN
)]

(36)

and

θN−1,N − θN−1,N−1

=M (N − 1)
[
D
(
µN
)
− D

(
µN−1

)]
(37)

where

M (N ) =
(
I−KNφ

T
N

)
M (N − 1)+KNψN (38)

andM (0) = 0.

V. SIMULATION
To verify the identification technique, numerical simulations
of different scenarios are carried out in this section. In all
the scenarios, it is assumed that the end-effector grasps the
target firmly. The 2D and the 3D models are illustrated
in Figs. 2 and 3, and parameters of the 2D and the 3D models
are showed in Tables. 2 and 3.

FIGURE 2. 2D simulation model.

The recursive dynamics presented by Wittenburg [27] is
used and simulations are run on the C platform. The fourth-
order Runge-Kutta numerical integration method is used with
the time step of 10−3 s, while the sampling period for the
measurements is 0.1 s. The control scheme [12], which uti-
lizes the motion of the manipulator to stabilize the base’s
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FIGURE 3. 3D simulation model.

TABLE 3. Parameters of the 3D model.

attitude rapidly is used here. Designed attitude angles of the
base follow:

q̈+KDq̇+KPq = 0 (39)

when the coefficient matrices KD and KP are symmetric and
positive defined, the attitude angles converge to zero (the
desired attitude) finally. The bounded control torque M and
force F are used to balance the angular and linear momentum
of the system. Which follows:

M =


−Mmax , if L ≥ Lmax
KM · L if L < Lmax and L ≥ −Lmax
Mmaxd if L ≤ −Lmax

(40)

F =


−Fmax , if P ≥ Pmax
KF · P, if P < Pmax and P ≥ −Pmax
Fmax , if P ≤ −Pmax

(41)

where Fmax = 10N, KF = −1/s, Pmax = 10 kgm/s,
Mmax = 10Nm, KM = −1/s and Lmax = 10 kgm2/s.
For the 2D model, initial angular velocity of the base is
ω1 = 0.1 rad/s while initial velocity is v1 = [1, 2]T m/s.
To stabilize the base, KD = diag(

√
2
2 ) and KP = diag( 14 ).

It is supposed that the initial estimated inertial parameters of
the base is m1 = 600 kg, b1 = [0, 0]T m and I1 = 100 kgm2,
while for the target mn = 100 kg, bn = [0.1, 0.1]T m and
In = 10 kgm2 in all the scenarios. The initial identification
matrix isPlin = diag(106, 106, 106) formass andmass center,
and Pang = diag(106) for inertia tensor. For the 3D model,
initial angular velocity isω = [0.1, 0.2, 0.3]T rad/s and initial
velocity is v = [10, 20, 30]T m/s. The initial assumed inertial
parameters of the base are m1 = 600 kg, b′1 = [0, 0, 0]T m
and I′1 = diag(100, 100, 100) kgm2, while for the target,
they are mn = 100 kg, b′n = [0.1, 0.1, 0.1]m and I′n =
diag(10, 10, 10) kgm2.

A. 2D MODEL
Results of the 2D model with small, medium and large tar-
gets are showed first. For the medium target, results of the
estimated values with respect to time are showedwhile for the
large and the small targets, only the final estimated values and
the transit time of the estimated parameters are showed for
simplification. Regarding to the influence of the integration
term in the identification equation Eq.(18), situations where
the 2D model with different initial velocities after capturing
the medium target are simulated, and relative errors of the
final estimated values with respect to the initial velocity of
the base are showed.

FIGURE 4. Unitized estimated inertial parameters of the
momentum-based method.

1) MEDIUM TARGET
Estimated results of the medium target are showed
in Figs. 4 and 5. To compare the transit time of different
estimated parameters, the estimated values are unitized by
dividing their ideal values, in Figs. 4 and 5, the unitized value
equals to 1means that the corresponding parameter converges
to its ideal value.

As illustrated in Figs. 4 and 5, all the estimated parame-
ters converge to their ideal values, for the momentum-based
method, the final estimated values are m1 = 500.00 kg,
b′1,x = 0.10m, b′1,y = −0.10m, I ′1 = 83.61 kgm2,
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FIGURE 5. Unitized estimated inertial parameters of the force-based
method.

mn = 250.00 kg, b′n,x = 0.25m, bn,y = 0.10m and
I ′n = 10.41 kgm2, while for the force-base method, m1 =

500.01 kg, b′1,x = 0.10m, b′1,y = −0.10m, I ′1 = 83.62 kgm2,
mn = 249.99 kg, b′n,x = 0.25m, b′n,y = 0.10m and I ′n =
10.34 kgm2. In Figs. 4 and 5, the areas between the black
dotted lines mean that the relative error of the estimated value
is less than 0.1%.

The time in Figs. 4 and 5 is the transit timewhen the relative
error of the estimated result is less than 0.1%. However,
in Fig. 5, the transit time for I ′n is not showed, because its final
estimated value is 10.34 kgm2, the corresponding relative
error is 0.67%, which is larger than 0.1%. It can be seen
that the transit time of inertia tensor especially I ′n is longer
both in the momentum- and force-based methods. This is
because that results of the estimated mass and mass center
have influence on the estimated values of inertia tensor as in
the identification equation of inertia tensor Eqs. (16) and (28).

The momentum-based method provides better estimation
results especially I ′n, because norm of the change of velocity
||v(t) − v(0)|| is larger than the norm of acceleration, so the
elements of the regressor matrix in the identification equation
Eq.(16) are larger with the same accuracy of the data, it has
better results. Better estimated mn and b′n result in better
identified I ′n. In the momentum- and force-based methods,

the transit time for the inertial parameters of the base is
shorter than that of the target, because the initial values of
the base’s identified parameters are closer to the ideal ones.

2) SMALL AND LARGE TARGET
Identification results of the small and the large targets
from the momentum- and force-based methods are showed
in Table. 4 and 5, values in the brackets are the transit time.
The transit time of I ′n for the force-based method is not
showed, because the relative error of the final estimated value
is 0.6%, which is larger than 0.1%. As with the estimated
results of the medium target, the momentum-based method
provides better estimation, especially for I ′n, and often it costs
more time for inertia tensor to converge to the ideal value
especially I ′n. For the 2D model, in simulation the initial
inertial parameters of the base and the target are supposed
to be same, which are closer to the ideal values of the small
target, so the transit time of the small target is the shorter in
generally.

TABLE 4. Estimated values of the small target.

TABLE 5. Estimated values of the large target.

3) ANALYSE
In Eq.(18), we can see that the estimated mass, mass center,
and position of the base and the target all have influence
on the identification of inertia tensor of the base and the
target. Situations for the medium target with different initial
velocities are simulated. To show the influence more obvi-
ously, the maximal magnitude of the control force is much
smaller, 0.1N. In Figs. 4 and 5, the time consumption that the
estimated values converge to the ideal values is less than 20 s,
so the estimated results at 60 s are analyzed. Figs. 6-9 show
the relative error of the estimated values with the different
velocity of the base.

In Figs. 6-9, for the two methods, error of the estimated
mass and mass center does not vary dramatically with the
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FIGURE 6. Relative error of the estimated inertial parameters of the base
for the momentum-based method with different initial velocity.

FIGURE 7. Relative error of the estimated inertial parameters of the
target for the momentum-based method with different initial velocity.
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FIGURE 8. Relative error of the estimated inertial parameters of the base
for the force-based method with different initial velocity.

initial velocity, while the estimated inertia tensor shows
different results. For the momentum-based method, larger
initial velocity of the base would make larger error of the

FIGURE 9. Relative error of the estimated inertial parameters of the
target for the force-based method with different initial velocity.

estimated I ′n generally, the minimal relative error is about
6.6 × 10−2% with the initial velocity v = [0, 10]T m/s,
while the maximal relative error is about 7.2%with the initial
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TABLE 6. Estimated values of the 3D model.

velocity v = [200, 200]T m/s. However, for the force-based
method, the initial velocity of the base does not show obvious
influence, it can be seen that in most situations the relative
errors are same. The reason is that, for the momentum-
based method, in the identification equation for inertia tensor
Eqs.(16)-(23), the change of angular momentum is required,
so origin of the reference frame is same all the time, while
for the force-based method, in every identification step,
the assumedmass center of the base is selected as origin of the
reference frame. For the momentum-based method, the norm
of rn increases with the increase of initial velocity, with same
accuracy of the estimated mass and mass center, larger rn
would result in larger error as showed in the right hand side
of the Eq.(18), then larger error of the estimated I ′n would be
produced. However, for I ′1, the estimated value is much closer
to the ideal value, thus it converges to the ideal value early,
the phenomenon is not so obvious, but it still can be seen
that the best estimated results locate at the situation where
the initial velocity is zero.

B. 3D MODEL
The identification results from the momentum- and force-
based methods are showed in Table. 6. As with the results of
the 2D model, the values in brackets are the transit time that
relative error of the estimated value becomes less than 1%.
For b′n,y, the ideal value is 0, here the transit time means that
the absolute value of the estimated b′n,y is less than 10−8.
All the estimated values showed convergence to their ideal
values if enough time was given. Generally, for the force-
based method; especially for the inertial parameters of the
base, the transit time is significantly shorter. The reason for
this is that in simulation, attitude motion of the base is not as
obvious as the 2D model, so the transit time is longer.

VI. CONCLUSION
Bases of space robots are free-floating or free-flying, motions
especially attitude motion of the base and motion of the
manipulator are strongly coupled. Having knowledge about
the inertial parameters of the whole system, including the

robot and the target, is essential for the precise control of
space robots. This paper presents an identification technique
for estimating all the inertial parameters of the base and the
unknown target simultaneously for space robots in postcap-
ture. The momentum-based method is derived from the angu-
lar and linear momentum equations of the space robot, while
the force-based one is from their derivatives. To estimate all
the inertial parameters in one step, the second-order term
m1r1×v1 andmnrn×vn and their derivatives are written as the
product of the function of time and function of the estimated
mass and mass centers in the identification equations, and
the modified RLS method is utilized. Compared with the
traditional momentum-based method, inertial parameters of
the base and the target can be estimated simultaneously for
the method in this paper. The presented force-based method
surpasses the traditional ones in terms of requirement: torque
of the joints is not required to be known. All the inertial
parameters can be identified by the recursive method, which
is beneficial for the online identification.

APPENDIX A
DETAILS OF THE MATRICES H1(t ) AND Hn(t )
When i = 1 orn, it is defined that:

Ai (t) =

 ai,t,1,1 ai,t,1,2 ai,t,1,3
ai,t,2,1 ai,t,2,2 ai,t,2,3
ai,t,3,1 ai,t,3,2 ai,t,3,3

 (42)

ωi (t) =
[
ωi,t,x ωi,t,y ωi,t,z

]T (43)

β i (t) =
[
βi,t,x βi,t,y βi,t,z

]T (44)

ri (t) =
[
ri,t,x ri,t,y ri,t,z

]T (45)

vi (t) =
[
vi,t,x vi,t,y vi,t,z

]T (46)

ai (t) =
[
ai,t,x ai,t,y ai,t,z

]T (47)

r1, v1 and a1 are the position, velocity and acceleration of the
sensor, not the centeriod of the base, while rn, vn and an are
the position, velocity and acceleration of capture point on the
end-effector.
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For H1,t and Hn,t ,

Hi(t) (t) =
(
hi,t
)
m×l (48)

where

hi,t,1,1 = ri,t,yvi,t,z − ri,t,zvi,t,y
hi,t,1,2 = ai,t,2,1vi,t,z − ai,t,3,1vi,t,y

+ ri,t,y(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ri,t,z(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

hi,t,1,3 = ai,t,2,2vi,t,z − ai,t,3,2vi,t,y
+ ri,t,y(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ri,t,z(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

hi,t,1,4 = ai,t,2,3vi,t,z − ai,t,3,3vi,t,y
+ ri,t,y(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

+ ri,t,z(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

hi,t,1,5 = ai,t,2,1(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,3,1(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

hi,t,1,6 = ai,t,2,2(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,3,2(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

hi,t,1,7 = ai,t,2,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

+ ai,t,3,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

hi,t,1,8 = ai,t,2,2(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,3,2(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

hi,t,1,9 = ai,t,2,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,2,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

+ ai,t,3,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,3,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

hi,t,1,10 = ai,t,2,3(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

+ ai,t,3,3(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

hi,t,2,1 = −ri,t,xvi,t,z + ri,t,zvi,t,x
hi,t,2,2 = ai,t,3,1vi,t,x − ai,t,1,1vi,t,z

− ri,t,x(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ri,t,z(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

hi,t,2,3 = ai,t,3,2vi,t,x − ai,t,1,2vi,t,z
−ri,t,x(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ri,t,z(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

hi,t,2,4 = ai,t,3,3vi,t,x − ai,t,1,3vi,t,z
− ri,t,x(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

+ ri,t,z(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

hi,t,2,5 = ai,t,3,1(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

− ai,t,1,1(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

hi,t,2,6 = ai,t,3,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

− ai,t,1,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

− ai,t,1,2(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,3,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

hi,t,2,7 = ai,t,3,3(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

− ai,t,1,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

− ai,t,1,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,3,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

hi,t,2,8 = ai,t,3,2(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

− ai,t,1,2(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

hi,t,2,9 = ai,t,3,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

− ai,t,1,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

− ai,t,1,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,3,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

hi,t,2,10 = ai,t,3,3(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

− ai,t,1,3(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

hi,t,3,1 = ri,t,xvi,t,y − ri,t,yvi,t,x
hi,t,3,2 = ai,t,1,1vi,t,y − ai,t,2,1vi,t,x

− ri,t,x(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

− ri,t,y(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

hi,t,3,3 = ai,t,1,2vi,t,y − ai,t,2,2vi,t,x
− ri,t,x(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

− ri,t,y(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

hi,t,3,4 = ai,t,1,3vi,t,y − ai,t,2,3vi,t,x
− ri,t,x(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

− ri,t,y(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

hi,t,3,5 = − ai,t,1,1(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

− ai,t,2,1(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

hi,t,3,6 = − ai,t,1,2(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

− ai,t,1,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

− ai,t,2,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

− ai,t,2,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

hi,t,3,7 = − ai,t,1,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

− ai,t,1,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

− ai,t,2,3(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

− ai,t,2,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

hi,t,3,8 = − ai,t,1,2(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

− ai,t,2,2(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

hi,t,3,9 = − ai,t,1,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

− ai,t,1,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

− ai,t,2,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

− ai,t,2,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

hi,t,3,10 = − ai,t,1,3(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

− ai,t,2,3(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)
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APPENDIX B
DETAILS OF THE MATRICES Q1(t ) AND Qn(t )
Iiβ i + ω̃iIiωi + Iiω̃iωi = Qi

[
I′i#
]
, and Qi can be explained

as:

Qi(t) =
(
qi,t
)
m×l

qi,t,1,1 = ai,t,1,1ai,t,1,1βi,t,x
+ ai,t,1,1ωi,t,z(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

− ai,t,1,1ωi,t,y(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ 2ai,t,1,1ωi,t,x(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,2,1ωi,t,y(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,3,1ωi,t,z(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,1,1ai,t,2,1βi,t,y + ai,t,1,1ai,t,3,1βi,t,z
qi,t,1,2 = ωi,t,z[ai,t,1,2(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,1,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)]

−ωi,t,y[ai,t,1,2(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,1,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)]

+ 2ωi,t,x[ai,t,1,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,1,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)]

+ωi,t,y[ai,t,2,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,2,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)]

+ωi,t,z[ai,t,3,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,3,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)]

+βi,t,y(ai,t,1,1ai,t,2,2 + ai,t,1,2ai,t,2,1)

+βi,t,z(ai,t,1,1ai,t,3,2 + ai,t,1,2ai,t,3,1)

+ 2ai,t,1,1ai,t,1,2βi,t,x
qi,t,1,3 = ωi,t,z[ai,t,1,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,1,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)]

−ωi,t,y[ai,t,1,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,1,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

+ 2ωi,t,x[ai,t,1,3(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,1,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)]

+ωi,t,y[ai,t,2,3(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,2,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)]

+ωi,t,z[ai,t,3,3(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,3,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)]

+βi,t,y(ai,t,1,1ai,t,2,3 + ai,t,1,3ai,t,2,1)

+βi,t,z(ai,t,1,1ai,t,3,3 + ai,t,1,3ai,t,3,1)

+ 2ai,t,1,1ai,t,1,3βi,t,x
qi,t,1,4 = ai,t,1,2ai,t,1,2βi,t,x

+ ai,t,1,2ωi,t,z(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

− ai,t,1,2ωi,t,y(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ 2ai,t,1,2ωi,t,x(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,2,2ωi,t,y(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,3,2ωi,t,z(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,1,2ai,t,2,2βi,t,y + ai,t,1,2ai,t,3,2βi,t,z

qi,t,1,5 = ωi,t,z(ai,t,1,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,1,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y))

−ωi,t,y(ai,t,1,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,1,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z))

+ 2ωi,t,x(ai,t,1,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,1,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z))

+ωi,t,y(ai,t,2,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,2,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z))

+ωi,t,z(ai,t,3,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,3,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z))

+βi,t,y(ai,t,1,2ai,t,2,3 + ai,t,1,3ai,t,2,2)

+βi,t,z(ai,t,1,2ai,t,3,3 + ai,t,1,3ai,t,3,2)

+ 2ai,t,1,2ai,t,1,3βi,t,x
qi,t,1,6 = ai,t,1,3ai,t,1,3βi,t,x

+ ai,t,1,3ωi,t,z(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

− ai,t,1,3ωi,t,y(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

+ 2ai,t,1,3ωi,t,x(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

+ ai,t,2,3ωi,t,y(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

+ ai,t,3,3ωi,t,z(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

+ ai,t,1,3ai,t,2,3βi,t,y + ai,t,1,3ai,t,3,3βi,t,z
qi,t,2,1 = ai,t,2,1ai,t,2,1βi,t,y

−ai,t,1,1ωi,t,x(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,2,1ωi,t,z(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

− 2ai,t,2,1ωi,t,y(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,2,1ωi,t,x(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

− ai,t,3,1ωi,t,z(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,1,1ai,t,2,1βi,t,x + ai,t,2,1ai,t,3,1βi,t,z
qi,t,2,2 = ωi,t,z(ai,t,2,2[ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)]

−ωi,t,x[ai,t,1,2(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,1,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)]

− 2ωi,t,y[ai,t,2,2(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,2,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)]

+ωi,t,x[ai,t,2,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,2,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)]

−ωi,t,z(ai,t,3,2[ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)]

+βi,t,x(ai,t,1,1ai,t,2,2 + ai,t,1,2ai,t,2,1)

+βi,t,z(ai,t,2,1ai,t,3,2 + ai,t,2,2ai,t,3,1)

+ 2ai,t,2,1ai,t,2,2βi,t,y
qi,t,2,3 = ωi,t,z[ai,t,2,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)]

−ωi,t,x[ai,t,1,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,1,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

− 2ωi,t,y[ai,t,2,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)
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+ ai,t,2,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

+ωi,t,x(ai,t,2,3[ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,2,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)]

−ωi,t,z[ai,t,3,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

+βi,t,x(ai,t,1,1ai,t,2,3 + ai,t,1,3ai,t,2,1)

+βi,t,z(ai,t,2,1ai,t,3,3 + ai,t,2,3ai,t,3,1)

+ 2ai,t,2,1ai,t,2,3βi,t,y
qi,t,2,4 = ai,t,2,2ai,t,2,2βi,t,y

− ai,t,1,2ωi,t,x(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,2,2ωi,t,z(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

− 2ai,t,2,2ωi,t,y(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,2,2ωi,t,x(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

− ai,t,3,2ωi,t,z(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,1,2ai,t,2,2βi,t,x + ai,t,2,2ai,t,3,2βi,t,z
qi,t,2,5 = ωi,t,z[ai,t,2,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,2,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)]

−ωi,t,x[ai,t,1,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,1,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

− 2ωi,t,y[ai,t,2,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,2,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

+ωi,t,x[ai,t,2,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,2,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)]

−ωi,t,z[ai,t,3,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,3,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)]

+βi,t,x(ai,t,1,2ai,t,2,3 + ai,t,1,3ai,t,2,2)

+βi,t,z(ai,t,2,2ai,t,3,3 + ai,t,2,3ai,t,3,2)

+ 2ai,t,2,2ai,t,2,3βi,t,y
qi,t,2,6 = ai,t,2,3ai,t,2,3βi,t,y

− ai,t,1,3ωi,t,x(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

+ ai,t,2,3ωi,t,z(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

− 2ai,t,2,3ωi,t,y(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

+ ai,t,2,3ωi,t,x(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

−ai,t,3,3ωi,t,z(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

+ ai,t,1,3ai,t,2,3βi,t,x + ai,t,2,3ai,t,3,3βi,t,z
qi,t,3,1 = ai,t,3,1ai,t,3,1βi,t,z

+ ai,t,1,1ωi,t,x(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1ωi,t,y(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ 2ai,t,3,1ωi,t,z(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

− ai,t,3,1ωi,t,y(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1ωi,t,x(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,1,1ai,t,3,1βi,t,x + ai,t,2,1ai,t,3,1βi,t,y
qi,t,3,2 = ωi,t,x(ai,t,1,2(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,1,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y))

+ωi,t,y(ai,t,2,2(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y))

+ 2ωi,t,z(ai,t,3,2(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,3,1(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y))

−ωi,t,y(ai,t,3,2(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z))

+ωi,t,x(ai,t,3,2(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,3,1(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z))

+βi,t,x(ai,t,1,1ai,t,3,2 + ai,t,1,2ai,t,3,1)

+βi,t,y(ai,t,2,1ai,t,3,2 + ai,t,2,2ai,t,3,1)

+ 2ai,t,3,1ai,t,3,2βi,t,z
qi,t,3,3 = ωi,t,x[ai,t,1,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,1,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)]

+ωi,t,y[ai,t,2,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,2,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)]

+ 2ωi,t,z(ai,t,3,3(ai,t,2,1ωi,t,x − ai,t,1,1ωi,t,y)

+ ai,t,3,1(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)]

−ωi,t,y(ai,t,3,3(ai,t,3,1ωi,t,x − ai,t,1,1ωi,t,z)

+ ai,t,3,1(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z))

+ωi,t,x(ai,t,3,3(ai,t,3,1ωi,t,y − ai,t,2,1ωi,t,z)

+ ai,t,3,1(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z))

+βi,t,x(ai,t,1,1ai,t,3,3 + ai,t,1,3ai,t,3,1)

+βi,t,y(ai,t,2,1ai,t,3,3 + ai,t,2,3ai,t,3,1)

+ 2ai,t,3,1ai,t,3,3βi,t,z
qi,t,3,4 = ai,t,3,2ai,t,3,2βi,t,z

+ ai,t,1,2ωi,t,x(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,2,2ωi,t,y(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ 2ai,t,3,2ωi,t,z(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

− ai,t,3,2ωi,t,y(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,3,2ωi,t,x(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,1,2ai,t,3,2βi,t,x + ai,t,2,2ai,t,3,2βi,t,y
qi,t,3,5 = ωi,t,x(ai,t,1,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,1,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y))

+ωi,t,y(ai,t,2,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,2,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y))

+ 2ωi,t,z(ai,t,3,3(ai,t,2,2ωi,t,x − ai,t,1,2ωi,t,y)

+ ai,t,3,2(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y))

−ωi,t,y(ai,t,3,3(ai,t,3,2ωi,t,x − ai,t,1,2ωi,t,z)

+ ai,t,3,2(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z))

+ωi,t,x(ai,t,3,3(ai,t,3,2ωi,t,y − ai,t,2,2ωi,t,z)

+ ai,t,3,2(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z))

+βi,t,x(ai,t,1,2ai,t,3,3 + ai,t,1,3ai,t,3,2)

+βi,t,y(ai,t,2,2ai,t,3,3 + ai,t,2,3ai,t,3,2)

+ 2ai,t,3,2ai,t,3,3βi,t,z
qi,t,3,6 = ai,t,3,3ai,t,3,3βi,t,z

+ ai,t,1,3ωi,t,x(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)
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+ ai,t,2,3ωi,t,y(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

+ 2ai,t,3,3ωi,t,z(ai,t,2,3ωi,t,x − ai,t,1,3ωi,t,y)

− ai,t,3,3ωi,t,y(ai,t,3,3ωi,t,x − ai,t,1,3ωi,t,z)

+ ai,t,3,3ωi,t,x(ai,t,3,3ωi,t,y − ai,t,2,3ωi,t,z)

+ ai,t,1,3ai,t,3,3βi,t,x + ai,t,2,3ai,t,3,3βi,t,y (49)

APPENDIX C
DETAILS OF THE MATRICES S1(t ) AND Sn(t )

Si(t) =
(
si,t
)
m×l

si,t,1,1 = − ai,t,yri,t,z + ai,t,zri,t,y
si,t,1,2 = ai,t,2,1ai,t,z − ai,t,3,1ai,t,y

+ ri,t,y[ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y)]

− ri,t,z[ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y)]

si,t,1,3 = ai,t,2,2ai,t,z − ai,t,3,2ai,t,y
+ ri,t,y[ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y)]

− ri,t,z[ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y)]

si,t,1,4 = ai,t,2,3ai,t,z − ai,t,3,3ai,t,y
+ ri,t,y[ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y)]

− ri,t,z[ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y)]

si,t,1,5 = ai,t,2,1[ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y)]

− ai,t,3,1[ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y)]

si,t,1,6 = ai,t,2,2(ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

+ ai,t,2,1(ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

− ai,t,3,2(ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

− ai,t,3,1(ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

si,t,1,7 = ai,t,2,3(ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

+ ai,t,2,1(ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

− ai,t,3,3(ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

− ai,t,3,1(ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

si,t,1,8 = ai,t,2,2[ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y)]

− ai,t,3,2[ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y)]

si,t,1,9 = ai,t,2,3[ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y)]

+ ai,t,2,2[ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y)]

− ai,t,3,3[ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y)]

− ai,t,3,2[ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y)]

si,t,1,10 = ai,t,2,3(ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

− ai,t,3,3(ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

si,t,2,1 = ai,t,xri,t,z − ai,t,zri,t,x
si,t,2,2 = ai,t,3,1ai,t,x − ai,t,1,1ai,t,z

− ri,t,x(ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))
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− ri,t,z(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

si,t,2,3 = ai,t,3,2ai,t,x − ai,t,1,2ai,t,z
− ri,t,x(ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

− ri,t,z(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

si,t,2,4 = ai,t,3,3ai,t,x − ai,t,1,3ai,t,z
− ri,t,x(ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

− ri,t,z(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,2,5 = −ai,t,1,1(ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

− ai,t,3,1(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

si,t,2,6 = −ai,t,1,2(ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

− ai,t,1,1(ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

− ai,t,3,2(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

− ai,t,3,1(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

si,t,2,7 = −ai,t,1,3(ai,t,2,1βi,t,x − ai,t,1,1βi,t,y
+ωi,t,x(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x)

+ωi,t,y(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

− ai,t,1,1(ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

− ai,t,3,3(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

− ai,t,3,1(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y

+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,2,8 = −ai,t,1,2(ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

− ai,t,3,2(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

si,t,2,9 = −ai,t,1,3(ai,t,2,2βi,t,x − ai,t,1,2βi,t,y
+ωi,t,x(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x)

+ωi,t,y(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

− ai,t,1,2(ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

− ai,t,3,3(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

− ai,t,3,2(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,2,10 = −ai,t,1,3(ai,t,2,3βi,t,x − ai,t,1,3βi,t,y
+ωi,t,x(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)

+ωi,t,y(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

− ai,t,3,3(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,3,1 = − ai,t,xri,t,y + ai,t,yri,t,x
si,t,3,2 = ai,t,1,1ai,t,y − ai,t,2,1ai,t,x

+ ri,t,x(ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

+ ri,t,y(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

si,t,3,3 = ai,t,1,2ai,t,y − ai,t,2,2ai,t,x
+ ri,t,x(ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

+ ri,t,y(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

si,t,3,4 = ai,t,1,3ai,t,y − ai,t,2,3ai,t,x
+ ri,t,x(ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))
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+ ri,t,y(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,3,5 = ai,t,1,1(ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

+ ai,t,2,1(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

si,t,3,6 = ai,t,1,2(ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

+ ai,t,1,1(ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

+ ai,t,2,2(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

+ ai,t,2,1(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

si,t,3,7 = ai,t,1,3(ai,t,1,1βi,t,z − ai,t,3,1βi,t,x
+ωi,t,x(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

−ωi,t,z(ai,t,2,1ωi,t,z − ai,t,3,1ωi,t,y))

+ ai,t,1,1(ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

+ ai,t,2,3(ai,t,2,1βi,t,z − ai,t,3,1βi,t,y
+ωi,t,y(ai,t,1,1ωi,t,y − ai,t,2,1ωi,t,x)

+ωi,t,z(ai,t,1,1ωi,t,z − ai,t,3,1ωi,t,x))

+ ai,t,2,1(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,3,8 = ai,t,1,2(ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

+ ai,t,2,2(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

si,t,3,9 = ai,t,1,3(ai,t,1,2βi,t,z − ai,t,3,2βi,t,x
+ωi,t,x(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

−ωi,t,z(ai,t,2,2ωi,t,z − ai,t,3,2ωi,t,y))

+ ai,t,1,2(ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

+ ai,t,2,3(ai,t,2,2βi,t,z − ai,t,3,2βi,t,y
+ωi,t,y(ai,t,1,2ωi,t,y − ai,t,2,2ωi,t,x)

+ωi,t,z(ai,t,1,2ωi,t,z − ai,t,3,2ωi,t,x))

+ ai,t,2,2(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x))

si,t,3,10 = ai,t,1,3(ai,t,1,3βi,t,z − ai,t,3,3βi,t,x
+ωi,t,x(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

−ωi,t,z(ai,t,2,3ωi,t,z − ai,t,3,3ωi,t,y))

+ ai,t,2,3(ai,t,2,3βi,t,z − ai,t,3,3βi,t,y
+ωi,t,y(ai,t,1,3ωi,t,y − ai,t,2,3ωi,t,x)

+ωi,t,z(ai,t,1,3ωi,t,z − ai,t,3,3ωi,t,x)) (50)
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