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ABSTRACT The strip floating height is a key factor affecting production efficiency and quality of the air
cushion furnace. At present, the air cushion furnace with hybrid nozzles is the most typical heating and
drying equipment. In order to predict the floating height of the strip in this equipment, a hard-division and
multi-model based floating height prediction method is proposed. In hard division method, the process is
divided into several stable and vibration stages. On the one hand, time interval based novel density clustering
algorithm is proposed so as to avoid the wrong division caused by noise at hard division stage. On the other
hand, covariance matrices based local density is presented to better capture dynamic characteristics of the
process. In the multi-model stage, a hybrid prediction model under stable state and XGBoost-based model
under vibration state are established to predict the strip floating height. The hybrid prediction model is
composed of mechanism model and data driven model. The mechanism model is proposed by combining
the force balance equation and inviscid theory which can predict the major information of the floating height
and the data driven model compensates the error of the mechanism model. A mount of experiments have
been carried out on the existing air cushion experimental platform and show desirable prediction effect.

INDEX TERMS Air cushion furnace with hybrid nozzles, floating height, hard division, hybrid prediction
model.

I. INTRODUCTION
The high quality metal strips, such as aluminum auto body
sheet (ABS), aviation aluminum-alloy, high precision elec-
tronic copper strip, and silicon steel, etc., are widely used
in the high-end manufacturing industry, power industry, and
information technology industry [1], [2]. The production pro-
cess of strips needs to meet three technological requirements:
a) high heating efficiency, b) high temperature uniformity,
and c) contactless heat treatment [3]. With the high heating
efficiency, temperature control precision and product surface
quality, the air cushion furnace becomes an indispensable
equipment in the production process of the high quality metal
strips [4].

According to different structures, the air cushion furnaces
can be classified into three categories: air cushion furnaces
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with slot nozzles [5], air cushion furnaces with round noz-
zles [6], [7], and air cushion furnaces with hybrid nozzles
combining slot and round nozzles [8]. The air cushion furnace
with hybrid nozzles has great impinging force and high heat
transfer efficiency [8]. However, until now, researches have
not found out the floating height prediction of the strip in the
air cushion furnace with hybrid nozzles.

During the working process of the air cushion furnace,
the strip is supported by the gas ejected from the nozzles
and floats in the furnace to ensure the surface quality of the
strip. However, if the floating height exceeds a reasonable
range, the surface of the strip may contact with nozzles and
be scratched. Besides, the floating height impacts the heating
and drying efficiency as well as the tension control of the
whole production line. Hence, the floating height is a key
factor affecting product quality. But it is difficult to measure
the floating height of the strip due to the high temperature
production environment [9]. In addition, the floating height of
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the strip is affected by the floating states. The strip shows two
floating states with different mechanism properties, stable
state and vibration state [10]. Therefore, it is of great practical
significance to construct a floating height prediction model
for the air cushion furnace with hybrid nozzles.

In the past decades, several studies have been reported
on floating heights under stable state. For example,
Hornig et al. [11] studied the relationship between the float-
ing height and the pressure coefficient through the numerical
simulation method. Moretti developed the governing Par-
tial Differential Equations to predict the floating height of
strip [12]. Cho used the flexible cantilever beam and ground
effect theory to formulate the mechanism model of floating
height [13]. However, the above researches were carried out
bymeans of the numerical simulation or the mechanismmod-
eling. The mechanism modeling method has advantages of
strong physical interpretation ability and generalization. But
it is often constructed on the basis of certain ideal assump-
tions so that it is difficult to obtain the expected prediction
accuracy. In view of the strong learning ability of data driven
model, Hou constructed a parallel hybrid model combining
the mechanism model with the data driven model to pre-
dict the floating height in the air cushion furnace with slot
nozzles-[14], [15]. But this proposed model is not suitable for
air cushion furnace with hybrid nozzles due to the different
structure of the air cushion furnace. Chang and Moretti [16]
analyzed the aerodynamic characteristics by means of the
ground effect theory in the hybrid nozzle. However, the pre-
diction of the floating height in the hybrid nozzle structure
was not studied in the literature.

Additionally, in vibration state, Cho established a vibration
model on the basis of the elastic equation and the discrete
model [13]. Takeda and Watanabe established a self-excited
vibration model according to the equations of the strip
motion, the fluid force and energy balance [10]. However,
the mechanism models of the above works are established
based on certain ideal assumptions. Thus they have poor pre-
diction effect and only can be used under some specific con-
ditions. Compared with mechanismmodel, data driven model
is easier to construct and has higher prediction accuracy.
They are often used to solve the problem of vibration signal
prediction in industrial processes. Hou used the least square
support vector regression (LSSVR) to predict the maximum
and minimum floating height of the strip in the air cushion
furnace with double-slot nozzle and obtained good prediction
results [14]. Due to the advantages of efficiency, flexibility
and scalability, eXtreme Gradient Boosting (XGBoost) is
often used in the prediction of vibration signals in the other
fields of industry [17]–[20].

In fact, different states have distinct process correlation
characteristics, so a single model cannot accurately describe
the whole multi-state process. Hou et al. [14] proposed a state
divisionmethod based onK-means clustering algorithm. This
method depends heavily on the selection of the initial cluster-
ing center. Zhao and Sun [21] and Hou et al. [15] proposed
the stage division methods on the basis of the multivariate

statistical methods and obtained the desirable effect in multi-
state industrial processes. However, the partition results are
greatly affected by the relaxation factor which is turned by
artificial experience. According to this problem, an iterative
two-step sequential phase partition (ITSPP) method based on
density peaks clustering (DPC) algorithm was proposed by
Qin et al. [22]. But DPC relies heavily on cutoff distance and
does not consider the local structure of the data. To over-
come these problems, Du et al. [23] proposed the density
peaks clustering based on k nearest neighbors (DPC-KNN).
However, on the one hand, the use of Euclidean distance in k
nearest neighbors cannot accurately measure the relationship
between data and express the process variable correlations.
On the other hand, these methods do not consider the influ-
ence of time sequence and may misclassify the noise samples
as normal samples. By comparison, covariance matrix can
better capture the dynamic characteristics of process [24].
In addition, it has been proved that the effect of stage division
can be improved by introducing time intervals [25].

For the air cushion furnace with hybrid nozzles, a hard-
division and multi-model based floating height prediction
method is proposed in this article. The main contributions of
this article can be described as follows: 1) To avoid wrong
division caused by noise, a novel density clustering algorithm
based on time interval is proposed to divide the process into
stable states and vibration states. 2) A covariance matrices
based local density for the novel density clustering algorithm
is presented to better capture the process dynamic characters.
3) For the hybrid nozzle structured air cushion furnace under
stable state, a hybrid model composed of a mechanism model
and a data model is proposed to predict the floating height.
The hybrid model can combine the strong learning ability
of data driven model and highly robust of the mechanism
model.

The remainder of this article is organized as follows.
In section II, air cushion furnace with hybrid nozzles and
the density clustering algorithm are briefly introduced. In
section III, the proposed hard division method is described in
detail. In section IV, the hybrid prediction model under stable
state and the XGBoost-based model under vibration state are
illustrated. Section V details the experiments and analysis.
Conclusions are given in section VI.

II. PRELIMINARY KNOWLEDGE
A. AIR CUSHION FURNACE WITH HYBRID NOZZLES
The structure of the air cushion furnace with hybrid nozzles
is shown in Fig. 1(a). There are several upper air boxes with
hybrid nozzles at the top of the air cushion furnace and several
lower air boxes with hybrid nozzles at the bottom of the air
cushion furnace. The strip floats between the upper and lower
air boxes in the production process. For the convenience of
the reader, the enlarged schematic diagram of hybrid nozzles
is shown in the Fig. 1(b). Every hybrid nozzle has two slot
nozzles and two rows of round nozzle located between the
two slot nozzles as sketched in Fig. 2.
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FIGURE 1. Schematic of the hybrid nozzles in air cushion furnace: (a) Schematic of the strip floating at stable state; (b) The partial enlarged
drawing of nozzle.

FIGURE 2. Top view of the hybrid nozzles.

The working process is shown in Fig. 1(a). As the arrows
indicate in Fig. 1(a), the air enters from the inlet of the
air box and flows out the nozzle, and then impinges on
the strip surface during the production process. The strip
floats in the air under the impinging force of the upper
and lower nozzle in stable state or vibration state. The sta-
ble state of the strip refers to the state where the strip is
located at the mechanical equilibrium point and its floating
height hardly changes over time, as shown in Fig. 1(a).
Moreover, the vibration state of the strip indicates the state
that the strip floats up and down over time, as shown
in Fig. 3.

In order to facilitate the calculation of the later formula, the
related variables are defined in Table 1.

B. DENSITY CLUSTERING ALGORITHM
The clustering algorithms can be divided into four categories,
such as partition-based clustering method, density-based
clustering method, hierarchy-based clustering method, and
grid-based clustering method [26]–[31]. Density peaks clus-
tering (DPC) algorithm is proposed by Alex Rodriguez and
Alessandro Laio in 2014 [32].

FIGURE 3. Schematic of the strip floating at vibration state.

For data set X = {xi} (i ∈ [1,N ]), local density ρi is
expressed as:

ρi =
∑

j
χ (dij − dc), (1)

where dij is the distance between the data point xi and xj, dc
is cutoff distance, and χ is a function, which can be given by:

χ (x) =

{
1, if x < 0
0, if otherwise.

(2)

The distance δi is the mapping function of ρi, which is
defined as:

δi =

{
minρj>ρi (dij), ρi 6= maxi=1...N (ρn)
max(dij), ρi = maxi=1...N (ρn).

(3)

Finally, the number of clusters can be determined by the
two-dimensional decision graph of ρ and δ.

The DPC algorithm is not fully suitable for industrial
scenarios. There are two main reasons. On the one hand,
in industrial scenarios, data is often collected in the order
of time and the sampling time is an important and useful
variable for the analysis of industry process [25]. On the other
hand, the Euclidean distance cannot accurately reflect the
relationship between the samples on the industrial data set,
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TABLE 1. Nomenclature.

which may deteriorate the effect of clustering. In addition,
compared with the Euclidean distance, the covariance matrix
can better capture the dynamic characteristics of industry
process and get desirable results [24].

III. TIME INTERVAL AND COVARIANCE MATRICES
DENSITY CLUSTERING BASED HARD DIVISION
(TICMDC-HD)
In this section, a time interval and covariance matrices den-
sity clustering based hard division method (TICMDC-HD)
is proposed. In order to capture dynamic characteristics in
dynamic process and avoid the wrong division caused by
noise, a local density ρi based on covariance matrices and
distance δi based on time interval are proposed, -respectively.
The establishment of covariance matrices is shown in Fig. 4.

In Fig. 4, a two-dimensional data set X (I × J) is collected
in the production process of the air cushion furnace in chrono-
logical order. The parameter I is the number of samples and
J is the number of variables, and xi is a sample in X (I × J).
At first, a data matricWi is established by several continuous
and adjacent samples xi. The construction method of data

FIGURE 4. Schematic diagram of data matrices construction and
transformation.

matricWi is formulated by:

Wi =


[x1, . . . , xi+M ]T , 1 ≤ i ≤ M

[xi−M , . . . , xi+M ]T , M < i ≤ I −M

[xi−M , . . . , xI ]T , I −M < i ≤ I ,

(4)

whereM is a positive integer. The parameter Di is the length
of Wi, which can be further expressed as:

Di =


i+M , 1 ≤ i ≤ M

2M + 1, M < i ≤ I −M

I − i+M + 1, I−M < i ≤ I .

(5)

The covariance matrices Ci of each data matric Wi are cal-
culated and the similarity Covi,i′ between two covariance
matrices of samples is defined as:

Covi,i′ =
J∑

p=1

J∑
q=1

|Ci (p, q)− Ci′ (p, q)|, (6)

where p and q is the rows number and column number. i is
the ith sample and i′ is another sample.

The local density ρi is defined as:

ρi = exp

(
−
1
k

k∑
i′=1

Cov2ii′

)
, (7)

where k is the predefined number of nearest neighbor
samples.

The factor of time interval between two samples is also
introduced to the distance δi. The distance δi of each sample
is expressed as:

δi =

{
minρi′>ρi (Covii′ +1tii′ ), ρi 6= maxi=1...I (ρi′)

max (Covii′ +1tii′) , ρi = maxi=1...I (ρi′) ,
(8)

where 1tii′ represents the absolute value of time interval
between xi and xi′ . In order to suppress the adverse effects
brought by the value difference between Covi,i′ and1tii′ . The
Covi,i′ and 1tii′ should be normalized.
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The TICMDC-HD is described in detail as follows:
Input: data set X (I × J),1tii′ (i = 1, . . . , I , i′ = 1, . . . , I ),

the number of nearest neighbors k , the geometric centers cs
and cv of historical data under stable state and vibration state.

Output: stable state data set XS , vibration state data set XV .
Step1: Normalize data set X (I × J) and time interval

1tii′ (i = 1, . . . , I , i′ = 1, . . . , I );
Step2: Calculate the local densities ρ and distances δ for

every sample by Eq. (7) and Eq. (8).
Step3: Plot the decision diagram based on ρ and δ. In deci-

sion diagram, these samples with higher value of ρ and δ are
labeled as the cluster centers.

Step4: Assign the remaining unlabeled samples to the near-
est cluster center and form several clusters.

Step5: Arrange each sample in every cluster in chronologi-
cal order. Divide the time continuous samples of every cluster
into same stage and the time discontinuous samples of every
cluster into different stages.

Step6: Calculate the mean values of samples in each stage
denoted as cr . Calculate the Euclidean distance drs between
cr and cs. Calculate the Euclidean distance drv between cr
and cv respectively. If drs < drv, samples are assigned to XS ,
otherwise, are assigned to XV .

IV. MULTI-MODEL PREDICTION METHOD
FOR FLOATING HEIGHT
Based on the division results of hard division, themulti-model
predictionmethod for floating height at stable state and vibra-
tion state is established. The multi-model frame is composed
of hybrid prediction model under stable state (HPMSS) and
the XGBoost-based model under vibration state (XGBMVS).

A. HYBRID PREDICTION MODEL UNDER
STABLE STATE (HPMSS)
The mechanism model has the advantage of high robust-
ness and the data driven model has the advantages of strong
learning ability and favorable prediction effect. In order to
combine the advantages of mechanismmodel and data driven
model, a hybrid prediction model is established. The mech-
anism model is established based on force balance equation
and inviscid theory, which can predict the major information
of the floating height. Besides, the data driven model com-
pensates the error of the mechanism model.

1) MECHANISM MODEL
The mechanism model of air cushion furnace with hybrid
nozzles is proposed based on the force balance equation and
Alexander’s inviscid theory which is a type of ground effect
theory. The inviscid theory of Alexander assumed that the
total pressure of the air injection would not change even after
it contacts with the wall [16]. Alexander’s inviscid equation
is:

pc
pt
=

2(1+ cos θ)
h
b +

1
2 + cos θ

, (9)

where, pc is the air cushion pressure, pt is the pressure of the
air jet after the slot nozzle, b is the width of the slot nozzle, h
is the floating height of the strip, and θ is the angle of the slot
nozzle.

For hybrid nozzle, it is assumed that the cushion pressure
near the nozzle is not affected by the round nozzle, and only
a small part of the air is discharged through the round noz-
zle [16]. The air impinging force per unit length is expressed
as:

F
bpt
=
pc
pt
(
w
b
+
h
b

2 sin θ
1+ cos θ

+
L − w
b

1p1
pc

), (10)

where pc
pt
is given by Eq. (9),w indicates the distance between

the two slot nozzle, L is the distance between the slot nozzle
and the round nozzle, and 1p1 represents the pressure drop
between the strip and the round nozzle.

If we assume that the floating height is uniform and small,
and the flow in the gap between the strip and the air box is
laminar, the pressure drop 1p1 can be expressed as:

1p1
pc
=
p∗
pc

(√
1+ 2

pc
p∗
− 1

)
, (11)

where

p∗ =
1
ρ

(
3πNCdd2µL

h3

)
, (12)

where, ρ is the air density, N is the number of round nozzles
in a row per unit length of air box, Cd is the discharge
coefficient, d is the diameter of the round nozzles, and µ is
dynamic viscosity of air.

According to the above analysis, the upward force on the
strip can be expressed as:

FU
bpt1
=
pc1
pt1

(
w
b
+
h
b

2 sin θ
1+ cos θ

+
L − w
b

1pU1

pc1
), (13)

where pt1 is the pressure of the air jet after the lower slot
nozzle, 1pU1 indicates the pressure drop between the strip
and the lower round nozzle, and pc1 is the air cushion pressure
of lower surface of the strip given by Eq. (9). Similarly, the
downward force on the strip can be expressed as:

FD
bpt2
=
pc2
pt2

(
w
b
+
D− h
b

2 sin θ
1+ cos θ

+
L − w
b

1pD1
pc2

) (14)

where, D is the distance between the upper and lower air
boxes, pt2 is the pressure of the upper slot nozzle, 1pD1
represents the pressure drop between the strip and the upper
round nozzle, and pc2 is the air cushion pressure of the upper
surface of the strip given by Eq. (9).

According to the principle of force balance, when the strip
floats steadily, the sum of the downward force and the gravity
of the strip itself is equal to the upward force. The formula can
be expressed as:

FU = FD + G (15)

where G is gravity of strip per unit length.

VOLUME 8, 2020 194689



S. Hou et al.: Hard-Division and Multi-Model Based Floating Height Prediction for Air Cushion Furnace With Hybrid Nozzles

Finally, the equation (16) is obtained by substituting the
Eq. (13) and Eq. (14) into Eq. (15). The floating height h can
be obtained by solving the equation (16):

Ah7 + Bh6 + Ch5 + Eh4 + Fh3 + Hh2 + Ih+ J = 0, (16)

where, the parameters A, B, C , E , F , H , I , J are expressed
as Eq. (17), Eq. (18), Eq. (19), Eq. (20), Eq. (21), Eq. (22),
Eq. (23), and Eq. (24) as follows:

A = 4(L − w)b2(1+ cos θ )2Q[−16D+ 8b(1+ 2 cos θ )],

(17)

B = 4(L − w)b2(1+ cos θ )2Q{−[2D+ b(1+ 2 cos θ )]2

+ b2(1+ 2 cos θ )2 + 60D2
− 24b(1+ 2 cos θ )D},

(18)

C = 4(L − w)b2(1+ cos θ )2Q[−6b2(1+ 2 cos θ )2D

+ 60b(1+ 2 cos θ )D2
− 80D3], (19)

E = 64b sin θ (pt1 − pt2)− 4(L − w)b2(1+ cos θ )2

×

[
−15b2(1+ 2 cos θ )2D2

+ 80bQD3(1+ 2 cos θ )

− 60QD4
]
− 16G, (20)

F = 32bL(1+ cos θ )(pt1 + pt2)+ [8D+ 4b(1

+ 2 cos θ )](−16b sin θpt1 + 8b sin θpt2 + 4G)

+ 16b(1+ 2 cos θ )[b sin θ (2pt1 − 4pt2)− G]

+ 4(L − w)b2(1+ cos θ )2Q[−24D5
+ 60b(1

+ 2 cos θ )D4
− 20b2(1+ 2 cos θ)2D3]

+ 64b sin θDpt2, (21)

H = [2D+ b(1+ 2 cos θ )]2[16b sin θpt1 − 4G]+ [8D

+ 4b(1+ 2 cos θ )][b(1+ 2 cos θ )(−8b sin θpt1
+ 8b sin θpt2 + 4G)− 8bL(1+ cos θ )pt1]+ [4b(1

+ 2 cos θ )− 8D][8b sin θDpt2 + (1+ cos θ)4bLpt2]

+ [15b2(1+ 2 cos θ )2 − 24b(1+ 2 cos θ )D+ 4D2]2

×QD44(L − w)b2(1+ cos θ )− b2(1+ 2 cos θ )2[16b

× sin θpt2 + 4G]+ 16b2L(1+ cos θ )(1+ 2 cos θ)pt1,

(22)

I = [2D+ b(1+ 2 cos θ )]2[8bL(1+ cos θ )pt1 + 4b(1

+ 2 cos θ)(2b sin θpt1 − G)]+ b(1+ 2 cos θ )[8D

+ 4b(1+ 2 cos θ)][−4L(1+ cos θ )pt1 + 2b sin θ(1

+ 2 cos θ)pt2 − 8D sin θpt2 − 4L(1+ cos θ )pt2 + (1

+ 2 cos θ)G]+ b2(1+ 2 cos θ )2[16bD sin θpt2 + 8

× bL(1+ cos θ )pt2 − 24(L − w)b2(1+ cos θ )2QD5]

+ 16b3(1+ 2 cos θ )(L − w)(1+ cos θ )2QD6, (23)

J = −b2(1+ 2 cos θ )2[2D+ b(1+ 2 cos θ )][8b sin θDpt2
+ 4bL(1+ cos θ )pt2 + G]+ 4b2L(1+ cos θ )(1+

+ 2 cos θ )pt1[2D+ b(1+ 2 cos θ )]24(L − w)b4QD6

(1+ cos θ )2(1+ 2 cos θ )2. (24)

The parameter Q in Eq. (17), Eq. (18), Eq. (19), Eq. (20),
Eq. (21), Eq. (22), Eq. (23), and Eq. (24) is specified as:

Q = ρ
/
(3πNCdd2µL)2. (25)

2) XGBOOST ERROR COMPENSATION MODEL
There exists an error between the actual floating height
and the prediction value of the mechanism model. The
XGBoost [33] has the advantage of high prediction accuracy
and robustness to outliers, so the XGBoost is used to compen-
sate the error of the mechanism model. The training process
for theXGBoost error compensationmodel is shown in Fig. 5.

FIGURE 5. The training process of the XGBoost error compensation
model.

The training process of XGBoost error compensation
model is shown as Fig. 5. Firstly,XS is input to themechanism
model and the output value Ŷm of the mechanism model is
obtained. Secondly,E is the difference between the prediction
value Ŷm of the mechanism model and the actual floating
height Y S . Thirdly, the dataset

{
XS ,E

}
is established as the

training set for the XGBoost model. Finally, the XGBoost
error compensation model is used to predict the error Ê of
the mechanism model.

3) HYBRID PREDICTION MODEL
The hybrid prediction model is consisted of mechanism
model and XGBoost model. The mechanism model predicts
the major information of floating height and the XGBoost
model compensates the error between the prediction value of
the mechanism model and the actual value. The schematic
diagram of the hybrid prediction model is shown in Fig. 6.

FIGURE 6. Schematic diagram of the hybrid prediction model.

As shown in Fig. 6, the prediction process of floating height
at stable state is shown as follows:

(1) Input XS to the air cushion experimental platform with
hybrid nozzles and Y S is collected by sensors during the data
acquisition process.
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FIGURE 7. Schematic diagram of XGBoost-based model under vibration
state.

(2) Input variable XS to the mechanism model and obtain
the prediction value Ŷm of the mechanism model. Train the
XGBoost error compensation model.

(3) The predicted floating height Ŷ S is obtained by adding
the predicted value of themechanismmodel and the predicted
error of the XGBoost error compensation model.

B. XGBOOST-BASED MODEL UNDER VIBRATION STATE
(XGBMVS)
At vibration state, the strip is more likely to vibrate up and
down. There exist fluid and solid coupling process and phys-
ical theory is extremely complex and it is hard to establish a

mechanismmodel for such a complicate floating process. The
strip may contact with the furnace easily at vibration state and
be scratched when the strip is at the maximum or minimum
positions. Therefore, the maximum and minimum heights
are two key values for the production process. Due to the
strong learning ability of the XGBoost model, it is selected
to predict the maximum and minimum floating heights at
vibration state.

The prediction process of floating height model for vibra-
tion state is shown in Fig. 7. At first step, the maximum
and minimum height values Y Vmax, Y

V
min are collected by

data acquisition procedure. At the second step, the data set(
XV ,Y Vmax

)
is used to train the XGBoost1 model and the

training set
(
XV ,Y Vmin

)
is used to train the XGBoost2 model.

Finally, the predicted maximum floating height Ŷ Vmax and
minimum floating height Ŷ Vmin are obtained by XGBoost1 and
XGBoost2 model respectively.

C. HARD-DIVISION AND MULTI-MODEL BASED FLOATING
HEIGHT PREDICTION FRAMEWORK
The framework of hard-division and multi-model based float-
ing height prediction method is shown in Fig. 8. The general
procedure of the method is as follows:

FIGURE 8. The framework of hard-division and multi-model based floating height prediction method.
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FIGURE 9. The physical diagram of air cushion experimental platform
with hybrid nozzles.

Step 1: The data set X during the process is divided into
several segments. Each segment is labeled by stable stage or
vibration stage. Details about TICMDC-HD are described in
section III. The sketch map of this step can also be seen on
the hard division part of Fig. 8.

Step 2: Based on the division result of Step1, if the data
sets are labeled by stable stage, go to Step 3. Otherwise, go to
Step 4.

Step 3: Input the data set labeled by stable stage into
HPMSS and the prediction value of floating height in stable
stage can be obtain. This step is described in section IV-A and
can also be seen on the left bottom of Fig. 8.

Step 4: Input the data set labeled by vibration stage into
XGBMVS and the predictionmaximum andminimum values
of floating height in vibration stage can be got. This step is
described in section IV-B and can also be seen on the right
bottom of Fig. 8.

Step 5: Output the prediction values of the floating height
on Step 3 and Step 4.

V. EXPERIMENTS AND ANALYSIS
A. AIR CUSHION FURNACE EXPERIMENTAL PLATFORM
In order to validate the effectiveness of the hard-division
and multi-model based floating height prediction method,
an amount of experiments are carried out on the air cush-
ion furnace experimental platform with hybrid nozzles. The
specification of air cushion furnace experimental platform
is 3m ×3m ×2.2m. The experimental platform of the air
cushion furnace is mainly composed of the furnace body,
the air seal device, the upper fan, the lower fan, the upper
air container, the lower air container, the upper nozzles and
the lower nozzles. There are three types of nozzles, including
double slot nozzles, hybrid nozzles and round nozzles. The
type of nozzles can be changed according the requirement of
experiment. In this article, the experiment is carried out based
on the hybrid nozzles. For convenience, the physical diagram
and the structure diagram of air cushion furnace experimental
platform are shown in Fig. 9 [15] and Fig. 10, respectively.

The speed of upper fan and the lower fan is adjusted
by the Siemens frequency converter MM 440. The pres-
sure in upper hybrid nozzles and lower hybrid nozzles is
changed with the speed of upper fan and lower fan. The laser
rangefinder LOD2-250W150 with measuring accuracy and
range of 75µmand 100mm-400mm is used in the experimen-
tal process of the air cushion furnace to measure the floating
height of the strip, respectively.

B. EXPERIMENTAL SETUP
Two kinds of strips are used in the experimental process.
The width of the strips is 400mm and the thickness of the
strips is 1mm and 1.5mm, respectively. 1920 samples were
collected to form a total dataset in the experimental process.
The total dataset includes 880 samples under stable state and
1040 samples under vibration state. 24 samples under four
stable states and 48 samples under four vibration states are
selected as the test samples for hybrid prediction model and
XGBoost-based model.

FIGURE 10. The structure diagram of air cushion furnace experimental platform.
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FIGURE 11. Decision graphs: (a) thickness = 1.0mm, pt2 = 200Pa; (b) thickness = 1.0mm, pt2 = 380Pa; (c) thickness = 1.5mm,
pt2 = 200Pa; (d) thickness = 1.5mm, pt2 = 380Pa.

The precision of the model affects the quality of the model.
The MAE, RMSE and MAPE are common evaluation indi-
cators for the prediction performance of machine learnings.
These evaluation indicators are also used to verify the effec-
tiveness of the model in this article. The equations of MAE,
RMSE and MAPE are respectively given as:

MAE =
1
n

n∑
i=1

∣∣ŷi − yi∣∣, (26)

RMSE =

√√√√1
n

n∑
i=1

(
ŷi − yi

)2
, (27)

MAPE =
100
n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣, (28)

where, yi is the actual value of the height and ŷi is the
predicted value of the height. The smaller the MAE, RMSE,
and MAPE are, the higher the prediction accuracy is.

C. EXPERIMENTAL RESULTS AND DISCUSSION
1) RESULTS OF TICMDC-HD
The data set X is collected in the procedure of experimen-
tal process under four conditions. The process variables of

sample are the pressure values of upper nozzles, the pressure
values of lower nozzles, the thickness of strip, the speed
of upper fan, the speed of lower fan. Four conditions are
studied. The conditions are: (a) thickness = 1.0mm, pt2 =
200Pa; (b) thickness = 1.0mm, pt2 = 380Pa; (c) thick-
ness = 1.5mm, pt2 = 200Pa; and (d) thickness = 1.5mm,
pt2 = 380Pa.
The samples in the dataset are divided and recognized by

the hard division method. The decision graphs of experimen-
tal results under four conditions are established and shown
in Fig. 11. In Fig. 11, the lateral axis is local density ρ and
vertical axis is δ. As shown in Fig. 11(a), (b), (c), and (d),
the samples with large local density and distance are defined
as the cluster center. In order to observe conveniently,
the cluster centers are marked by red box. The samples in
the dataset are divided into stable state and vibration state as
shown in Fig. 12.

In Fig. 12, the lateral axis is sample points collected in time
series and the vertical axis is the number of stages. In order
to observe conveniently, the cluster centers are marked by red
color. In Fig. 12(a), the conditions in actual process vary from
stable condition to vibration condition. The samples in the
process are divided into two stages, i.e., 1-200 and 201-480.
The first stage is identified as the stable state. The second
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FIGURE 12. The result of the hard division method: (a) thickness = 1.0mm, pt2 = 200Pa; (b) thickness = 1.0mm, pt2 = 380Pa;
(c) thickness = 1.5mm, pt2 = 200Pa; (d) thickness = 1.5mm, pt2 = 380Pa.

stage is identified as vibration state. Each stage has a cluster
center.

In Fig. 12(b), the conditions in actual process vary from
two different stable conditions to vibration condition. The
samples are divided into three stages, 1-123, 124-339, and
340-480, respectively. The first two stages are identified as
the stable state. The third stage is identified as vibration state.
Each stage has a cluster center.

In Fig. 12(c), the conditions in actual process vary from
one stable condition to two different vibration conditions. The
samples in the process are divided into three stages, 1-80,
81-250, and 251-480, respectively. The first stage is identified
as the stable state. The second and third stages are identified
as vibration state.

In Fig. 12(d), three conditions exist in the actual process.
Two transition processes exist in actual process. In the first
transition process, the conditions in actual process vary from
one stable condition to vibration condition. In the second
transition process, the conditions in actual process vary from
vibration condition to stable condition. The samples in the
process are divided into three stages, 1-228, 229-384, and
385-480, respectively. The first stage is identified as the stable
state. The second stage is identified as vibration state. The
third stage is identified as stable state. A phenomenon can be

found in Fig. 12(d), two cluster centers exist in the first stable
stage and vibration stage. The final stage does not own cluster
center. The reason is as follow: the experimental equipment in
the first and the third stages works at same working condition
under stable state. Duo to the requirement of working process,
a vibration stage is inserted between the first stable stage
and second stable stage. The first and the final stages with
same working condition should be clustered into same cluster
and the first and final stages own same cluster. However,
the time sequence of first and the final stages is discontinuous,
so the first and final stages are divided into two different
stages.

2) EXPERIMENTAL RESULT OF HPMSS
In order to verify the hybrid prediction model, firstly, three
comparison methods including the mechanism model (MM),
the XGBoost model and the support vector regression (SVR)
model are provided. Secondly, the hybrid prediction model
is tested under four conditions. The four conditions are:
(a) thickness= 1.0mm, pt2 = 200Pa; (b) thickness= 1.0mm,
pt2 = 380Pa; (c) thickness= 1.5mm, pt2 = 200Pa; (d) thick-
ness = 1.5mm, pt2 = 380Pa. The experimental results are
shown in Fig. 13.
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FIGURE 13. Quantitative comparison of different prediction models and actual prediction height at stable state: (a) thickness = 1.0mm, pt2 =

200Pa; (b) thickness = 1.0mm, pt2 = 380Pa; (c) thickness = 1.5mm, pt2 = 200Pa; (d) thickness = 1.5mm, pt2 = 380Pa.

TABLE 2. Comparison of the MAE for different models at stable state.

In order to observe conveniently, the MAE, RMSE and
MAPE values of the four algorithms are shown in Table 2,
Table 3, and Table 4 respectively. The smaller the MAE,
RMSE and MAPE are, the better effect the algorithm is. The
algorithm with best effect is shown in bold front.

TABLE 3. Comparison of the RMSE for different models at stable state.

As shown in Table 2, Table 3, and Table 4, theMAE, RMSE
and MAPE values of the mechanism model are significantly
bigger than other models under the four working conditions.
The reasons may be that the mechanism model is constructed
on several ideal assumptions. But the fluid and solid coupling
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FIGURE 14. The minimum floating height prediction results of the XGBoost-based model under vibration state: (a) thickness = 1.0mm, pt2 =

200Pa; (b) thickness = 1.0mm, pt2 = 380Pa; (c) thickness = 1.5mm, pt2 = 200Pa; (d) thickness = 1.5mm, pt2 = 380Pa.

TABLE 4. Comparison of the MAPE for different models at stable state.

process in actual process is complex and the state of the actual
process is non-ideal.

The values of MAE, RMSE and MAPE for XGBoost
model and SVR model are smaller than the mechanism
model. The reasons may be that the data driven model has

strong learning ability and can reflect the potential rela-
tionship between samples. In addition, the values of MAE,
RMSE and MAPE of XGBoost model are smaller than SVR.
The causes may be that the XGBoost is a kind of ensemble
algorithm which integrates multiple learners and has stronger
learning ability. Finally, the values of MAE, RMSE and
MAPE for HPMSS model are smaller than other three algo-
rithms. The reasons may be that the mechanism model has
advantage of generalization ability and the data model has
strong learning ability. The HPMSSmodel is a kind of hybrid
model which combines the advantages of mechanism model
and data driven model. So the prediction performance of the
HPMSS model is better than MM, SVR and XGBoost.

Conditions at vibration state. The four conditions are:
(a) thickness = 1.0mm, pt2 = 200Pa; (b) thickness =
1.0mm, pt2 = 380Pa; (c) thickness = 1.5mm, pt2 = 200Pa;
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FIGURE 15. The maximum floating height prediction results of the XGBoost-based model under vibration state: (a) thickness = 1.0mm, pt2 =

200Pa; (b) thickness = 1.0mm, pt2 = 380Pa; (c) thickness = 1.5mm, pt2 = 200Pa; (d) thickness = 1.5mm, pt2 = 380Pa.

TABLE 5. Comparison of the MAE for different models at vibration state.

(d) thickness = 1.5mm, pt2 = 380Pa. The prediction results
of the minimum floating height and maximum floating height
are shown in Fig. 14 and Fig. 15, respectively.

In order to observe conveniently, the values of MAE,
RMSE and MAPE of XGBMVS and other three models are
shown in Table 5, Table 6, and Table 7, respectively. It is

obvious that the values of MAE, RMSE and MAPE of XGB-
MVS are smaller than others. It indicates that the predicted
values of XGBMVS are very close to the actual values in the
floating height prediction of the strip under vibration state.
This verifies the effectiveness of XGBMVS in predicting the
floating height of strip under vibration state.
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TABLE 6. Comparison of the RMSE for different models at vibration state.

TABLE 7. Comparison of the MAPE for different models at vibration state.

VI. CONCLUSION
In this article, a hard-division and multi-model based floating
height prediction method for air cushion furnace with hybrid
nozzles is proposed. Several conclusions are obtained as fol-
lows:

1) A hard-division and multi-model based floating height
prediction method for air cushion furnace with hybrid
nozzles is proposed. Thismethod can divide the process
into stable state and vibration state. Besides, it can
predict the floating height at stable state and vibration
state.

2) In order to avoid the wrong division caused by
noise and improve the information capture ability for
dynamic process, a time interval and covariance matri-
ces density clustering based hard division method
is proposed. This novel hard division method can
divide the process into stable state and vibration state
successfully.

3) For the stable state of air cushion furnace with hybrid
nozzles, a novel hybrid model combining mechanism
model and data driven model is presented. The mech-
anism model is proposed based on the force balance
equation and inviscid theory. The data driven model is
established by XGBoost model. The mechanismmodel
predict the major information of floating height and
the data driven model is used to compensate the error
between the mechanism model and actual value. The
experimental results show that the hybridmodel can get
higher prediction accuracy than the mechanism model,
the XGBoost model and the SVR algorithm.

4) Under vibration state, the maximum and the minimum
floating height XGBoost models are established to
predict the maximum and minimum floating height
respectively, and get desirable prediction results.

The content of this article lays a theoretical foundation for
state division and floating height prediction in the air cushion
furnace with hybrid nozzles. In addition, it has important
application value for the high-efficiency and high-quality
production of the industry process.

However, the method proposed in this article only suitable
for the air cushion furnace with hybrid nozzles and it is not
suitable for the air cushion furnace with double slot nozzles or
round nozzles. We will explore a method which can be used
in a wide range of scenarios in future.
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