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ABSTRACT Mean arterial pressure (MAP) is an important clinical parameter to evaluate the health of
critically ill patients in intensive care units. Thus, the real time clinical decision support systems detecting
anomalies and deviations in MAP enable early interventions and prevent serious complications. The state-
of-the-art decision support systems are based on a three-phase method that applies offline training, transfer
learning, and retraining at the bedside. Their applicability in critical care units is challenging with delay and
inaccuracy. In this article, we propose a real time clinical decision support system forecasting theMAP status
at the bedside using a newmachine learning structure. The proposed system works in real time at the bedside
without requiring the offline phase for training using large datasets. It thereby enables timely interventions
and improved healthcare services. The proposed machine learning structure includes two stages. Stage I
applies online learning using hierarchical temporal memory (HTM) to enable real time stream processing and
provides unsupervised predictions. To the best of our knowledge, this is the first time it is applied to medical
signals. Stage II is a long short-term memory (LSTM) classifier that forecasts the status of the patient’s
MAP ahead of time based on Stage I stream predictions. We perform a thorough performance evaluation of
the proposed system and compare it with the state-of-the-art systems employing logistic regression (LR).
The comparison shows the proposed system outperforms LR in terms of the classification accuracy, recall,
precision, and area under the receiver operation curve (AUROC).

INDEX TERMS Clinical decision support, classification, hierarchical temporal memory (HTM), long
short-term memory (LSTM), machine learning, real time prediction.

I. INTRODUCTION
In critical care units, it is essential to predict adverse events
as it allows for preventive interventions and reduces clinical
complications. Episodes of anomalous mean arterial pressure
(MAP) values are frequent at the bedside as they are often
associated with anesthesia. These episodes are linked to car-
diovascular risks, multiple organ failure, and life-threatening
complications, especially in critically ill patients [1]–[6].
As a result, evolving research activity has begun to develop
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real-time decision support tools to predict MAP to enable
preventive preparations and reduce complications [1]–[6].
The use of machine learning in clinical decision support sys-
tems has become a current research hotspot [2]–[11]. These
systems are based on offline analysis to save the challenge
of processing streams in real time [3]–[6], [9]–[11]. The
latter requires machine learning algorithms that are capable
of adapting to high-speed streams and their fast-changing
characteristics [12]. Recently, few clinical decision support
systems have been proposed, working in real time using
machine learning, based on stream processing [2], [7], [8].
These systems are mostly three phase-based, consisting of
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offline training on a stored data set, transfer learning, fol-
lowed by bedside retraining on the monitored patient’s vital
signs. The problem with these systems is the generality of
data and models, as the dataset does not necessarily repre-
sent a large population. Modeling must also be repeated in
different clinical cases. The practicality of such systems is
also questionable due to over-training, which in some cases
also leads to delayed decisions. Also, these non-personalized
models have led to uncertain results [2], [7], [8].

This article proposes a personalized real-time clinical deci-
sion support system that works beyond the three phase-based
frameworks guidelines principle. We suggest a new machine
learning prediction-and-classification system that is applied
directly to the bedside in real time. The suggested frame-
work incorporates the use for prediction and classification
of online machine learning, hierarchical temporal memory
(HTM), and long-term memory (LSTM), respectively, over
two stages. HTM has been commonly used in financial data
in real time [13]–[18], but it is first implemented in medical
signals in our proposed system. The proposed clinical deci-
sion support system is implemented to forecast the status of
MAP based on an analysis of the vital signs of the patient
in real time. In our system, the HTM properties play a key
role as they enable the decision support system to operate
directly at the bedside, avoid retraining time delays, and
provide earlier decisions. HTM forecasts the stream one-step
into the future, unsupervised, without pre-modeling. These
streams are fed to an LSTM classifier to forecast the MAP
value one step forward, after careful selection of features.
As our system is personalized, the proposed structure is
applied to each patient. LSTM, the most efficient recurrent
neural network (RNN) algorithm, provides a classifier with
the advantage of managing the set of features, and the obser-
vation window [14], [19]–[21]. It distinguishes LSTM from
other neural artificial networks (ANNs) and deep learning
classifiers, which are sometimes defined as inexplicable [22].
The proposed decision support system is applied to the data
set of the observational study collected at the University
Hospital of Oslo [30].

The proposed clinical decision support system is evalu-
ated and compared to the state-of-the-art LR systems. Both
the predictive and classification stages are carefully veri-
fied in terms of accuracy and efficiency. The proposed sys-
tem outperforms LR in terms of accuracy, recall, precision,
F1-score, and area under the receiver operating characteris-
tic (AUROC). The forecast time is also considered to be a
comparison metric, where it indicates the number of time
steps in advance, the system can predict the event before it
happens. The proposed system shows the ability to provide
faster and highly accurate forecasts compared to LR. The
paper is structured as follows; Section II explains the clin-
ical motivation, related work, and decision support systems
challenges. Section III is on the processes and contributions.
Section IV outlines the proposed decision support system.
Section V provides the results and discussion, and Section VI
concludes.

II. CLINICAL MOTIVATIONS AND CHALLENGES
MAP is a crucial clinical criterion for evaluation and exam-
ination as a predictor of adverse health conditions. A MAP
anomaly can be either hypotensive or hypertensive and is
defined as an interval where the values exceed thresholds
specified for at least a minute [1]–[3]. Patients with anesthe-
sia, surgery, and intensive care [1]–[6] are likely to experience
anomalous levels of MAP. Clinically, it has been concluded
that anomalous MAP is associated with various complica-
tions such as acute kidney injury, increased postoperative
myocardial infarction levels, cardiovascular risks, as well as
organ failure and death [1]–[6]. This explains the need for
early detection of MAP in critical care units and operating
rooms to allow timely intervention to reduce the potential for
mortality and morbidity.

A. RELATED WORK
Various analytical tools are currently used in clinical practice
to support decision-making on various clinical parameters,
including MAP [2]–[11]. These clinical decision-making
tools mostly employ machine learning techniques using algo-
rithms such as LR, random forest ( RF), supported vector
machine ( SVM), and deep learning. Several studies have
been performed on the early identification of events with
blood pressure and supporting decisions. Edward Labs has
developed an LR-based model of real-time hypotension pre-
diction based on waveform analysis in [2]. LR was also
used to calculate the dependency between hypotensive events
and acute kidney injury in [3] and diastolic and systolic
blood pressure in [4]. Forecasting of hypertension in pregnant
women using RF has been studied in [5]. The same problem
was studied and compared with classical machine learning
algorithms in [6]. Acute kidney injury was predicted using
RF in [7]. Cardiotocography data was analyzed using SVM
and RF in [8]. SVM has been proposed to monitor cardio-
cerebrovascular hemorrhage in [9]. SVM, RF, LR, and ANN
have been employed and their efficacy in predicting mortality
rates has been compared in [10]. While multilayer perception
(MLP), SVM, deep learning, and Naives Bayes were com-
pared to predict ectopic pregnancy in [11]. Table 1 lists the
comparison between the different studies. Clinical decision
support systems are mostly used offline on stored data sets
[3]–[6], [9]–[11]. In 2017, Edward Labs developed a model
capable of working in real time [2]. This work was considered
to be a breakthrough compared to studies commonly con-
ducted on offline analysis. This model was later developed
into a commercial tool. Various frameworks followed and
proposed real-time predictions, as in [7], [8].

B. CHALLENGES
Real-time stream analysis at the bedside [13]–[14] is the main
challenge for real-time clinical decision support frameworks.
Streams are usually of high speed; the data rate and vol-
ume are high. The characteristics of the stream vary con-
stantly, which is known as the concept drift problem [12].
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TABLE 1. Overview on Related work on clinical decision support systems.

Such problems placemany restrictions on learning algorithms
because they need to be fully unsupervised without labeling
or annotation. Stream prediction has been conventionally
performed using linear prediction methods that are success-
ful when signals experience high sample correlation and
periodicity [24], [25]. Machine learning, however, was seen
as an alternative to stream learning and predictions using
statistical models, models of neural networks, and cortical
algorithms [15]–[18]. Only the later algorithms can process
streams in real time [15]–[18]. On the other hand, the sta-
tistical and neural network models are mostly supervised
algorithms, modified to adapt to the challenges of stream
predictions and real-time learning. This is achieved with time
delays, buffering, and storage [12]–[14], [19]–[21]. But these
improvements are leading to delayed forecasts and reduced
performance.

Recent studies on real-time clinical decision support sys-
tems have suggested a transfer learning phase that com-
plements the machine learning process. Applying transfer
learning has become a turning point as it has strengthened
the process of real time analysis of the systems and improved
their performance [24]. The systems in this context avoid
real-time stream processing and apply a three-phase-based
framework consisting of offline training, transfer learning,
and bedside retraining [2], [7], [8]. It begins with the offline
training phase to train the classifier on a large stored data
set. The offline procedure also includes training, testing, and
validation. Transfer learning is then applied and plays a key
role in these frameworks as it brings the learning achieved
during the offline phase to the bedside [24]. It uses the pre-
trained network offline as a basis and upgrades it by retrain-
ing the patient’s data and the bedside streams in real time.
After the three steps, the classifier is then able to provide
decision support at the bedside. The three-phase systems are
effective but lack generality and practicality [3]–[6], [9]–[11].

Deep learning models suffer from another problem; they are
commonly described as ‘‘black boxes’’ and are not usually
clinically supported. The learning and selection of features
in these models are non-trackable, where the resulting alarms
are considered unexplained. This problem has prompted the
rise of explainable AI research to reveal more details on their
automatic learning and selection of features [22].

We may conclude that the development of decision sup-
port systems rests on operating directly on real-time stream
analysis outside the three-phase frames. It is expected that
the next generation of decision support systems will follow
an operational framework able to address these processing
challenges. In this article, we propose a decision support
system modeling and processing streams in real time based
on the use of cortical algorithms [15]–[18]. Cortical learning
algorithms are a category of artificial neural networks that
mimic the brain, where data is processed in real time. That
means they can learn in an unsupervised manner incremen-
tally the temporal patterns in the data. The following section
explains the cortical algorithms.

III. CONTRIBUTIONS AND METHODS
A. CONTRIBUTIONS
The main contributions to this article are as follows:

i. We are proposing a new, personalized, real-time clini-
cal decision-making support system working at the bedside.
Compared to existing systems this can be viewed as a break-
through. As It operates beyond the three phase-based systems,
eliminating both off-line training and transfer learning.

ii. The advantage of our system is based on the pro-
posed prediction-and-classification machine learning struc-
ture using HTM-and-LSTM. HTM provides the system with
the benefit of working in real time as it can model and predict
streams in real time and unsupervised. For the first time,
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HTM has been investigated for the use of medical signals by
us in [30].

iii. The proposed machine learning structure uses the
LSTM classifier as a second stage to forecast a binary
decision on each patient’s MAP status. The system is person-
alized and we are developing a model for each patient. The
classifier uses the vital signs of each patient as features, as we
seek to investigate the inter- and intra-dependencies between
the different vital signs to forecast the MAP status.

iv. Performance evaluation is provided to demonstrate the
effectiveness of the proposed decision support system com-
pared to the state-of-the-art use of LR. We apply machine
learning algorithms to a data set collected at the Oslo Uni-
versity Hospital (OUS) [23].

B. METHODS
This subsection is dedicated to the description of HTM; it is
a theoretical model that mimics different structural and algo-
rithmic principles in the brain’s neocortex [8]–[14]. TheHTM
network is trained using unsupervised Hebbian-style learning
and consists of layers of cells arranged in a set of columns.
The cell has three states; active, predictive/depolarized, and
non-active. Each cell has two separate input regions, the prox-
imal and the distal. The proximal region represents the feed-
forward input to HTM. At the same time, the distal region
reflects the lateral connections within the layer that express
the temporal pattern learned, and that lead to predictions.
A cell is activated when it receives sufficient proximal and
distal input.

TheHTMnetwork at any time describes the input sequence
in terms of two separate sparse representations, one at the
level of the columns and one at the level of the single
cells [15]–[17]. The sparse representation at the column level
describes the current feed-forward input. The representation
of the cell level denotes the learned temporal pattern from
the current input and leads to predictions of the future time
step. In the case of an HTM network with N columns and M
cells per column, the learning rules are described using four
matrices explaining both the activation rules and the network
dependencies [15], [16]. The first matrix is the Activation
matrix At, where atij is the activation state of the ith cell in
the jth column at the time interval t

atij =


1 if jεW t and π t−1ij = 1

1 if jεW t and
∑

i
π t−1ij = 0

0 otherwise,

(1)

whereWt is the matrix representing the set of active columns,
which illustrates the input at time t, and π t−1ij denotes the
predictive state of each cell determined during the previous
time interval t-1. The activation rules work as follows, a cell
is activated if and only if its column receives sufficient feed-
forward input, regardless of its previous state (predictive,
active, or non-active) as shown in (1). However, the cell
in a predictive state is privileged, more specifically it will

be activated faster if its column receives enough input and
will prevent other cells in the same column from being acti-
vated unless they are also in the predictive state. That is
known by the intra-column inhibition. If the column receives
enough input and does not have a predictive cell, it will be
completely activated. The second matrix is the predictive
state input is 5t , where each element π tij is the predictive
state of the ith cell in the jth column for the following time
interval,

5t
ij =

{
1 if ∃d

∥∥∥D̃d◦ij At∥∥∥1 > θ

0 otherwise,
(2)

where θ is the segment activation threshold, ◦ is
element-wise multiplication, and D̃dij denotes the connected
synapses/connection of segment d of the ith cell in the jh

column. A cell is said to be in a predictive state if it receives
enough distal input as shown in (2), which represents the tem-
poral pattern learned by the HTM network. Using Hebbian-
style learning rules, the precision of the learning at time step t
is checked at time step t +1. It evaluates the learning process
at each time step in order to strengthen or decay the lateral
connection leading to each prediction. The active lateral
connection leading to successful prediction is reinforced by
increasing the permanence of by the amount of p+, and
decreases the permanence of inactive connections by a small
value of p−.

1Ddij = p+Ḋd◦ij A
t−1
− p−Ḋd◦ij

(
1− At−1

)
, (3)

where D̃dij denotes the connected synapses and Ḋ
d
ij is a binary

matrix containing only the positive entries in Ddij . Next,
a small decay is applied to the active segments of cells
with wrong predictions; this is namely called the long-term
depression rule.

1Ddij = p−−Ḋdij (4)

where atij = 0 and
∥∥∥D̃d◦ij At−1∥∥∥1 > θ , p−− � p− . The fourth

matrix to control the learning rules is the matrix that describes
the input activity. The matrix W t denotes the set of active
columns illustrating the feedforward input. Many columns
receive synaptic inputs at every time step but not all of them
are activated. the number of active proximal cells for each
column is calculated by applying the intercolumnar inhibitory
process. Only the higher 2% of columns are selected and
activated.

IV. THE PROPOSED DECISION SUPPORT SYSTEM
We propose a personalized decision support system capable
to operate in real time, the system is as shown in Fig.1.
At the input stage, marked in orange, the vital signs data are
collected as streams directly at the bedside from the patient’s
monitor. In our model, we consider vital signs that are mostly
monitored in clinical practice. Fig.1-A shows the complete
list of these vital signs. The streams then pass to the Stage I
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FIGURE 1. The proposed personalized decision support system working on the bed side on real time. The input to the system is a
number of monitored vital signs streams in real time as marked in light orange. These vital sign streams are fed to the first proposed

stage for prediction, the streams are listed in the orange table . This stage is marked in blue and uses online machine learning to

provide unsupervised predictions in real time. The resulting predicted streams are listed in table . They then pass to the second
proposed stage, in green, employs LSTM machine learning for classification. Feature extraction and selection are applied prior to the

classification. The resulting feature space after extraction and selection steps are listed in table and respectively. The later table
was color coded to illustrate the importance ranking of the features. Dark shaded cells signify high impact while light shades signify low
impact. Features written in black font are the ones with the least impact and are discarded. The resulting forecast decision, in yellow,
is binary stating either MAP in the coming time interval is normal or experiences abnormality.
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machine learning, shown in blue, which uses HTM to provide
unsupervised real-time prediction for each vital sign. The
predicted streams listed in Fig.1-B are then passed to Stage II,
in green. The streams undergo the feature extraction and
selection then pass to the LSTM classifier. it uses the MAP
ground truth and the selected features as input. At the final
stage, marked in yellow, the classification decision is ready
and a forecast decision on the future level of the MAP is
provided.

We setup LSTM as a semi-supervised classifier and it
provides a binary decision. It needs a training period until
the decision on the MAP level is foreseen. In our model,
we use the data collected before the spinal anesthesia for
training, and the classifier is configured to deliver the decision
after the spinal anesthesia. The decision-support system is
personalized. This means that for each patient a complete
system is trained using only its data, features, and parameters.
The proposed system was applied to the data set in [23].
A detailed description of the proposed decision support sys-
tem stages is given in the following subsections; the data set
is defined in subsection A, stage I is clarified in subsection B,
feature extraction and selection is addressed in subsection C,
and an explanation of the classification stage is shown in
subsection D.

A. DATA SET
The data set was collected at Oslo University Hospital fol-
lowing an observational study on healthy pregnant women
scheduled for cesarean delivery [23]. Helsinki Declaration of
ethical standards and guidelines for the Institutional Review
Board ( IRB) are respected. The dataset includes a continuous
recording of different vital signs of 76 people, the recordings
started almost 7 minutes before spinal anesthesia and until
delivery. The continuously recorded vital signs are; diastolic
arterial pressure (Dia), mean arterial pressure (MAP), systolic
blood pressure (Sys), heart rate ( HR), estimated cardiac
output (CO), heart rate index ( CI), stroke volume ( SV), sys-
temic vascular resistance (SVR), systemic vascular resistance
index (SVRI), heart rate variability ( HRV), stroke volume v.
The data collected is stored in a time series, ranging from
3000 to 6000 samples per patient. – sample reflects the
median of the samples obtained over 10 seconds, with a
5-second sliding window. Patients are monitored and a fore-
cast decision on the level of MAP is required after spinal
anesthesia. The data set includes various events, such as
hypotensive and hypertensive, which provide valuable bench-
mark data for the assessment of the proposed decision sup-
port system. For clarification, we displayed these vital signs
streams for a randomly selected patient in Fig.2-A. It should
be noted that the size of the data set can not be comparable to
that of the medical research databases. This could, therefore,
be seen as a limitation. However, the dataset has a reasonable
size w.r.t to datasets collected locally in hospitals. Table 1 lists
a comparison among different decision support systems in the
literature including the dataset size in each study. As can be

seen, there is a noticeable diversity of dataset sizes between
the different studies.

B. STAGE ONE: ONLINE PREDICTION STAGE
This stage provides unsupervised predictions of each vital
sign using the HTM algorithm in real time. We have intro-
duced HTM for the medical stream in [30]. Predictions are
made in parallel for each vital sign, CO, CI, MAP, Dia, Sys,
SV, SVI, SVR, SVRI, HR, SVV, PPV, SPV, and HRV. Each
stream is processed separately, and each sample is fed one-
by-one to an HTM algorithm that makes predictions one
step into the future. Fig.1-B shows the list of the predicted
vital signs streams; which are the input streams that HTM
predicts one step into the future. These streams are inputs to
Stage II. Fig.2-B shows the predicted streams as well as the
original streams of a randomly selected patient. The streams
are shown over three windows. A thorough performance
evaluation of the predictive efficiency of HTM compared to
the predictor LSTM-Batch is provided in our early work [30].
HTM showed better performance and is completely
unsupervised.

C. STAGE TWO: FEATURE EXTRACTION AND SELECTION
Stage II includes feature extraction, feature selection, and
a classifier stage. The patient’s vital signs are used as fea-
tures of the MAP as we aim to investigate inter-and intra-
dependencies between different vital signs and MAPs for
each patient. We exploit the dependencies as we examine the
reflection of the MAP anomalies on the different vital signs
and patterns associatedwith them. Classifier efficiency shows
the ability to learn these dependencies and to detect early,
diverse patterns of vital signs that predict MAP anomalies
ahead of time before any extreme value is evident on the
monitored signs.

Vital signs are used as simple and combined features
through multiplication, division, and squaring The features
are used in a simple and combinational form. No statistical
features have been used. Although millions of features may
have been included, either statistical or combination features,
we have decided to use vital signs to emphasize the dependen-
cies between vital signs and MAP. We started with 13 vital
signs, which are commonly monitored parameters, CO, CI,
Dia, Sys, SV, SVI, SVR, SVRI, HR, SVV, PPV, SPV, HRV.
The 13 vital signs used in our system are listed in Fig.1-A.
We made different combinations starting with the 13 vital
signs leading to 42 features, which represent the starting
space feature shown in Fig. 1-C. The size of our feature
space does not necessarily need the feature selection stage.
Nevertheless, we understand that such a stage is essential
in practice as the parameters monitored are expanded and
consequently the feature space., we include a feature selec-
tion stage in our simulations and explore different methods
to achieve a complete model that is adequate for practical
implementation.
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FIGURE 2. A detailed visualization of the proposed system’s different stages in terms of the stage input, output signal, and classifier’s

features importance ranking. The input signals collected at the bedside as vital signs streams are shown in . Stage one outputs are

shown over 3 windows marked by . These signals represent the predictions provided by the online machine learning stage using HTM.

Over a window of 100 samples, we show stage one prediction efficiency is shown in vs by displaying the CO stream, prediction, and

confidence interval. In , the feature importance ranking are displayed. The first 30 features were selected and fed to the classifier to
deliver its decision on the MAP level based on them. The results shown above belong to a randomly selected patient.
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Three feature selection methods were evaluated and
compared: Relieff algorithm [27], sequential forward
selection (SFS) [28], and neighborhood component analysis
(NCA) [29], respectively. The three methods were applied
separately and their performance was evaluated in terms of
accuracy and AUROC and compared to performance using
the full feature space. Relieff algorithm showed the best
performance and was adopted as the algorithm for selecting
features in our model. This will be discussed in more detail
in the following section. Relieff algorithm’s selected features
are listed in Fig.1-D with color code for the cell to represent
the importance of each feature. The darker the color of the
cell, the more potent the feature is. The features importance
ranking is provided in Fig.2-D. We can conclude that the
MAP classification was highly dependent on Dia, Sys, SV,
and SVI as well as on their combinations. These features are
shown in the top two rows. On the other hand, as seen in 3rd to
5th rows, CI, CO, HR, and SPV alongwith their combinations
were found to be less impactful. Whereas SVV, PPV, HRV,
SVRI, SVR, and their combinations were found to have no
significance in the classification process. These character
names are written in black font in the bottom two rows of
Fig. 1-D and Fig.2-D. These features have been discarded by
the selection algorithm.

D. STAGE TWO: LSTM CLASSIFIER
LSTM is the classifier proposed to operate in a semi-
supervised mood in our model. It is employed due to its
efficient performance in the analysis of time series and the
advantage it has of controlling the features and the obser-
vation period. As discussed in Section III, the Relieff algo-
rithm is used in our system for the feature selection. The
selected features, along with the ground truth MAP, are fed
to the classifier. In the model configuration, we assign a
one-minute observation period to the LSTM. The classifier
divides the input into one-minute windows and learns the
pattern of the dependency over this time interval. After the
training phase has been completed, the classifier can pre-
dict the future range of MAP after observing patterns over
a one-minute window. The classification is binary, where
0 indicates that the estimated MAP level is within the normal
range, and 1 indicates that the MAP level is either anomaly
due to hypotension or hypertension. The hypotensive event
is defined as the MAP value < 65 mm Hg for a one-minute
time window, and the hypertensive event is defined as the
MAP value > 140 mm Hg for one minute [1], [2]. The
classifier begins training to learn the MAP ground truth and
its associated patterns on various vital signs. The training
period uses data collected during patient observation time as
discussed in Section IV-A, After spinal anesthesia, the classi-
fier is assigned to provide a one-minute forecast decision on
the MAP level. The performance of the proposed classifier
will be evaluated and compared with the performance of the
LR classifier in Section V [2], [6].

V. RESULTS AND DISCUSSION
The efficiency of the predictive stage, shown in blue in
Fig.1, was investigated in our previous publication on the
use of HTM for predictive medical streams [30]. In which
HTM as a predictive tool has been compared to the state-
of-the-art LSTM-Batch with superior performance. The pre-
dicted stream error metrics in terms of the root mean square
error (RMS) and mean absolute percentage error (MAPE)
improved by 50% and 60%, respectively compared to LSTM-
Batch. We illustrate HTM prediction error over a window
of 100 samples, the CO original signal, predicted signal,
as well as the confidence interval are plot in Fig.2 A vs B.
These results belong to a randomly selected patient. The
prediction is shown to be accurate with a small error and
confidence interval. Detailed results and discussions on the
use of HTM as a predictive tool can be found in [30].

Stage II starts with the feature extraction and selection
steps; the late-stage has been explained in Section 1V-C.
Explanation of the obtained feature space of size 42 based on
13 vital signs can be seen in Fig.1 A-C. We investigate three
feature selection methods such as Relieff importance rank-
ing method, sequential forward selection method (SFS), and
neighborhood component analysis (NCA) [27]–[29]. Each
feature selection method is applied separately, and the clas-
sifier performance metrics are computed in each case. Both
the accuracy and the AUROC are used to compare the three
methodswith the performancemetrics using the entire feature
space. Table 2 lists the complete feature space, Relieff, NCA,
and SFS. Relieff shows a slight decrease in both accuracy,
from 0.985 to 0.975, and AUROC, from 0.978 to 0.957,
compared all feature space. The use of both NCA and SFS
results in significant performance degradation of the AUROC
by 20%. We, therefore, choose to use the Relieff algorithm
as the feature selection method in our simulations due to its
enhanced performance.

TABLE 2. The performance using all features and using different
selection criteria.

Next is the classification stage; we propose to use the
LSTM classifier and compare it to the widely used and robust
LR classifier. As mentioned earlier, the classifier is trained
for approximately 7 minutes on the data obtained during
the observation phase, then the classifier is assigned after
the spinal anesthesia to provide a forecast decision on the
MAP level one step into the future. Each classifier model
was trained separately for each patient, as the objective of
this research is to provide each patient with a personalized
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decision support system. The LSTM classifier is imple-
mented usingMATLAB and consists of an input layer, a bidi-
rectional LSTM layer, a fully connected layer, a SoftMax
layer, and finally a classification layer. The number of hid-
den units (300±5), number of epochs (400±10), and mini-
batch size (30±5), which were found through an optimized
search in which accuracy was observed and overfitting was
prevented. The previous values refer to the mean ± percent
95 confidence interval (CI) for each parameter. The threshold
was set to 1. The model was validated using nested k-fold
cross-validation with an overall cross-validation value of
k=10. In our simulations, the LRmodel is implemented using
MATLAB. The sparse solver was used, where the model was
validated using 10-fold cross-validation.

In our model HTM and LSTM are complementary; HTM
provides unsupervised predictions in real time, and LSTM
provides the classification. HTM provides the proposed
framework the privilege of working unsupervised in real
time, which is one step towards practical clinical decision
support without excessive modeling. HTM, therefore, gives
the proposed structure the advantage of early forecasts, where
the predicted streams are one-time step ahead of the original
sequence, which is 10 seconds in our simulations. On the
other hand, given the MAP ground truth, the LSTM clas-
sifier is essential to analyze and train on predicted streams.
It studies mutual dependencies and provides early MAP level
forecasts. This is a role that HTM cannot do.

TABLE 3. The effect of HTM predictive accuracy on the classifier
performance in terms of the accuracy and the area under the receiver
characteristic AUROC.

The proposed machine learning presents an unsupervised
prediction algorithm and a semi-supervised classification
algorithm. Since unsupervised learning normally leads to
performance degradation, we have decided to examine the
performance of each stage individually in addition to the
overall/accumulative performance of the proposed structure.
Furthermore, we compare each classifier performance with
and without HTM as a predictive stage as described
in Table 3. Column one refers to LSTM without prediction,
column two points to results using HTM+LSTM, column
three displays results using LR, and column four highlights
the results HTM+LR. When using HTM, the LSTM clas-
sification accuracy decreases from 0.92 to 0.89and from
0.94 to 0.886. Likewise, the precision of the LR classification
decreases from 0.91 to 0.88 and AUROC from 0.8 to 0.71.
This means the performance has slightly decreased using

FIGURE 3. Comparison between the original classification (in black),
the resulting classification using the proposed system based on LSTM
(in red) and using logistic regression (in blue). Zero denotes a normal
MAP status and one represents MAP disorder. The decision plot belongs
to a randomly chosen patient.

TABLE 4. The comparative performance analysis of the proposed system
using LSTM classifier and LR using several metrics.

unsupervised HTM as a first stage. But, it is marginal com-
pared to the advantage it offers by enabling early forecasts.
This performance difference/dropwas examined using a t-test
to evaluate its significance, p value<0.05 was considered
statistically significant. As pre-mentioned, HTM brings the
proposed system the advantage of working in real time at
the bedside, saving the retraining phase, which is expected
to lead to earlier decisions compared to the state-of-the-
art systems. To emphasis this comparison aspect, different
parameters defining the decision-to-event time and decision
success rate are listed in Table 5. It compares the decision
support systems using LR, LSTM, and HTM+LSTM based
on the precision, recall, and decision-to-event time. The later
metrics are more reflective of the system success rate to
predict different events, correct and missed events compared.
Using HTM+LSTM enhanced the system precision by 20%
compared to LR and by 10% compared to the use of LSTM
alone. While it enhanced the recall by 40% compared to
LR and 10% compared to LSTM. Which means that the
false positive and negatives have decreased. We considered
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TABLE 5. The performance evaluation of different models in terms of the decisions precision and decision-to-event time.

another parameter which is the decision-to-event time. Using
HTM was shown to lead to ‘‘earlier’’ decisions by 50% and
decreased the decision latency by 25%. The number ofmissed
events have also decreased from 50% using LR, to 20% using
LSTM, and the best rate was achieved using HTM+LSTMby
only 10%.

The overall performance of the prediction-and-
classification system using HTM-LSTM is compared with
the state-of-the-art LR in terms of precision, accuracy, recall,
F1-score, AUROC, SD, and 95 % CI. The validation error is
also taken into account. Table 4 lists all the results reflecting
the average of each metric over the entire data set. The
comparison shows that the proposed system outperforms LR
in terms of the specified metrics. We have considered another
comparative measure, which is the time margin between
the forecast and actual event. As a sample, the resulting
decision on the MAP level of a randomly selected patient
is observed in Fig. 2. The original classification is shown in
black, the decision using the proposed system is shown in
red and the classification using the LR is shown in blue. The
proposed system was able to predict both events correctly.
The second ‘‘event’’ was predicted 4-time windows ahead of
time, equivalent to 200 seconds. The average prediction time
per patient was 150 seconds and the delayed predictions were
75 seconds on average. The prediction of the ‘‘normal’’ MAP
status is also shown to encounter a delay of 100 seconds.
On the other hand, the LR classifier is unable to predict
both events. This is also consistent with the performance
evaluation listed in Table 4 and Table 5, which indicates a
higher recall than the precision values. These results show the
advantage of using HTM for earlier and successful decisions
on the MAP level compared to the state-of-the-art systems.

VI. CONCLUSION
This article proposes a new personalized real-time decision
support system implementing a new hybrid prediction-and-
classification machine learning system. The proposed system
is considered to be a breakthrough compared to state-of-
the-art real-time systems using three phase-based models
as it operates directly at the bedside. It saves extensive
offline modeling, uncertainty, and delays associated with
conventional systems. The proposed new machine learn-
ing framework consists of two stages: hierarchical temporal
memory (HTM) predictor stage, first applied to medical sig-
nals, and long short-term memory (LSTM) classifier.

The proposed systems have the privilege of working at the
bedside in real time, supported by the capabilities of HTM.
The framework investigates and learns from the dependencies
between the vital signs and theMAP, where the vital signs are
used as features of the MAP. Careful selection and extraction
of the features were performed using the Relieff algorithm.
The LSTM classifier was then configured to predict the MAP
level for each patient by detecting the associated pattern on
the patient’s vital signs.

The proposed system performance is assessed against the
state-of-the-art logistic regression (LR). Accuracy, the area
under the receiver operating characteristics (AUROC), preci-
sion, recall, and F1-score are used as evaluation criteria. The
proposed system has shown improved performance, a 20%
improvement in AUROC, a 20% improvement in precision,
and a 35% increase in recall. The proposed system also lead to
a 50% increase in early decisions, decreased latency by 25%,
and decreased missed events by 50% resulting in an average
decision-to-event time of 150 sec.
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