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ABSTRACT Autonomous ships or Unmanned Surface Vehicles (USV) collision avoidance and path
planning problems among multi-vessels are investigated in this paper. Firstly, a modified fuzzy dynamic
risk of collision model based on time and space collision risk index is proposed, which is much closer
to real ship applications. Then, the fitness functions based on the risk of collision, navigational economy,
International Regulations for Preventing Collisions at Sea 1972 (COLREGs) and collision avoidance timing
are established respectively to ensure the rationality of ship collision avoidance decisions. Moreover, path
planning with global search capability is realized by the multi-objective decision theory combined with
a genetic algorithm. The practicability and rationality of the recommended trajectory are guaranteed.
Meanwhile, the problem of the non-inferior solution can be addressed by adapting the weight method and
the constraint method and the optimized solution of the decision-making system can be achieved finally.
Simulation results are further presented to validate the effectiveness of the proposed path planning and
collision avoidance methods.

INDEX TERMS Genetic algorithms, automatic collision avoidance, risk of collision, multi-objective
decision making.

I. INTRODUCTION
In recent years, with the rapid development of Artificial
Intelligence (AI) technology [1], [2], many intelligent algo-
rithms, such as genetic algorithms, expert intelligence sys-
tems [3], [4], neural network algorithms [5]–[7], and fuzzy
logic algorithms [8], [9] are widely used in the automation
research of automobiles and aerial vehicle [10]. On the
other side, the revolution of navigation technology also pro-
moted the development of ship automation and ship intel-
ligence technology, and the Maritime Autonomous Surface
Ships (MASS) or the Unmanned Surface Vehicles (USV)
have become a popular research topic [11]–[13].

Automatic collision avoidance is one of the key technolo-
gies to realize autonomous navigation. It will significantly
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reduce the probability of collision accidents caused by human
error and achieve active prevention [14], [15].

Intelligent expert system based approaches were applied
to research ship avoidance collision in [16], [17]. Neural
network-based ships collision avoidance problems were stud-
ied in [18], [19]. A fuzzy logic-based decision-making sys-
tem for collision avoidance of ocean navigation could be
found in [20], [21]. However, as pointed out in [22], intel-
ligent expert system, neural networks and fuzzy logic-based
ship collision avoidance algorithms have their own merits
and shortcomings. For example, intelligent expert system
approaches have a high professional level and excellent relia-
bility but they are difficult to make creative answers to unex-
pected situations [16], while during a multi-vessels encounter
situation, sometimes ships will involve in an emergency
situation. Neural network methods can identify the nonlin-
ear and complex ship motion model, but their effects are
highly dependent on training evolutionary learning data [16].
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In addition, the fuzzy logic algorithm has strong fault-tolerant
ability, and is robust to the system controlled object, environ-
ment change and condition change, but the control accuracy
depends heavily on the prior knowledge of expert database,
the problem of multi-objective matching during emergency
situation still cannot be solved well [20], [21].

Recently, the genetic algorithm based ship path plan-
ning and collision avoidance have been studied extensively
[23]–[27].

Genetic algorithm is a computational model that simulates
the natural selection of Darwin’s biological evolution the-
ory and the biological evolution process of genetic mecha-
nisms. It is a method to search for the optimal solution by
simulating the natural evolution process [25]. In addition,
it has been revealed in [22] that the genetic algorithm can
be used to model the ship’s trajectory planning and collision
avoidance during a multi-vessel encounter situation. More-
over, the weakness of the above-mentioned algorithms can be
overcome. Hence, it is of great significance to research ship
path planning and collision avoidance based on the genetic
algorithm. Chien-Chou Shih [28] et al. proposed a genetic-
based approach to path-planning of the autonomous under-
water glider. Wenyu Cai [29] et al. used genetic algorithms to
solve the multi-traveler problem with Euclidean distance as a
cost function when studying underwater unmanned ship path
planning. Nevertheless, both [28] and [29] are not focusing
on the path planning of the surface vehicle.

Based on big data analysis, the genetic algorithm was used
to realize the intelligent avoidance of shipwreck in [30], but
no emergency situation or unforeseen scenarios are consid-
ered. Based on the genetic algorithms, Yang Long [31] et al.
proposed a new initial population method to create a better
initial population quality, and designed adaptive crossover
probability and mutation probability. However, this method
uses the grid method to construct the navigation environ-
ment, the size and number of grids will directly affect the
algorithm’s operation speed and the effectiveness of collision
avoidance decisions, meanwhile the grid method is challeng-
ing to apply to multi-vessels collision avoidance in complex
waters. In [32], the branch-and-bound method and genetic
algorithms were adopted to solve the task of optimal safe ship
trajectory in a collision situation. However, the index factors
of the shipping risk model were not fully considered. In [33],
the trajectory planning was addressed to achieve muti-vessel
collision avoidance based on the Genetic Algorithm and
Nonlinear Programming, but the simulation only applies to
open-sea, and can not achieve good collision avoidance effect
in dense navigable waters.

In this brief, COLREGs-compliant multi-vessels colli-
sion avoidance based on the multi-objective genetic algo-
rithm is investigated and the typical situation simulation of
multi-vessel are presented.

As to the risk decision model of ship collision avoidance,
the traditional risk model based on the risk of space collision
index and time collision index will ‘‘over-maximize’’ the
calculated risk of ship collision to some extent, and it is

easy to cause uncoordinated actions when making collision
avoidance decisions. Therefore, a modified fuzzy dynamic
risk of the collision model is proposed, which is much more
in line with the actual situation. Then, the fitness functions
based on the risk of collision, navigational economy and colli-
sion avoidance timing are established respectively. Combined
with the author’s actual ship working experience, it is worth
mentioning that International Regulations for Preventing
Collisions at Sea (COLREGS) are also considered to ensure
the rationality of ship collision avoidance decisions. While
due to the contradiction of each objective function, the opti-
mal solution of each objective function cannot be achieved
simultaneously. In view of this, the weight method and
constraint method are considered comprehensively according
to the characteristics of each objective function. Based on the
multi-objective genetic algorithm, path planning with global
search capability and collision avoidance can be realized.
Both the practicability and rationality of the recommended
trajectory are guaranteed. Finally, simulation results are
shown to demonstrate the effectiveness of the proposed path
planning and collision avoidance methods.

Compare with the existing research on ship path planning
and collision avoidance, the main contributions of this study
are as follows.

First, based on the author’s actual ship working expe-
rience, a modified fuzzy dynamic risk of the collision
model is applied, which is more suitable for navigation
practice. Meanwhile, COLREGs are also well-considered.
In [34], combined with the modified rapidly-exploring ran-
dom tree (RRT) algorithm and modified dynamic win-
dow (DW) algorithm, a parallel trajectory planning algorithm
was proposed. However, both [34] and [22] can not reflect the
risk of collision (ROC) between ships, even though ROC is
not clearly defined in COLREGs, it is an important index to
measure the navigation safety of ships. In [14], COLREGS-
constrained ships path planning was addressed based on the
modified artificial potential fields, it can achieve real-time
collision avoidance, but the decision model mainly relies on
the single factor of the distance between ships.

In [35], a distributed coordination for collision avoid-
ance of multiple ships are discussed, but its compatibility
with COLREGs and the ROC indicators should be further
addressed. In this case, a comprehensive ROC model is more
necessary.

Second, the fitness functions based on ROC, navigational
economy and collision avoidance timing and COLREGs are
established respectively. Compared with the selection of fit-
ness function in previous literature, such as [14], [22], [31],
and [32], the fitness functions in this brief is more practica-
bility and rationality.

Third, a multi-objective decision theory-based genetic
algorithm is adopted. While in [14], the path planning was
based on the artificial potential field method, the problem
of optimal local solution cannot be solved well. In [35],
the rudder angles and the corresponding operation time for
rudder steering were used as the optimization strategy to find
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the collision avoidance plan. However, the practicality of the
recommended route remains to be further verified.

The remainder of this paper is organized as follows.
Ships collision avoidance process is introduced in Section II.
In Section III, the main result of a multi-objective decision
theory-based genetic algorithm is presented. The effective-
ness of the proposed algorithm is validated by simulation
in Section IV. This brief ends with conclusions drawn in
Section V.

II. OVERVIEW OF SHIP COLLISION AVOIDANCE PROCESS
A. DIVISION OF SHIP COLLISION AVOIDANCE PHASE AND
SAFETY DOMAIN
Collision prevention is an incredibly complicated process,
which requires a thorough study of the entire process and
every single section. COLREGs merely makes qualitative
stipulations on every part, while quantitative studies are nec-
essary to build a mathematical model for every section [36].
As is shown in Figure 1, the decision-making process of ves-
sel collision avoidancemainly includes the following aspects.

FIGURE 1. Flow chart of ship collision avoidance decision.

There is no unified standard for the Safe Distance of
Approach (SDA) in COLREGs. The ship domain is a spatial
scale surrounding the vessel that the obstacles and other
vessels shall keep clear. It is also a vital criterion in assessing
the encounter situation. Many experts have studied in this

field and put forward various models. For the convenience of
the system application, this brief adopts the SDAmodel based
on the ship domain that was proposed by Goodwin [37]. The
region of the ship’s safety domain is shown in figure 2.

FIGURE 2. The region of the ship safety domain.

Based on the revised domain model, when determining the
safe encounter distance, the concept of a fuzzy boundary is
used to obtain the fuzzy boundary [38], fuzzy boundary =
0.276domain = 0.276SDA. The time to conduct action by
the give-way vessel is determined as follows:
DCPA (Distance to closest point of approach) ≥ SDA

means a safe encounter situation, no action;
SDA ≥ DCPA ≥ SDA−FBD (Fuzzy boundary) means that

it involves an ROC, but the risk is relatively low; the give-way
vessel can take no action.
DCPA ≤ SDA − FBD means that it involves an ROC; the

give-way vessel should take actions to keep out of the way of
the stand-on vessel, make sure that it is finally past and clear
and DCPA ≥ SDA is restored.

Encounter situation includes every situation, no matter
whether the vessels are in sight of one another or not.
According to the COLREGs, and considering the general
practice of seafarers, the encounter situation can be divided
into six regions when the two ships are in sight of one another.
As shown in Figure 3, the own ship has the responsibility to
keep out of the way of the coming ship in the direction of the
F, A, and B areas. The own ship shall alter course to starboard
of the coming vessel in F and A areas, and alter course to port
of the coming vessel in B area. The own ship is a stand-on
vessel to the coming vessel in C, D and E, and shall keep
her course and speed. If the own ship finds that the give-way
vessel does not take appropriate action in compliance with
COLREGs, she may conduct an action to avoid collision by
her maneuver alone.

B. RISK OF COLLISION MODEL
1) SPACE COLLISION RISK
Space Collision Risk (SCR) index refers to a measurement of
ROC when a possible collision accident exists between the
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FIGURE 3. Collision avoidance action classification between two ships.

two vessels. Here the SCR is determined by the relationship
between DCPA and ship safety encounter area d1 and ship
safety passing distance d2. When |DCPA| < d1, it is consid-
ered that the ship is involved in a collision situation. At this
time, SCR = 1; When |DCPA| > d2, that is, DCPA is greater
than the safety passing distance of the ship, the ship has no
collision risk, SCR = 0; when d1 ≤ |DCPA| ≤ d2, the range
of SCR values varies withDCPA[39]. The subordinated func-
tion udt of the space collision risk is shown in equation (1).

udt =


1 |DCPA| ≤ d1[
d2 − |DCPA|
d2 − d1

]3.03
d1 ≤ |DCPA| ≤ d2

0 d2 ≤ |DCPA|

(1)

2) TIME COLLISION RISK
Time collision risk (TCR) index refers to the temporal
urgency degree when a vessel is navigating toward the point
of last-minute action.

If the time from the position when the coll, ision avoidance
operation is taken to the point of last-minute action is t1,
then when TCPA (Time to closest point of approach) < t1,
the TCR is considered to be 1. Meanwhile, according to
common practice and perception of seafarers, if the distance
between the two vessels is outside 12 n mile, then the TCR
can be set to zero by default. The TCR is reflected in the rela-
tionship between TCPA, t1 and t2. When TCPAmakes ‘‘+,’’
it means that the ship has not passed the Closed Point of
Approach (CPA). When TCPA makes ‘‘-,’’ it means that the
ship has already passed the CPA [39]. Thus, the subordinated
function of the TCR is as shown in equations (2) and (3).

When TCPA > 0, the subordinated function of the time
collision risk utt is

utt =


1 TCPA ≤ t1[
t2 − TCPA
t2 − t1

]3.03
t1 ≤ TCPA ≤ t2

0 t2 ≤ TCPA

(2)

When TCPA ≤ 0, the subordinated function of the time
collision risk utt is

utt =


1 |TCPA| ≤ t1[
t2 + TCPA
t2 − t1

]3.03
t1 ≤ |TCPA| ≤ t2

0 t2 ≤ |TCPA|

(3)

where t1 =

√
D2
L−DCPA

2
DLMA

Vr , t2 =
√

122−DCPA2
Vr .

DL indicates the distance between vessels at the last minute
action point. DCPADLMA is the DCPA value of the ship at the
last-minute action point. For the sake of safety, in this paper,
ROC begins since the two ships are in sight of each other
within 12 nautical miles.

3) CALCULATION OF THE LAST MINUTE ACTION POINT
This brief uses the method of [38] to calculate the point of
last-minute action. Assume that when own ship is full of
rudder turning 090◦, the two ships just collided at this time.
The K in equation (5) represents the index of the turning
ability, and T represents the index of tracing ability.

The transverse distance of the 090◦ head changing

TR = 2v0/(Kδ)× sin(
1C2

2
), δ = 35◦ (4)

Turning time

t = T + t0/2+1C/(Kδ) t0 = 30s (5)

The longitudinal distance of the 090◦ head changing

Ad = v0 × [(T + t0/2)+ sin(
1C
Kδ

)] (6)

The ship’s moving distance

D0 =

√
A2d + T

2
r (7)

The moving distance of the target ship within time ‘‘t’’

Dt = v1t (8)

Use (x0, y0) to represent (x ′0, y
′

0){
x ′0 = x0 + Ad sin c0 + TR cos c0
y′0 = y0 + Ad cos c0 + TR sin c0

(9)

Use (x1, y1) to represent (x ′1, y
′

1){
x ′1 = x1 + Dt sin ct
y′1 = y1 + Dt cos ct

(10)

Establish the relationship between (x0, y0) and (x1, y1)
according to the relationship between (x ′0, y

′

0) and (x ′1, y
′

1){
x ′0 − x

′

1 = (L0/2+ Bt/2) sin(c0 +1c)
y′0 − y

′

1 = (L0/2+ Bt/2) cos(c0 +1c)
(11)

According to formula (9), formula (10), formula (11), the
distance between the initial two ships is obtained, which is
the distance between vessels at the last-minute action point.

DL =
√
(x0 − xt )2 + (y0 − yt )2 (12)
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4) SHIP RISK OF COLLISION MODEL
The calculation models of SCR and TCR used in litera-
ture [39] are shown as follows:

CRI = udt ⊗ utt (13)

CRI means the index of ROC, the meanings of the above
expression are

(1) if udt = 0, then CRI = 0

(2) if utt = 0, then CRI = 0

(3) if udt 6= 0, utt 6= 0, then CRI = max(udt, utt)

The ROC calculation model in formula (13) can reflect
the actual ROC value of ships to a certain extent, but it will
also lead to the over-maximization of ROC, which will lead
to a big difference between the calculated result of collision
avoidance situation of some ships and the actual value, and
The original low-risk encounter situation will be miscalcu-
lated as a high-risk situation.

When the ship performs the actual avoidance operation,
it only needs to ensure that the value of the SCR or TCR is
reduced to the safe avoidance threshold, that is, the actions
taken are effective to avoid a collision.

For SCR and TCR, only specific avoidance measures need
to be taken to ensure that the minimum value is reduced to 0,
then it is safe to ‘‘avoid’’ the other ship, and the scope of
the avoidance measures at this time is small. Based on this
principle, the modified ROC model can be taken as follows:

CRI = min(udt, utt) (14)

III. SHIP COLLISION AVOIDANCE BASED ON
MULTI-OBJECTIVE GENETIC ALGORITHM
A. MULTI-OBJECTIVE DECISION THEORY
Compared with single-objective decision-making, multi-
objective decision-making is more complicated, mainly
reflected in incommensurability and contradiction between
goals. Incommensurability means that when making multi-
objective decisions, each target measurement unit is not uni-
form; contradiction means that when one method is used to
optimize an objective, the performance of other objectives
will become worse, it is difficult to make the values of each
objective the optimal solution.

These two typical characteristics of multi-objective
decision-making make the solution not unique when solv-
ing the target optimization. In the case of multi-objective
decision making, a series of non-inferior solutions are
usually obtained. In this brief, when studying the multi-
objective decision-making problem of ship collision avoid-
ance, it requires the minimum collision risk of the ship and
the minimum deviation from the original route. Therefore,
a scheme that minimizes the value of each objective function
is selected for multi-objective decision making.

Let x = (x1, x2, · · · , xn)T be the n-dimensional vec-
tor composed of decision variables. The constraint of the
decision variable is gi(x) representing the i-th constraint.

The objective functions of multi-objective decision are
expressed as f1(x), f2(x), · · · , fp(x), respectively. Then the
multi-objective decision problem of p objective functions
under m constraints can be expressed as:

min F(x) = (f1(x), f2(x), · · · , fp(x))

s.t. gi(x) ≤ 0, i = 1, 2, · · · ,m

lb ≤ xj ≤ ub,j = 1, 2, · · · , n (15)

In equation (15), lb, ub are the lower and upper limits
of the decision variable, respectively. Here, as an example,
the constraint condition is gi(x) ≤ 0 and the actual situation
depends on different problems.

The above description is a representation of the multi-
objective decision problem. If X = {x|gi(x) ≤ 0, i =
1, 2, · · · , n}, the mathematical definition of the non-inferior
solution can be expressed as:

Let x̄ ∈ X, if there is no arbitrary x ∈ X, makes
F(x) ≥ F(x̄), and there is at least one component that
makes fi(x) ≥ fi(x̄), then x̄ is the non-inferior solution in the
multi-objective decision problem.

B. GENETIC ALGORITHM IMPLEMENTATION PROCESS
1) CHROMOSOME CODING
The genetic algorithm is a random search optimization
algorithm based on natural selection and biological, genetic
mechanism. As to the genetic algorithm, the coding of the
chromosome is the initial condition of the initial population
generation. By encoding, the parameters of the problem are
encoded and expressed as the chromosome of the genetic
algorithm. The most widely used methods of chromosome
coding are binary coding and real coding. The coding method
used in this paper is actual number coding, which does not
need to perform the numerical conversion, but directly uses
real numbers to represent decision variables, and each chro-
mosome corresponds to a real number vector.

2) INDIVIDUAL FITNESS EVALUATION
In the genetic algorithm, the fitness of the individual is eval-
uated by establishing a fitness function, and the possibility of
the individual inheriting downward is determined. It should
be noted that when calculating the probability, the fitness of
all individuals is non-negative, then the individuals with high
fitness can continue to inherit. The selection of the fitness
function mainly includes the following three ways.

1) Directly transform the objective function into a fitness
function F .

F =
{
f (x) The objective function is maximized
−f (x) The objective function is minimized

(16)

2) Problem of finding the minimum.

F =
{
cmax − f (x) f (x) < cmax
0 else

(17)
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If it is the problem of seeking the maximum value, then

F =
{
f (x)+ cmin f (x) > cmin
0 else

(18)

3) The problem of the objective function being the
minimum.

F =


1

1+ c+ f (x)
c > 0, c+ f (x) ≥ 0

1
1+ c− f (x)

c > 0, c− f (x) ≥ 0
(19)

3) BASIC OPERATION OF GENETIC ALGORITHM
The essential operation of the genetic algorithm simulates the
process of chromosomes in biological evolution and genetic
mechanisms, including selection, crossover, and variation.

The selection operation, also called replication, selects
individuals with better performance in the population with a
certain probability, and replicates to the next generation for
reproduction. The likelihood of the individual being selected
is proportional to the individual’s fitness value, that is, the
fitness value is higher; the greater the probability of being
selected. Commonly used selection operations include the
roulette method, bidding competition selection, and optimal
preservation strategy.

Among them, the roulette method is widely used, and the
possibility that an individual is selected as follows.

pi = Fi/
N∑
j

Fj (20)

In equation (20), Fi is the fitness value of the individual,
and N is the size of the population size.

The crossover operation in the genetic algorithm is
exchanged and combined by two chromosomes in the parent.
The crossover operation generally has binary coding and real
coding. In this brief, the actual coding is used. The method of
crossover operation of chromosome ak , and chromosome al
at the position j is as follows:{
akj = akj(1− b)+ aljb
alj = alj(1− b)+ akjb

b is a random number between [0 1] (21)

The operation of mutation is the operation of mutation on
a certain point in the chromosome to make it mutate into a
better new individual. The method of mutating the j-th gene
aij of the individual i is as follows.

aij =
{
aij − (aij − amax) ∗ f (g), r ≥ 0.5
aij − (amin − aij) ∗ f (g), r < 0.5

f (g) = r2(1− g/Gmax)2 (22)

In equation (22), amax represents the upper bound of the
gene aij, amin represents the lower bound; whereas in f (g),
r2 represents the random number, g represents the number
of iterations of the current algorithm, Gmax is the maximum
number of iterations, and r is a random number between [0 1].

The population of the genetic algorithm will continue
to perform the genetic operations until the algorithm
requirements are met.

C. DESCRIPTION OF SHIPS COLLISION AVOIDANCE
PROBLEMS
At present, the determination of collision avoidance timing
mainly includes the use of the ship domain to determine the
collision avoidance timing [40], the use of the threshold value
of ROC to determine the collision avoidance timing [41], and
the use of data statistics to determine the collision avoidance
timing [42].

In this brief, the threshold of ROC is set to determine
the avoidance timing during an encounter situation, that is,
the threshold CRI = 0.5. When the CRI ≥ 0.5, the own ship
begins to take action to avoid a collision, that is, to take early
evasive action. The principle of actions taken by the give-way
vessel is to minimize the ROC between the vessels.

But if only the path with the least risk of collision is taken,
the path will continue to be deflected after the action is taken

However, if only the route with the least risk of collision.
is taken, the route will continue to deflect after taking action,
and the trend toward CRI = 0 will be developed, at this time,
although it is safe to avoid the other ship, it is an unreasonable
avoidance action.

In order to make up for this problem, and also under the
premise of ensuring the safety of avoidance, make the ship
avoidance route to a lesser extent deviation than the original
route is necessary.

In the decision-making process of collision avoidance, not
only the safety of the route should be satisfied, but also the
economy should be achieved as far as possible. Moreover,
the COLREGs should also be met. However, the values of
the various objective functions are contradictory. Therefore,
how to find the optimal solution of avoidance action in
each contradictory objective function becomes the primary
problem to be studied in this brief.

D. SELECTION OF FITNESS FUNCTION
1) SEFETY-BASED FITNESS FUNCTION
As was shown in [43], the safety of the ship is the first
factor to be considered; that is, during an encounter situation,
the give-way vessel should take action to avoid collision
within a valid distance. When CRI = 0, it indicates that
the collision risk of the two ships is 0, and when CRI = 1,
it suggests that the two ships have the highest collision risk.
The CRI reflects the degree of collision risk of the ship in
space and time. So the minimum CRI value is required to
ensure an effective collision avoidance.

In this brief, when planning the collision avoidance path of
the ship, considering the actual avoidance process, the ship
will not continuously change the heading to perform the
avoidance operation. Therefore, this brief divides the col-
lision avoidance path planning into several sub-segments,
and each sub-segment the ship is guaranteed to navigate at
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a constant speed, and during each sub-segment, the CRI of
the ship is continuously changing with time. It is required
that the ROC in each sub-segment is the smallest, that is,
only take the objective function as the maximum value of
ROC in the sub-segment, if the maximum value of ROC in
the sub-segment is minimized, the value of ROC in the entire
segment is small.

Therefore, the fitness function is selected as follows.

f1(x) = maxCRI (V0,C0,V1,C1,Tr ,D) (23)

where V0 is the own ship’s speed, C0 is the ship’s heading, V1
is the target ship’s speed, C1 is the target ship’s heading, Tr
is the relative bearing, and D is the distance between the ship
and the target ship.

2) ECONOMIC-BASED FITNESS FUNCTION
The economic requirement of ship navigation requires that
the ship should use the minimum rudder operating range to
achieve the best collision avoidance effect during the colli-
sion avoidance situation. Therefore, the degree to which a
ship deviates from its original course after taking action to
avoid a collision can be regarded as the fitness function of
the economy. The smaller the degree of deviation from the
original route, the better the economic performance of the
route is.

The degree to which the collision path deviates from the
original course is shown in Figure 4.

FIGURE 4. The path deviates from the original route.

Set the coordinates of each waypoint of the collision avoid-
ance path: (x ′i , y

′
i), The corresponding position on the original

route is: (xi, yi). The distance between the two positions is d ,
the vertical distance of the ship’s steering path point from the
original route is d ′. In this brief, when the sum of d ′ of all the
segments is the smallest, it is considered that the deviation
between the collision path and the original path is minor.
d ′ = d cos(λ), λ = a tan(

∣∣y′i − yi∣∣ / ∣∣x ′i − xi∣∣)− C0, C0 is the
original true course.

Since the ship only considers the steering avoidance mea-
sure, the distance on the original route within the same time

interval is equal to the distance after the steering, Therefore,
a tan(

∣∣y′i − yi∣∣ / ∣∣x ′i − xi∣∣) ≥ C0 is always true, that is, λ ≥ 0
is always true, and the fitness function can be chosen as

f2(x) =
n∑
i

√
(x ′i − xi)

2 + (y′i − yi)
2

× cos(arctan(
∣∣y′i − yi∣∣ / ∣∣x ′i − xi∣∣)− C0) (24)

Among them, n means the number of waypoints.

3) FITNESS FUNCTION BASED ON COLLISION AVOIDANCE
RULES
When a ship is navigating at sea, the means to avoid a
collision can be varied as long as the navigation safety can
be guaranteed.

In conditions of excellent visibility and when ships are
optically in sight of each other, if two ships are involved in a
ROC or cannot guarantee the safe encounter distance, accord-
ing to COLREGs, the give-way vessel shall conduct early and
substantial actions to keep well clear of the other vessel.

Moreover, according to the Rule eight of COLREGs, if the
sea-room is sufficient, and the substantial actions are taken in
good time and do not lead to another close-quarters situation,
then the alteration of course alone may be the most effective
action to avoid a close-quarters situation (Commandant, U.
C. G., 1999). Thus the autopilot in this dissertation adopted
course alteration to avoid a close-quarters situation, but not
the acceleration or deceleration maneuvers. So in this brief,
the alteration of course is considered as the ship’s collision
avoidance operation.

In the previous analysis of the situation of the ship’s
encounter situation, when the relative bearing Tr of a coming
vessel is in the A, B, F area, the own ship is the give-way
vessel. In other regions, the own ship is a stand-on vessel and
should keep course and speed. This brief mainly considers
the avoidance action when the ship is a give-way vessel.
Therefore, the fitness function when considering the
COLREGs is chosen as follows.

f3(x) =
{
1 000◦ ≤ Tr ≤ 112.5◦or355◦ ≤ Tr ≤ 360◦

0 others
(25)

The fitness function f3(x) can also reflect whether the
vessel is a give-way vessel or a stand-on vessel.

4) FITNESS FUNCTION BASED ON AVOIDANCE TIMING
The determination of the occasion for the avoidance of col-
lision is a crucial task. It is of great importance to know
how to appropriately and adequately confirm the time of
avoiding a collision and take action. Premature actions are
of no necessity, while on the other hand, if the actions are
taken too late, it may lead the two vessels to fall into a
close-quarters situation and uncoordinated actions or even
a collision accident. Meanwhile, COLREGs stipulates that
avoidance actions should be taken in a ‘‘timely’’ manner.
Therefore, the occasion of collision avoidance is a standard
to estimate if the action is ‘‘timely’’ enough.
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This brief applies the ROC index to determine the occasion
of collision avoidance, the risk index and safety index are
relative concepts, and the sum of them equals 1. When the
risk increases, the degree of safety decreases and vice versa.

The actions should be ‘‘timely,’’ so it is dangerous when the
ROC index is equal to or higher than the safety index, and at
this moment, vessels should take actions. That is to say, when
the ROC index is equal to or higher than 0.5, vessels should
conduct actions to avoid a collision, which is precisely the
time of collision avoidance for the give-way vessel.

The 2nd item of Rule 17 in COLREGs stipulates that
the stand-on vessel shall take action as will best aid
collision-avoidance if she finds that the collision cannot be
avoided by the action of the give-way vessel alone.

Here, the word ‘‘should’’ is a compulsory demand for
the stand-on vessel, so the occasion means that the stand-on
vessel should adopt the best way to take action to avoid a
collision when the give-way vessel has reached the point of
last-minute action but has done nothing. At this time, where
DCPA < SDA, the ROC index of the stand-on vessel is 1.

Like the fitness function f3(x), the fitness function of the
avoidance timing is used as the judgment of whether and
when the ship should adopt the avoidance action. Then its
fitness function is chosen as follows.

f4(x) =
{
1 CRI ≥ 0.5
0 CRI < 0.5

(26)

E. MULTI-OBJECTIVE GENETIC ALGORITHM SOLVING
METHOD
In this brief, the multi-objective genetic algorithm is
addressed to solve the optimal solution for ship collision
avoidance decision [44]. The decision variable x is one-
dimensional, and x is the vector set of steering amplitude,
the other objective functions are the functions about x. The
collision avoidance actions required by the COLREGs should
be ‘‘early,’’ ‘‘largely,’’ ‘‘widely,’’ and ‘‘clearly.’’

According to the common practice of seafarers, generally,
keep clear of the other vessel with a steering range of not less
than 15◦ and avoid collision with a steering range of not less
than 30◦. It is best to have a head-turning around 60◦ so that
the course of the two ships can be separated clearly. As the
crew usually does not use a large steering range, the steering
range is generally concentrated between 20◦. To ensure that
the simulation experiment can reflect the real situation, in this
brief the constraint of x is chosen as −60◦ ≤ x ≤ 60◦.
When themulti-objective genetic algorithm is used to solve

the ship collision avoidance decision, the fitness functions
f1(x), f2 (x) play a leading role, f3(x), f4 (x) are used as the
judgment of the ship’s obligation and the steering timing, and
also play a role in restraining f1(x), f2 (x).

Then the optimization problem of the multi-objective
genetic algorithm can be described as:

min {f1(x)f2(x)}
s.t. − 60◦ ≤ x ≤ 60◦

f3(x) = 1or0
f4(x) = 1or0 (27)

Therefore, the weighting method can be adopted to process
f1(x), f2(x) into single-objective decision-making problems
and then solve them. That is ω1f1(x) + ω2f2(x), and con-
strained by the f3(x), f4(x) function. Therefore, the fitness
function of the collision avoidance decision in this paper is
taken as:

F(x) = ω1f1(x)+ ω2f2(x)), ω1 + ω2 = 1; (28)

f3(x), f4(x) are contrains, and the smaller the individual’s
fitness value, the better the individual’s performance.

F. MULTI-VESSELS ENCOUNTER PROBLEMS
During the period of navigation at sea, ships will often
involve in the multiple encounters situation in dense navi-
gable waters [45]. This brief gives priority to the high ROC
situation, and take action to avoid collision of the high-risk
vessels first, which means the ‘‘key avoidance vessel.’’

During themultiple-vessels encounter situation, the safety-
based fitness function needs to be improved as follows

If own ship is involved in a situation with two ships,
the ROC of each ship is: CRI1, CRI2, and the ROC is also
time-varying. The safety-based fitness function of each target
ship in each sub-segment is respectively:

f11(x) = maxCRI1(V0,C0,V1,C1,Tr1,D1) (29)

f12(x) = maxCRI2(V0,C0,V2,C2,Tr2,D2) (30)

Under the premise of giving priority to the ‘‘key avoidance
vessel’’, the total fitness function of the two ships is:

f1(x) = ω1 ∗ f11(x)+ ω2 ∗ f12(x) (31)

Among them, the ratio between each CRI and the sum of
the total two CRIs is taken as the value of ω, that is, the target
ship of each sub-segment which has the highest ROC, then
she is the ‘‘key avoidance ship’’ in this segment. The value of
ω is shown as follows:

ωi =
f1i

f11 + f12
∗ f1i i = 1, 2 (32)

IV. MULTI-VESSELS ENCOUNTER SIMULATION
EXPERIMENT
In this part, take the full-loaded ocean-going vessel
‘‘Yupeng’’ which belongs to DALIAN MARITIME UNI-
VERSITY as a simulation example, the course of the own
ship C0 = 045◦, V0 = 14kn. Avoidance actions are carried
out with excellent visibility. The target ship parameters are
shown in Table 1.

TABLE 1. Target ship information table.
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In order to verify the effectiveness of the automatic genetic
collision avoidance algorithm designed in this paper based
on ship collision risk, this paper compares the simulation
results with [22]. The simulation results of the multi-vessels
encounter situation are shown in Figure 5-8.

Figure 5 shows the optimal path planning of the ship after
100 times iteration.When considering the collision avoidance
rules and financial requirements, it can safely and effectively
avoid other ships.

FIGURE 5. The optimal path planning during the multi-vessels encounter
situation.

As is shown in Figure 6. the minimum distance between
the two ships during the collision avoidance process is more
than 1 n miles, keep within safe limits at all times.

FIGURE 6. The distance between the multiple ships meeting situation.

The dynamic heading information of the own ship is shown
in Figure 7. When the ship is involved in a collision situation,
when the ROC hits the safety threshold, the ship begins to
take action to avoid collision.

The optimization process of the fitness function is shown
in Figure 8. When the algorithm comes to the 20 generations,
the algorithm tends to be stable, and a better solution to the
problem can be obtained. Each time the algorithm performs

FIGURE 7. The ship’s course in multiple ships meeting situation.

FIGURE 8. Iterative process for multiple ships meeting situation.

an iteration, an avoidance path is generated. After 50 itera-
tions, the algorithm reaches the optimized condition, and the
algorithm ends, and the optimal path planning is obtained.

By continuously giving priority to the ‘‘key avoid-
ance ship,’’ the multi-vessels collision avoidance decision
model adopted in this brief can deal with the problem of
multi-vessels encounter to a certain extent, and ensure that
the ship can safely avoid each target ship.

V. CONCLUSION
In this paper, based on the real ship applications, a modified
fuzzy dynamic risk of collision model based on time and
space collision risk index was addressed.

Then, the fitness functions based on the risk of colli-
sion, navigational economy, COLREGs and collision avoid-
ance timing were established to solve the multi-encounter
ship collision avoidance decision problems. However, some
researches are not considering the COLREGS. By adopting
the genetic algorithms to solve the task of optimal safe ship
trajectory in a collision situation, [32] not introduced the
COLREGS to the shipping risk model.
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Combined with the genetic algorithm, multi-objective
decision theory was adopted for path planning and collision
avoidance. By using the weight method and the constraint
method, the problem of the non-inferior solution was solved
and achieved an optimality solution of the decision-making
system. Simulation results validated the effectiveness of the
proposed path planning and collision avoidance algorithm.
As vital and exciting research topics, one can aim at path plan-
ning and collision avoidance combinedwith the characteristic
of ship rudder servo system of the steering gear.
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