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ABSTRACT Total focus method (TFM) is an ultrasonic phased array imaging method and has a larger
dynamic focusing range and higher spatial resolution than traditional imaging methods. But TFM needs to
process a large amount of data, resulting in a long imaging time, which greatly limits its application and
development in the industrial field. The sparse method can improve the computing efficiency by reducing
the amount of data, but the resolution and intensity of sparse image are very low. This paper proposes a
virtual source sparse TFM (VSSTFM) method based on phase coherent weighting (PCW) to improve the
spatial resolution and intensity of the sparse TFM imaging. The layout of virtual sources in the virtual source
array is designed and optimized by genetic algorithm. According to the phase distribution characteristics of
the ultrasonic testing signal, a phase coherence factor is constructed to weight the VSSTFM image to further
improve the image quality. Experimental results show that compared with conventional TFM, the proposed
method can improve the imaging efficiency by 66.56 % while providing significantly higher image quality
than TFM imaging.

INDEX TERMS Ultrasonic phased array, sparse TFM, virtual source, phase coherent weighting.

I. INTRODUCTION
Compared with traditional ultrasonic testing, ultrasonic
phased array testing has higher resolution and sensitivity, and
adapts to various complex scenes, whichmakes it widely used
in the nondestructive testing and has a bright prospect [1], [2].
Holmes et al. [3] first proposed the full matrix capture (FMC)
and total focusing method (TFM) model in 2005. Compared
with traditional phased array imaging, TFM uses a full matrix
data, which can focus on any point of the imaging area and
has excellent imaging quality. It has been gradually applied
to many industrial fields, such as aerospace, nuclear industry,
oil and gas, etc. [4]–[6]. Nevertheless, the data of TFM is
very large, and the imaging time is very long and cannot be
imaged in real time, which limits its further development and
application [7].

In order to solve this problem, GPU and FPGA can be
used for parallel calculations to reduce the computing time
from the perspective of improving the hardware level [8]–
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[10]. In addition, the imaging efficiency can also be improved
by optimizing the TFM algorithm itself. Because FMC data
has a certain degree of redundancy [11], the sparse method
can be used to reduce the amount of data and comput-
ing time, which can greatly improve the imaging speed.
Peng et al. [12] reduce the computation time by increasing
the array aperture on the basis of the uniform sparse array,
but the sound field characteristics of the uniform sparse array
are quite different from the full array, and the image is greatly
affected by the beam sidelobes. In the optimization method
of sparse array, Zhang et al. [13] used the cross-correlation
method to reconstruct the Green’s function, restored the ultra-
sonic signal submerged by noise in the near-field area, and
optimized the sparse array using genetic algorithm (GA) to
achieve sparse TFM imaging of near-surface defects in the
plate structure. Hu et al. [14] established a two-layer TFM
imaging model, then used GA to optimize the sparse array
and used the effective aperture theory to optimize the sparse
image. More research results show that GA can effectively
optimize the sparse array layout, and the optimized sparse
array has better imaging effects.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 185609

https://orcid.org/0000-0002-3633-3670
https://orcid.org/0000-0002-1211-4262


J. Yang et al.: Ultrasonic Phased Array Sparse TFM Imaging Based on Virtual Source and Phase Coherent Weighting

Although the sparse method can improve the comput-
ing efficiency, it will cause the image intensity and spatial
resolution to decrease. To improve image resolution and
reduce the artifacts, Laroche N et al. [15] proposed a fast
inverse method for deconvolution of TFM images using spa-
tially varying point spread function (PSF) to obtain higher-
resolution reconstructed images during the iterative process
of sparsity and spatial smoothness. The important factors
affecting the imaging quality of the phased array are themain-
lobe and side-lobe of the array sound field, which must be
constrained and optimized by appropriate methods. Zhang H
et al. [16] fully considered the influence of the main lobe
and side lobes of the sound beam on the sound field and
used binary particle swarm optimization (BPSO) to sparse
the phased array, which improved the imaging efficiency and
made the sparse image quality close to full array at the same
time. JCE de Souza et al. [17] used the array radiation pattern
to analyze the influence of the main-lobe and side-lobe levels
in the sound field on the sparse results, and the optimized
sparse array has a closer imaging resolution and less artifacts
than the full array. Zhang et al. [18] used instantaneous phase
coherence factor (IPCF) and instantaneous phase weighting
factor (IPWF) to weight Green’s function, which reduces the
background noise in the ultrasonic scattering sound field and
increases the continuity of the image phase, but the imaging
time has not been reduced compared with conventional TFM.
On the whole, better image quality often requires longer
imaging time, and the high computational efficiency of sparse
TFM is usually at the expense of reduced resolution and
image intensity.

To solve this problem, this paper proposes a virtual source
sparse TFM (VSSTFM) method based on phase coherent
weighting (PCW). First, according to the directivity of the
sound beam, the influence of side-lobe and main-lobe on
the sound field radiated by the array are considered com-
prehensively. The sparse array is designed and optimized by
GA, and the beam directivity of the obtained sparse array is
similar to full array. Second, a VSSTFM imaging model is
established to improve the imaging resolution and suppress
the background noise in sparse image. The virtual source
array is composed ofmultiple virtual sources, and the position
of each virtual source is determined by the layout of real
sparse phased array. Third, according to the phase distri-
bution characteristics of the defect signal and noise signal
in the ultrasonic testing signal, a phase coherence factor is
constructed to weight the VSSTFM image. This method can
weaken the signal of other imaging areas while enhancing
the defect information, and eliminate the artifacts around
the defect. Finally, a specimen with circularly distributed
artificial defects is used for the experiment. The three indexes
of array performance index (API), SNR, and computing time
are used to quantitatively analyze the imaging quality and
imaging efficiency.

The paper is organized as follows: Section I introduces the
research background andmain content of the paper. Section II
introduces the theory of VSSTFM and PCW and the results

FIGURE 1. The schematic diagram of FMC. (a) Signal acquisition process;
(b) Full matrix data.

of sparse array optimized by GA. Section III shows the
content and results of the experiment. Section IV analyzes
and discusses the experimental results. Section V concludes
the paper.

II. THEORY
A. VIRTUAL SOURCE SPARSE TFM
TFM is an ultrasonic phased array imaging method based on
full matrix capture (FMC) data. The process of FMC is shown
in Fig. 1(a), a linear array excites each element in turn, and
then uses all elements to receive the echo signal. As shown
in Fig. 1(b), when the i-th element is excited, the echo signal
received by the j-th element is denoted as Sij(t), where i =
1, 2, . . . ,N , j = 1, 2, . . . ,N . After all elements are excitated,
N ∗ N sets of full matrix data are obtained.
The TFM imaging model is established as shown in Fig. 2.

Above the imaging model is a linear ultrasonic transducer
array with N elements, and below the transducer array is the
imaging area. The origin of the XOZ coordinate system is
set to the center of the array, the X-axis is along the array
direction, and the Z-axis is perpendicular to the transducer
array.

According to the principle of wave superposition, the sig-
nal intensity at P (x, z) in the imaging area can be expressed
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FIGURE 2. The schematic diagram of TFM.

FIGURE 3. Single virtual source model above the real array.

as:

I (x, z) =
N∑
i=1

N∑
j=1

Sij(t)

=

N∑
i=1

N∑
j=1

Sij

√(x−xi)2+z2+
√(

x − xj
)2
+z2

c

,
(1)

where Sij is the intensity of the imaging point P (x, z) in the
signal transmitted by the i-th element and received by the j-
th element, xi and xj denote the coordinates of the excitation
and receiving elements, respectively, and c is the speed of
ultrasound in the specimen.

As shown in Fig. 3, a virtual sound source is placed above
the real array, and the vertical distance from the array is half of
the effective aperture of ultrasonic transducer. The spherical
wavefront generated in the area below the array by single
virtual source can be regarded as the spherical wavefront
generated by the entire sparse array [19].

Although there is no real ultrasonic energy source at the
position of the virtual source, the virtual source can be simu-
lated by applying a reasonable delay to every element in real

FIGURE 4. The imaging model of VSSTFM.

array. The delay τvs between the transmitting element i (xi, 0)
and virtual source V (xvs, zvs) can be calculated as

τvs =

√
(xi − xvs)2 + z2vs − zvs

c
. (2)

Multiple virtual sources are combined into a virtual source
array, and the VSSTFM imaging model is established as
shown in Fig. 4, where the position of each virtual source is
determined by the layout of the real sparse array.

The intensities of all virtual sources in the virtual source
array are superimposed, and the VSSTFM image intensity at
imaging point P (x, z) is

IVSSTFM (x, z) =
V∑
v=1

Iv (x, z) =
V∑
v=1

m∑
i=1

m∑
j=1

Sij(t ′), (3)

where V is the number of virtual sources, Iv(x, z) is the inten-
sity of the v-th virtual source at point P (x, z), and m is the
number of elements in the real phased array that constitutes
the v-th virtual source. When m = 7, the synthesized sound
field of the real array is closest to the sound field of single
virtual source [20]. Sij(t ′) is the virtual source signal obtained
by adding a delay τvs to the echo signal Sij(t), where

t ′=

√
(x−xi)2+z2+

√(
x−xj

)2
+z2+

√
(xi−xvs)2+z2vs−zvs

c
.

(4)

B. SPARSE ARRAYS OPTIMIZATION
The array layout will directly affect the imaging quality. GA
is a method to find the optimal solution within a certain range
[21], which can be used to design and optimize the element
position of the sparse array.

GA performs population initialization and randomly gen-
erate a chromosome containing N genes firstly. The chro-
mosome and the gene respectively represent the population
and the individual, and the individual is encoded with binary
digits 0 and 1. The optimization goal of GA is to obtain an
optimal element coordinate vector I = [i1, i2, . . . , iN ], which
minimizes the peak side-lobe (PSL) and main-lobe width
(MLW) of the sparse array [22]. The sound field intensity of
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element i at point P(x, z) is [23].

Ii(r, θ, t) = (
i0
r
)1/2

sin(2π/λ · a sin θ/2)
2π/λ · sin θ/2

exp(−
jπa sin θ

λ
)

× exp[j(2π ft −
2πr
λ

)], (5)

where

r =
√
(x − xi)2 + z2, (6)

θ is the deflection angle, λ is the wavelength, f is the excita-
tion frequency of transducer, a is the element width.
The synthesized sound field intensity I (r, θ, t) of a N-

element phased array is

I (r, θ, t) =
N∑
i=1

ϕiIi(r, θ, t), (7)

where ϕi = 1 means the element i is active,ϕi = 0 means the
element i is not active.
The beam directivity function Dθ of a phased array is

Dθ =

∣∣∣∣ I (r, θ, t)I (r, 0, t)

∣∣∣∣. (8)

Then the PSL and MLW of a phased array can be obtained
according to the function Dθ . Considering the goal of sparse
optimization, the fitness function of GA is defined as

Fitness [i1, i2, . . . , iN ] = min {δ1 ∗ PSL [i1, i2, . . . , iN ]

+ δ2 ∗MLW [i1, i2, . . . , iN ]}, (9)

where δ1 and δ2 are weight value. Considering both PSL and
MLW, the value of δ1 and δ2 are set to 1.
The traditional genetic operator will produce individuals

who do not meet the constraints, so the modified general-
ized crossover operator and mutation operator are used for
calculation. This operator acts on a matrix containing all
individual genes, which can complete the recombination and
mutation between individuals to obtain the best individual in
the offspring population. Let the parent population be I and
the offspring population I ′, then two parent populations are{

I1 =
(
i1,1, i2,1, . . . , iN−1,1, iN ,1

)
I2 =

(
i1.2, i2,2, . . . , iN−1,2, iN ,2

)
.

(10)

Set the crossover probability to pc. For two randomly
selected parent populations, each individual in the population
generates a random number on the interval [0, 1]. If ri <
pc, the i-th individual is used for the crossover operation.
Crossover operation is to exchange some genes on two chro-
mosomes to form a new chromosome. For example, crossover
operation is performed on the first three genes of chromo-
somes 1100001 and 1010101, and the two new chromo-
somes obtained are 1010001 and 1100101 respectively. The
crossover operation can improve the search ability of genetic
algorithm. After the operation of the generalized crossover
operator, the offspring populations are{

I ′1 = Crossover
(
i1,1, i2,1, . . . , iN−1,1, iN ,1

)
I ′2 = Crossover

(
i1.2, i2,2, . . . , iN−1,2, iN ,2

)
.

(11)

TABLE 1. The parameters set in GA.

The purpose of mutation operation is to make gene muta-
tion, prevent the algorithm from falling into local optimum
and help the algorithm find the global optimal solution. Set
a mutation probability pm. For the chromosome after the
crossover operation, each gene on the chromosome generates
a random number ri in the interval [0, 1]. If ri < pm, the gene
mutates. For a binary coded chromosome, the mutation oper-
ation is to change gene 1 to 0 or change gene 0 to 1. For exam-
ple, if the third gene of chromosome 1100001 is mutated,
the new chromosome is 1110001. Repeat this process con-
tinuously and record the chromosome structure obtained in
each cycle. When the number of iterations reaches the preset
value, the chromosome structure with the highest fitness is
the best sparse array optimized by GA.

The value range of the initial population is generally 20
∼200. When the initial population is large, the results of
GA cannot be optimized, but it will prolong the convergence
time and waste resources. The value range of the number
of iterations is generally 100∼1000. When the number of
iterations is small, the algorithm is not easy to converge.
When the number of iterations is large, the algorithm has
already converged, and it is meaningless to continue the itera-
tion. According to some experimental results and experience,
the relevant parameters set in GA are shown in Table 1.

The directivity diagrams of 32-element phased array is
shown in Fig. 5(a), where PSL is -14.6 dB and MLW is 7.2◦.
Take for example when the number of active element is 8,
the directivity diagrams of uniform sparse array is shown
in Fig. 5(b), where PSL is -15.3 dB and MLW is 12.6◦.
Compared with the full array, PSL dropped by 0.7 dB and
MLW increased by 75 %. Using GA to optimize the sparse
array, the directivity diagrams is shown in Fig. 5(c), where
PSL is −19.2 dB and MLW is 8◦. Compared with the full
array, PSL dropped by 4.6 dB and MLW increased by 11 %.
The comparison results show that the sparse array optimized
by GA has smaller PSL and MLW, and its imaging character-
istics are closer to full array.

GA is used to sparse the 32-element linear phased
array with different degrees, and the results are shown
in Table 2. The distribution of active elements in the
sparse array determines the position of each virtual
source in the virtual source array. For example, when
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FIGURE 5. The directivity diagram of different phased arrays. (a)
32-element; (b) 8-element uniform sparse array; (c) 8-element sparse
array optimized by GA.

the number of active elements is 4, the virtual source
array layout is 10000000000010010000000000000001, and
the actual array layout used for VSSTFM imaging is
11110000011111111110000000001111.

C. PHASE COHERENCE WEIGHTING
The wavefront generated in the area below the array by a
single virtual source is only approximate to the synthesized
wavefront of the real array rather than completely consistent,
which will increase the PSL and MLW of the array and

TABLE 2. The layout of sparse array optimized by GA.

FIGURE 6. Amplitude and phase distribution of defect signal and noise
signal in ultrasonic A-scan. (a) Defect signal; (b) Noise signal.

generate artifacts. As shown in Fig. 6, in the ultrasonic A-
scan, the signal at the defect has a higher amplitude and
better phase consistency than the noise signal. Based on this,
the phase coherent weighting (PCW) is used to enhance the
image globally. PCW is an adaptive weighting method, which
needs construct a phase coherence factor based on the phase
distribution characteristics of ultrasonic testing signal.

The phase coherence factor is used to weight the
amplitude-superimposed image to reduce noise, remove arti-
facts, and highlight defect information.

Using Euler’s formula to extract the phase information of
signal Sij(t)

H
[
Sij (t)

]
= |h| ejϕij = |h|

(
cosϕij + j sinϕij

)
, (12)

where H is Hilbert transform, |h| and ϕij are the modulus and
phase of the signal respectively. If the modulus of the signal
is ignored, the complex random variable Y is

Y = ejϕij = cosϕij + j sinϕij. (13)
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FIGURE 7. Diagram of the experiment platform.

Taking phase as an independent variable, the variance of Y
is

var (Y ) = E
[
(Y − β) (Y − β)∗

]
, (14)

where β is the average value of Y , and (Y − β)∗ is the
conjugate of (Y − β), then the standard deviation of Y is

std (Y )=
√
var (Y )=

√
var

(
cosϕij

)
+var

(
sinϕij

)
. (15)

After normalization, the range of std (Y ) is [0, 1], when ϕij
distribute uniformly in the range [−π, π], std (Y ) = 1, and
when ϕij are equal, std (Y ) = 0. The phase coherence factor
FPCW (x, z) can be definedusing the phase standard deviation
std (Y )

FPCW (x, z)=1−
√
var

(
cosϕij (x, z)

)
+var

(
sinϕij (x, z)

)
,

(16)

where

var
(
cosϕij (x, z)

)
=

1
N 2

N∑
i=1

N∑
j=1

cos2 ϕij

−

 1
N 2

N∑
i=1

N∑
j=1

cosϕij

2

, (17)

var
(
sinϕij (x, z)

)
=

1
N 2

N∑
i=1

N∑
j=1

sin2 ϕij

−

 1
N 2

N∑
i=1

N∑
j=1

sinϕij

2

. (18)

The phase coherence factor can well recognize the defect
signal and noise in the ultrasonic A-scan. The phase diversity
of defect signal is small, at this time FPCW (x, z) approaches
unity. The phase diversity of noise is large, at this time
FPCW (x, z) approaches zero. Using FPCW (x, z) to weight
the VSSTFM image, the intensity of the PCW-VSSTFM
image at the imaging point P (x, z) can be obtained as
follows:

IPCW−VSSTFM (x, z) = IVSSTFM (x, z) · FPCW (x, z). (19)

TABLE 3. Experimental parameters.

FIGURE 8. The steel specimen in the experiment. (a) Specimen and
imaging area; (b) Parameters of the artificial holes.

FIGURE 9. The result of 32-element array TFM imaging.

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTS AND EVALUATION INDEX
The portable ultrasonic phased array testing equipment is
used to test the steel specimen containing artificial defects,
and the ultrasonic signal is acquired for verification of the
algorithm. The experiment platform is shown in Fig. 7, which
mainly includes a portable ultrasonic phased array flaw detec-
tor, an ultrasonic transducer array and a steel specimen. The
relevant parameters in the experiment are shown in Table 3.

The steel specimen used in the experiment is shown
in Fig. 8(a). The imaging area contains 18 artificial defects
with a diameter of 1 mm, which are sequentially numbered
#1-#18. The imaging area is 40 mm∗60 mm, and the grid
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FIGURE 10. The results of sparse TFM with various numbers of active element. (a) 16-element; (b) 12-element; (c) 8-element; (d) 6-element; (e)
4-element; (f) 2-element.

FIGURE 11. Comparison of API and SNR of TFM images with different sparse arrays. (a) API; (b) SNR.

pixels are 400∗600. The parameters of the artificial holes in
the specimen are shown in Fig. 8(b).

API and SNR are used to quantitatively evaluate the quality
of TFM images. API can reflect the spatial imaging resolution
of TFM [24]. The smaller the API, the higher the imaging
resolution and measurement accuracy. The expression is as
follows

API =
A−6dB
λ2

, (20)

where A−6dB is the area of the point spread function that is
greater than -6 dB down from its maximum value, λ is the
wavelength.

SNR reflects the intensity of defect information in the
image. The larger the SNR, the better the image quality. The
expression is as follows

SNR = 20 · log10

∣∣∣∣ Imax

Iaverage

∣∣∣∣, (21)

where Imax is the peak value of the defect signal, and Iaverage
is the average intensity of the noise.

B. RESULTS
The result of 32-element array TFM imaging is shown
in Fig. 9. The imaging quality of #5-#18 defects in the TFM
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FIGURE 12. The results of sparse TFM imaging with 4-element array. (a)
VSSTFM; (b) PCW-VSSTFM.

TABLE 4. The indexes of various sparse TFM images.

image is good, which can reflect the shape and distribution of
the real defects, and have a low background noise level.

The sparse TFM images of sparse arrays with different
numbers of active elements are shown in Fig. 10. It can be
seen that as the number of active elements in the sparse
array decreases, the background noise of the sparse image
and the artifacts around the defect gradually increase, and the
intensity of defect signal decreases.

Set the SNR of #10 defect with the highest amplitude in 32-
element TFM image as 0 dB. The averages of API and SNR
of #5-#18 defects in various sparse TFM images are shown
in Table 4.

The comparison results of the averages of API and SNR of
sparse TFM images are shown in Fig. 11.With the decrease of

active elements, the average API of sparse TFM images grad-
ually increases, and the average SNR gradually decreases.
Compared with 32-element TFM image, when the active
elements are less than 4, the error of average API of sparse
TFM image reaches 82.85 %, and the average SNR decreases
by 16.01 dB. The API and SNR of the 4-element sparse TFM
image are close to those of the full array, and the computing
time is only 2.71 s. Therefore, the 4-element sparse array is
selected for the next optimization.

The result of the 4-element sparse TFM image enhanced
by the virtual source is shown in Fig. 12(a). Compared with
the 4-element sparse TFM image, the background noise of
the VSSTFM image is greatly reduced, the resolution and
intensity of defects are enhanced, and the overall image
quality is greatly improved, but there are artifacts around the
defects. The result of VSSTFM image processed by PCW is
shown in Fig. 12(b). Compared to VSSTFM image, PCW-
VSSTFM image has less noise, higher spatial resolution
and defect intensity, and eliminates the artifacts around the
defects. Moreover, the imaging resolution and intensity of
PCW-VSSTFM exceed the 32-element TFM imaging.

IV. DISCUSSION
The API of #5-#18 defects in imaging results of four methods
are shown in Fig. 13. Overall, the API of defects located
directly below the center of the transducer in the TFM image
are usually low. And the farther the defects are from the center
of the transducer, the larger the API. Compared with TFM,
the API of sparse TFM images is obviously increased, which
shows that the spatial imaging resolution of sparse TFM is
greatly reduced. This is mainly caused by the increase of
the beam side-lobe and the decrease of the main-lobe width.
Compared with sparse TFM, the API of VSSTFM images are
greatly reduced, but still higher than TFM. This shows that the
virtual source can well improve the intensity of the main-lobe
of beam while reducing the PSL, and improve the imaging
resolution of the sparse array. But the imaging accuracy still
has a gap with TFM. And due to the difference of the sound
field between the virtual source and the real array, there are
artifacts around the defects in the VSSTFM image. The API
of PCW-VSSTFM image is the lowest in several methods,
and has the highest imaging resolution and accuracy.

The SNR of #5-#18 defects in imaging results of four
methods are shown in Fig. 14. Overall, the SNR of defects
located directly below the center of the transducer in TFM
images are higher than defects at the edge. TFM performs
imaging by superimposing the signal amplitude of the imag-
ing area. The data of sparse TFM is greatly reduced, and
the amplitude after superposition at the defect is very low
and the noise is strong, resulting in a significant reduction
in SNR of the sparse image. The virtual source array can
compensate the intensity of the sparse array. The SNR of
VSSTFM image is greatly improved compared with sparse
TFM, but the overall intensity is still lower than TFM. The
SNR of PCW-VSSTFM image is the highest among several
methods. Unlike VSSTFM, which directly compensates for

185616 VOLUME 8, 2020



J. Yang et al.: Ultrasonic Phased Array Sparse TFM Imaging Based on Virtual Source and Phase Coherent Weighting

FIGURE 13. Comparison of API of #5-#18 defects in imaging results of
four methods.

FIGURE 14. Comparison of SNR of #5-#18 defects in imaging results of
four methods.

TABLE 5. The averages of API and SNR of imaging results of four
methods.

the strength of signal, PCW uses a phase coherent factor
to weaken the noise to improve SNR, while eliminating the
artifacts around the defect and highlighting the defect infor-
mation.

The averages of API and SNR of #5-#18 defects in imaging
results of four methods are shown in Table 5.

Compared with TFM and sparse TFM, the average spatial
resolution of PCW-VSSTFM imaging is increased by 22.12
% and 43.19%, and the average imaging intensity is increased
by 10.78 dB and 19.01 dB, respectively. PCW-VSSTFM
improves the quality of sparse images very well. Its imaging
resolution and intensity are both higher than conventional
TFM, and the computing efficiency is increased by 66.56 %.

V. CONCLUSION
The application and development of TFM imaging in industry
is limited by the long computing time. Although the tradi-
tional sparse method can improve the computing efficiency
by reducing the amount of data, the image quality is seri-
ously degraded. This paper proposes a virtual source sparse

TFM (VSSTFM) method based on phase coherent weighting
(PCW) to improve the quality of the sparse TFM image. The
results show that compared with conventional TFM imaging,
the imaging resolution of PCW-VSSTFM is increased by
22.12 %, the imaging intensity is increased by 10.78 dB, and
the imaging efficiency is improved by 66.56%. The proposed
method can be used to optimize the phased array, which has
certain reference value for the application of TFM real-time
imaging in industry. Further, the method will be verified and
improved on media with irregular surfaces in the future.
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