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ABSTRACT Convolutional neural networks (CNNs) have been widely used by biomedical image seg-
mentation applications. U-net, as a semantic segmentation method, has become a mainstream approach to
brain tumor segmentation. However, the intrinsic vulnerability of CNNs also brings potential risks to all
CNN-based applications, including semantic segmentation applications. In this paper, we create a universal
adversarial perturbation and apply it on every modality in order to investigate how the adversarial pertur-
bation affects each Magnetic Resonance Imaging(MRI) modality and the MRI images overall. We evaluate
the performance when all four modalities are attacked and when one modality is attacked. The results show
the following: 1) The adversarial perturbation affects the accuracy performance greatly, regardless of the
size of the perturbation; 2) When only one modality is attacked, the network structure and the other three
modalities provide some resistance to the adversarial perturbation; and 3) There are performance differences
in different modalities, which are strongly related to the intensity distribution. T2 is least affected by the

adversarial perturbation, while T1 and T1ce are more affected by the adversarial perturbation.

INDEX TERMS Adversarial perturbation, semantic segmentation, adversarial training.

I. INTRODUCTION
In recent years, deep learning networks and especially con-
volutional neural networks (CNNs) have achieved remark-
able success in many computer vision areas, including object
recognition [1], [2], semantic segmentation [3], [4] [5], depth
estimation [6], object detection [7], [8], etc. Instead of craft-
ing features by humans, CNNs use convolutional layers to
automatically extract the features from the input images
and provide end-to-end solutions to the perceptional task.
Because CNN-based solutions have more accurate feature
extraction and are more convenient in the processing pipeline,
convolutional neural networks have also been widely used for
biomedical segmentation tasks including lung segmentation
[9], [10], brain tumor segmentation [11], etc.

The goal of brain tumor segmentation is to detect and
localize tumor regions by comparing the tested brain tissue
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images to the normal brain tissue images [12]. The ground
truth brain tissue images are labeled by a medical professional
on special medical images such as X-ray or MRI images.
Automatic brain tumor segmentation has been used to help
medical personnel, reducing the time necessary for identifi-
cation of abnormal regions. Automatic segmentation meth-
ods will be critical for early tumor prescreening, especially
when doctors need to examine a large number of biomedical
images.

Currently, magnetic resonance imaging (MRI) is a major
type of biomedical imagery in brain tumor analysis, moni-
toring and surgery planning. Compared to the methods using
handcrafted features, methods based on CNNs use a set
of convolutional filters that can extract the convolutional
features directly from the input data, providing end-to-end
solutions to MRI images. Many state-of-the-art automatic
brain tumor segmentation methods have been developed in
the recent years, such as U-net [13] and V-net [12], [14].
Although both X-rays and CT images can be used for
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FIGURE 1. Image examples in MICCAI BraTS 2019. Four images belonging
to a subject. a) T1 mode, b) T1ce mode, c) T2 mode, d) FLAIR mode.

biomedical research, MRI images are the major data source
type for these neural networks.

Research on adversarial attacks has shown that typical
convolution neural networks have a universal vulnerability
to these attacks. Similar to other CNN-based applications,
semantic segmentation applications have also been proven
to be vulnerable to adversarial sample attack [15], [16].
However, compared to other semantic segmentation applica-
tions, brain tumor segmentation has several unique charac-
teristics. Because brain tumors have different sizes, shapes,
and locations in different patients, doctors and other medi-
cal personnel always use several modalities of MRI images
to help tumor region segmentation and labeling. Different
modalities have differences in the pixel intensity and con-
tain different information. The comprehensive consideration
of multiple modalities provides tumor tissues at multiple
intensity levels for analysis by doctors. There are four types
of modalities of MRI images: T1 (spin-lattice relaxation),
contrast-enhanced T1 (Tlce), T2 (spin-spin relaxation) and
FIAIR (fluid-attenuated inversion recovery). Each modality
corresponds to grayscale images that highlight different kinds
of tissue. In current brain tumor segmentation methods, all
four modalities are used jointly for computation during the
model training process.

As a result, it is beneficial to investigate how adversarial
perturbation affects the brain tumor segmentation methods
and to elucidate the impact of adversarial perturbation in
different modalities.

The research described in this paper can be useful for the
mitigation of many threats: 1) As the images are acquired
from MRI equipment, system failures and human error may
cause imperfect MRI images, possibly leading to the errors
in the segmentation results. 2) As MRI images are valuable
personal information, they are vulnerable to cyber attack and
can be deliberately altered by adversaries.
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FIGURE 2. Layout of the U-net network structure.

In this paper, we first evaluate the adversarial perturbation
effect on the current automatic brain tumor segmentation
methods in terms of segmentation accuracy and then inves-
tigate the performance reduction for the adversarial attacks
on each modality. This paper also presents an explanation
for the accuracy differences among the four modalities. The
adversarial training recommendation will be given in the end
of the paper.

The rest of the paper is organized as follows: Section II
introduces the background of U-net-like neural networks,
and the background of adversarial sample attack. Section III
introduces the dataset used for this research. Section IV
describes the method for the generation of the perturbations
for the brain tumor MRI images. Section V shows a typi-
cal U-net-like segmentation target model that serves as the
attack target. The experimental configuration and results are
discussed in Section VI. The conclusion and future work are
given at the end of the paper.

Il. RELATED WORK

A. U-NET STYLE NEURAL NETWORKS

Since the first application of U-net [13] in the biomedical
segmentation area, a group of U-net style neural networks
has been invented and applied to brain tumor segmentation
[12], [14]. Depending on the dimension of the convolutional
kernels, U-nets can be divided into two categories: 2D U-nets
and 3D U-net. Similar to the 2D U-net, the 3D U-net also con-
sider a few images before or after the current image, which is
the so-called depth, using 3D covolutional kernels. Moreover,
the modalities in MRI images are treated as channels of the
input images. As a result, the memory capacity is always the
bottleneck for 3D U-net training.V-net [14] is a variant of 3D
U-net, in that case in this paper, we focus on the general U-net
style neural network.

Figure 2 shows a typical U-net network structure. The
right-hand part of Figure 2 is similar to the VGG model.
Multiple convolution layers extract the convolutional features
from the images. Both 2D and 3D versions of U-net have con-
volutional layers for feature extraction. When the adversarial
perturbation is added to either some images or all images,
it will compromise the feature map and extensively affect the
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results of the downpooling layers. After computation in the
subsequent layers, the final result will be affected.

B. ADVERSARIAL SAMPLE ATTACK

Research on adversarial sample attacks started in 2013.
Szegedy et al. first found the adversarial sample phenomenon
in the early neural networks: LeNet [1], [17] and Alexnet [2].
Studies then started to craft small and imperceptible perturba-
tions and added them into images in order to lead the classifier
to make mistakes. In subsequent research, researchers found
that this vulnerability may be caused by the linear character-
istic in neural networks, and it was proved to affect most neu-
ral network applications, including object recognition [18],
object segmentation [15], [16], [19], depth estimation [20],
etc.

Depending on whether the structure and the parameters of
models are known to the adversary, adversarial sample attack
can be categorized into two types: white-box attack [21], [22]
and black-box attack [23], [24]. In a white-box attack, adver-
sarial samples are generated based on the knowledge about
the model such as the layers, parameters and loss functions.

Depending on whether the adversary has a specific targeted
class, the adversarial sample attack can be categorized into
types: targeted attack or nontargeted attack. A targeted attack
seeks to make the classifier misclassify one class to another
class or segment one image into a particular map that is
crafted by the adversary. A nontargeted attack does not have a
specific target. Instead it disturbs the classifier and makes the
output of neural networks models unpredictable. In this paper,
we focus on a nontargeted attack. The perturbations were
added to the input images in order to disturb the classifier and
evaluate the reliability of the current segmentation model.

lll. THE DATASET

The dataset that we use in this paper is MICCAI BraTS
2019 [25], [26]. It is the largest publicly available dataset
with MRI images of brain tumors. It contains 259 high-grade
Glimoas (HGG) cases and 76 low-grade Glimoas cases in
the training set. The validation set contains 125 cases. The
training set contains four modality images, namely, T1, Tlce,
T2, and FLAIR, and the ground truth images. The validation
set contains only the four modality images. The users only can
upload the segmentation files to the website and compare to
the ground truth images online. All of the modality images
were collected from different MRI scanners and different
institutions. In this case, certain normalization techniques
must be applied prior to using the images for training or
validating.

IV. ADVERSARIAL PERTURBATION

A. UNIVERSAL RANDOM PERTURBATION

The method for generating the adversarial perturbation in
this paper is different from that used in the work by
Moosavi-Dezfooli et al. [27]. Similar to [27], we search for
a universal perturbation that does not depend on the model
that we are targeting. To randomly generate the adversar-
ial perturbation, the adversarial noise consists of two parts:

VOLUME 8, 2020

amax norm vecl and an L, norm vec2. vecl can be considered
a random vector inside a unit hypercube, whereas vec2 can
be considered a random vector inside an unit hypersphere.
Additionally, the two parameters € and rad must be set during
the configuration stage.

pert = € x sgn(vecl) + rad * vec2 @))

Equation 1 describes the generation of the adversarial
perturbation. Here, vecl and vec2 are generated randomly
according to a Gaussian distribution. € and rad are set by the
users.

B. PERTURBATION IN MRI IMAGES

Figure 3 shows the comparison between the original four MRI
modality images and the adversarial images with € = 15
and rad = 15. Upon examination of the adversarial images,
a slight variation in the intensity can be observed. Here, two
features must be noticed. First, because the intensities of
the MRI images are often larger than 1000, to present the
image in grayscale for this paper, the images were normalized
to be 0 ~ 255, as shown in Figure 3. In our experiment,
we still generate and add the perturbation to the images
without grayscale normalization. Second, the values of € and
rad should be between 0 and 255. Larger values lead to an
increase in the magnitude of the noise.

V. THE TARGETED MODEL

Although the adversarial perturbation that we generated
is applicable to many semantic segmentation methods,
we selected a pretrained model from the work of
Lachinov er al. [28]. The goal of their research was to
combine three U-net style neural networks and compare the
performance between the ensemble model trained with the
regular quantity of data and one single neural network trained
with an additional quantity of data.

The ensemble neural networks consist of three U-net style
neural networks. The first method is the typical U-net with
a negative modification [29]. This method ranked second
in the MICCALI BraTS 2018 challenge. The second method
[12] in the ensemble is a U-net with residual connections
[30]. This method combines the residual connections with an
autoencoder branch that has a group batch regularization and
reached first place in the MICCAI BraTS 2018 challenge. The
third method [31] in the ensemble is Cascade U-net. A cas-
cade of U-nets is used. Each U-net has multiple encoders that
correspond to input modalities. This method also joined the
MICCALI BraTS 2018 challenge.

VI. EXPERIMENT

All of the computational work is conducted on a virtual host
provided by bitahub.com. The virtual host is equipped with
an Nvidia GTX 1080ti GPU, 2vCPUs, and 16 GB RAM. Our
evaluation experiment consists of two parts. The first part
involves testing the adversarial perturbation effect on each
modality. In this test, the adversarial samples are generated
to attack the model trained with original images, in order to
test whether the segmentation model can be tolerant to the
adversarial samples. To do that, the images of one modality of
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FIGURE 3. Adversarial samples generated with ¢ = 15 and rad = 15 in
Equation 1 in MICCAI 2019. All of the images belong to the same subject.
The left-hand side images a), c), e), g) are T1, T1ce, T2, FLAIR modality
images. The right-hand side of the images shows their corresponding
adversarial samples.

the original four modalities are replaced by our crafted adver-
sarial samples, and keep the other modalities unchanged.
The second part involves testing the adversarial perturbation
effect on all of the modalities. In this test, all of the modalities
are replaced by our adversarial samples. Each part of our
experiment imitates the potential risk in reality. The configu-
ration of the experiment is shown in Figure 4

A. PART I. ADVERSARIAL PERTURBATION EFFECT ON
EACH MODALITY

Since all four modalities participate in the training and testing
phase as four channels of the input images, this experiment
simulates the case where one modality image is contaminated
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2019 training set

Testing
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Part I Dataset is MICCAI 2019 validation set. One of

modalities is replaced by adversarial samples. the ofher
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FIGURE 4. Configuration of our experiments. The model training used the
original images from the MICCAI 2019 training set. The experiment for the
reliability testing used the MICCAI 2019 validation set with some
modalities altered by our adversarial samples.

TABLE 1. Original image performance baseline.

parameters Dice_ET | Dice_ WT | Dice_TC
Base Line
with no perturbation 0.76 0.91 0.84
TABLE 2. Adversarial perturbations in Flair modality.
parameters Dice_ET | Dice_WT | Dice_TC
€e=5,rad =5 0.73 0.89 0.82
€ =15,rad =15 0.73 0.89 0.82
e = 30,rad = 30 0.71 0.87 0.79
TABLE 3. Adversarial perturbations in T1 modality.
parameters Dice_ET | Dice_WT | Dice_TC
e=5,rad =5 0.71 0.88 0.76
e =15,rad =15 0.71 0.88 0.76
e = 30,rad = 30 0.71 0.88 0.76
TABLE 4. Adversarial perturbations in T1ce modality.
parameters Dice_ET | Dice_ WT | Dice_TC
e=5,rad =5 0.72 0.87 0.78
€ =15,rad =15 0.72 0.87 0.77
e = 30,rad = 30 0.68 0.87 0.75

by equipment failures or an adversary. For each subject in
the dataset, one of the modalities among the original four
modalities is replaced by adversarial samples, and the images
of the other modalities are included with no change. The
segmentation results are sent to the CBICA official website!
for the evaluation. The results are presented in Tables 2, 3, 4
and 5.

Tables 2, 3, 4 and 5 compare the results obtained for
the validation dataset. After testing different € and rad val-
ues, the results are presented in terms of mean of Dice_ET,

1 https://ipp.cbica.upenn.edu/
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TABLE 5. Adversarial perturbations in T2 modality.

parameters Dice_ET | Dice_ WT | Dice_TC
e=>5,rad =5 0.75 0.88 0.84
e =15,rad =15 0.75 0.89 0.84
e = 30,rad = 30 0.75 0.90 0.84

TABLE 6. Adversarial perturbations in all four modalities.

parameters Dice_ET | Dice_WT | Dice_TC
e=1,rad=1 0.40 0.23 0.32
e=>5,rad=5 0.39 0.23 0.31
€ =15,r7ad = 15 0.40 0.23 0.30
€ = 30,rad = 30 0.41 0.26 0.31

Dice_WT and Dice_TC. An examination of the results shows
that 1) T2 has the lowest performance degradation in an
adversarial attack among the four modalities. Meanwhile,
Tlce displays the greatest performance degradation in an
adversarial attack; 2) by changing the size of the perturbation,
the degradation shows a slight variation for different param-
eter settings but mostly remains stable within one modality.

B. PART II. ADVERSARIAL PERTUBATION EFFECT ON ALL
MODALITIES

To test the adversarial perturbation effect on all of the
modalities, we replaced the images for all four modalities
with our adversarial samples.

Table 6 shows the obtained dice scores for different € and
rad values. The performance shows severe degradation when
the images for all four modalities are replaced. Even when the
perturbation size is very small (¢ = 1, rad = 1), the degra-
dation is also severe. Similar to the results in Tables 2, 3, 4,
and 5, changing the size of € and rad does not appreciably
change the performance.

Comparing to the results presented in Tables 2, 3, 4, and 5,
one interesting observation is that although degradation is
obtained when testing on each modality, the other three
modalities show a certain tolerance to adversarial perturba-
tion, which can prevent extreme performance degradation.
This result implies that even if the images for one modality
are compromised for a certain reason, medical personnel can
still obtain usable results.

VII. DISCUSSION

The intensity difference is the major difference between the
images of the different MRI modalities. We believe that the
distribution of the intensity for each modality is strongly
related to the different performance degradations obtained in
the Part I experiments. To verify this hypothesis, we tried
two sets of experiments. We first plotted the histograms for
both the original images of the validation dataset and the
images after normalization. Figure 5 compares the histogram
distribution between the original four modality images and
the images after normalization. Regardless of the normal-
ization, the distribution of the intensity in the images does
not change. As a result, the adversarial perturbation added
to the images will not be affected by normalization. The
accuracy degradation shoulde not related to any kind of
normalization.
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FIGURE 5. Comparison between the histogram of the original MRI images
and the histogram of original images after normalization.

The second set of experiments is plotting the
quantile-quantile figure for each MRI modality and Gaussian
distribution. The quantile-quantile (q-q) plot is a graphical
technique for determining whether two data sets come from
populations with a common distribution. In Figure 6, we com-
pare the intensity in each modality to a Gaussian distribution.
If the curve is close to the reference line, then it has a similar
distribution to a Gaussian distribution. A smaller distance of
the curve from the reference line implies a greater similarity
of the curve to a Gaussian distribution. T2 shows the highest
deviation from the reference line and is the least similar to the
Gaussion distribution.

Table 7 shows the slope and intercept of the reference line
generated by least-squares regression (best-fit). The slope
represents the standard deviation of the intensity, and the
intercept represents the mean of the intensity. It is observed
that T2 has the highest standard deviation and mean, indi-
cating that it is the least similar to the Gaussian distribution.
The other modalities show lower standard deviation and mean
values.
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FIGURE 6. The probability plotting of the intensity distribution fitting to
the Gaussian distribution. The plots are based on least-squares
regression (best-fit). If the curve is close to the reference line, then the
curve has a similar distribution to the reference line. The closer the curve
is to the reference line, the more similar it is to the Gaussian distribution.
T2 shows the highest deviation from the reference line and is the least
similar to a Gaussian distribution. More quantitative information is
shown in Table 7.

TABLE 7. Slope and intercept summary of probplot in Figure 6.

Modalities slope intercept
T1 203.136 | 379.927
Tlce 285.585 | 437.846
T2 358.540 | 466.197
Flair 162.865 | 294.221

The explanation for the differences in accuracy degradation
is as follows. Because the perturbation that we used for the
experiment uses the Gaussian distribution to randomly gen-
erate vecl and vec2 in Equation 1, the intensity distribution of
the modalities that is similar to the Gaussian distribution will
be affected more than those in the other cases, and the inten-
sity distributions of the modalities that are less like a Gaussian
distribution will be less affected. It is observed from Figure 5
that T2 is the least similar to the Gaussian distribution, and is
the least affected by perturbation. By contrast, T1 and Tlce
basically follow a Gaussian distribution pattern and are more
vulnerable to our adversarial perturbation.

VIil. CONCLUSION

In this paper, we generated a universal random perturba-
tion for each modality in brain tumor segmentation. Several
general conclusions are obtained by attacking the state-of-
the-art segmentation model: 1) When four modalities are
attacked or damaged, a severe performance degradation in
accuracy will occur. However, when one of the modalities
is attacked or damaged, the accuracy also drops. In both of
our tests, the performance reduction is not related to the size
of the perturbation. 2) If only one of the modality images
is attacked or damaged, the performance does not decrease
strongly. Due to the use of images from other channels,
the existing U-net-style neural network models are robust if
only one modality image is attacked or damaged. 3) For an
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individual modality, the modalities that have similar intensity
distributions to the Gaussian distribution are more vulnerable
to our adversarial perturbation and vice versa.
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