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ABSTRACT In this paper, we design the rateless coded uplink transmission in cloud radio access network
(C-RAN) with two users, two remote radio heads (RRHs), and one baseband processing unit (BBU) pool
under block fading channel. Each user sends the Raptor coded signals continuously until receiving ACK from
the BBU pool. A distributed fronthaul compression schemewith LDPC code is proposed for the RRHswhich
can reduce the compression loss without increasing the fronthaul traffic, through leveraging the correlation
between the received signals at both RRHs. To guarantee the compression performance, the LDPC code
profile is optimized based on extrinsic information transfer (EXIT) analysis. Furthermore, the Raptor code
profiles applied at the two users are also jointly optimized to improve the average system throughput.
Simulation results show that the proposed transmission scheme with the optimized LDPC compression code
and Raptor code can achieve good BER and throughput performance.

INDEX TERMS Cloud radio access network, distributed fronthaul compression, LDPC code, Raptor code,
degree profile optimization.

I. INTRODUCTION
In the future communication networks, massive users and
traffic demands under limited available communication
resource impose a stringent requirement on the spectrum
efficiency and energy efficiency. C-RAN is a promising RAN
technology considering the above challenges. In C-RAN, all
the BBUs are backward centralized into a cloud computing
resource pool and each RRH is located closer to the users.
BBU pool and RRHs are connected through high-speed fron-
thaul links. The main advantage of C-RAN lies in that the
coordinatedmultiple points transmission (CoMP) can be real-
ized inherently which can greatly improve the system spec-
trum efficiency [1], and the Capital Expenditure (CAPEX)
and Operating Expense (OPEX) are reduced compared with
the conventional RAN [2].

In C-RAN, the RRHs and BBU pool communicate through
the fronthaul with restricted capacity. Therefore, the signals
conveyed through the fronthaul should be compressed first
to meet the capacity limit. The conventional compression
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scheme is scalar quantization [3]. Due to the fact that
the received signals at neighbor RRHs have correlations,
more efficient compression can be deployed at the RRH
according to the theory of distributed source coding (DSC,
i.e., Slepian-wolf coding and Wyner-ziv coding) [4], [5],
which is named ‘distributed fronthaul compression’ in the
literature. In practice, DSC can be realized by channel codes
such as turbo code [6]–[8], LDPC code [9]–[12], trellis
code [13], and Raptor code [14], etc. There are a plethora
of works, e.g., [15]–[21], which investigated the distributed
fronthaul compression based on DSC for the uplink C-RAN.
In [15]–[17], the authors provided theoretical optimization
frameworks for distributed fronthaul compression. In [18],
it was proved that, distributed fronthaul compression can
reach higher sum rate even compared with the case where
the RRHs can communicate with each other. In [19], [20],
the authors optimized the fronthaul compression noise covari-
ance and investigated the decompression process at BBU
pool for the uplink C-RAN. In [21], the authors investigated
the joint optimization of multi-antenna precoding for users
and fronthaul compression noise covariance to maximize the
achievable sum rate in the MIMO C-RAN. Nevertheless, all
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the above works are mainly from the network information
theoretic aspect, where the design of distributed fronthaul
compression was mainly focused on the compression noise
covariance optimization. To the best of authors’ knowledge,
the practical code design for the distributed fronthaul com-
pression based on DSC in C-RAN has not been addressed yet.

On the other hand, rateless code is a class of channel codes
(e.g, LT code and Raptor code [22]) which is quite different
from the conventional fixed-rate channel code. With rateless
code, there is no need for the transmitter to determine the
coding rate before transmission. It generates codewords of
infinite length and continuously sends the coded bits until
the receiver successfully decodes and feedbacks an ACK.
Rateless code can approach the channel capacity when its
degree profile is optimized, solely with the statistical channel
state information (CSI) [22], [23]. Therefore, system over-
head for CSI acquisition at the transmitter can be greatly
reduced. Rateless codes have been considered for various
communications systems, e.g., distributed antenna systems
[24], [25], relay systems [26], [27] and wireless broadcast
systems [28]. As for C-RAN, in [29], a rateless coded trans-
mission scheme for the multi-user downlink was proposed.
In [30], [32], we designed the rateless coded transmission
for single-user and multi-user uplink in C-RAN, where the
degree profiles of rateless code were optimized. However,
note that the above works solely considered simple scalar
quantizer for fronthaul compression.

In this paper, we design the rateless coded uplink trans-
mission with distributed fronthaul compression for C-RAN
with two users and two RRHs under block fading channel.
In each round of transmission, each user continuously trans-
mits the Raptor coded messages to both RRHs. Then a novel
fronthaul compression scheme is adopted at the RRHs which
utilizes the correlation between the received signals at the
two RRHs. Explicitly, both RRHs first quantize the received
signals to meet the fronthaul capacity limit. Then one of the
RRHs is selected to further compress the quantization bit
sequence using LDPC code, and the generated syndrome bit
sequence is sent to the BBU pool instead. The remaining
fronthaul capacity is used to transmit an extra quantization
bit sequence, which is generated by quantizing a part of the
received signals with a higher precision. The BBU pool first
decompresses the uploaded signals from the RRHs, and then
performs iterative multi-user (MU) detection and decoding to
recover both users’ messages.

The main contributions of this paper are summarized as
follows:

(1) We design the rateless coded multi-user uplink trans-
mission in C-RAN, including the distributed fronthaul com-
pression at RRHs, the decompression and iterativeMU detec-
tion and decoding at the BBU pool.

(2) Resorting to EXIT [33], we analyze the decoding pro-
cess for signal decompression at the BBU pool, based on
which we optimize the degree profile of the LDPC compres-
sion code adopted at the RRH to improve the compression
performance.

(3) Based on EXIT, we analyze the iterative MU detec-
tion and decoding at the BBU pool. Under the block fading
channel assumption, we jointly consider the selection of RRH
which executes the LDPC-based compression and the degree
profile optimization for the Raptor codes applied at the two
users, in order to maximize the average system through-
put over all possible channel states. Specifically, the above
optimization only relies on statistical CSI.

Compared with our previous works [29]–[32], as for the
considered C-RAN model, [29]–[31] are different from this
work while [32] is the same. Nevertheless, in this work we
propose a novel transmission design wherein the key idea is
to deploy the distributed fronthaul compression at the RRH,
while the works in [29]–[32] solely considered the conven-
tional scalar quantizer. The proposed transmission scheme
brings several new design issues, which has never been inves-
tigated in [29]–[32]. The first issue is the selection of the
appropriate RRH to execute the LDPC-based compression.
The second is the optimization of LDPC code profiles for
compression. The third is the design of MU detector at the
BBUpoolwhich should consider the fact that the quantization
signals from the RRH have non-uniform quantization preci-
sions. Furthermore, the above fact makes the optimization
of Raptor code profiles obviously distinguishable from that
in [32].

The rest of the paper is arranged as follows. In Section II,
we introduce the system model. In Section III, the rateless
coded uplink transmission scheme with distributed fronthaul
compression is given. In Section IV, degree profile opti-
mization for LDPC compression code and Raptor code is
discussed. Simulation results are presented in Section V.
Section VI concludes the paper.

II. SYSTEM MODEL
As shown in Fig. 1, we consider the uplink transmission
in C-RAN where there are two users, two RRHs and one
BBU pool. Both users and RRHs are equipped with single
antenna.

The channel gain of the link from user i, i = 1, 2, to
RRH j, j = 1, 2, is denoted as hji. We assume that each link
experience independent block fading, i.e., hji is independent
on each other and remains unchanged in one transmission
round. During each round, each user keeps sending rateless
codewords until the BBU pool successfully decodes and
feedbacks an ACK. The specific transmission process is as
follows.

Firstly, user i, i = 1, 2, applies Raptor code on its message
of K bits to generate the coded bits wi, and modulates the
coded bits into symbols xi which are sent to both RRHs.
Note that the degree profiles of Raptor codes are fixed over
all transmission rounds, thus the users are not required to
be aware of the instant CSI. On the other hand, RRHs and
BBU pool are assumed to have the full CSI. Each RRH
pre-processes the received signals to obtain the baseband
signals, which can be expressed as:

y = H
√
Px+ n, (1)

VOLUME 8, 2020 186711



Y. Zhang et al.: Rateless Coded Multi-User Uplink Transmission With Distributed Fronthaul Compression in Cloud RAN

FIGURE 1. 2-user uplink in C-RAN with distributed fronthaul compression.

where y , [y1, y2]T ,H ,
[
hji
]
2×2 , x , [x1, x2]T , n ,

[n1, n2]T , yj, j = 1, 2, is the baseband signal received at
RRH j, P is the transmission power of each user, nj is the
independent additive white Gaussian noise (AWGN) with
mean of 0 and variance of σ 2

0 at RRH j.
Then RRH j, j = 1, 2 quantizes the baseband signals

into a quantization bit sequence ûj. The quantization pre-
cision depends on the fronthaul capacity. From (1), it can
be observed that y1 and y2 are correlated, so are the two
sequences û1 and û2. Therefore, we adopt the idea of
Slepian-Wolf (SW) coding to further compress the quantiza-
tion bit sequence. Let RRH π (1) be selected to perform the
SW compression,1 where π (1) ∈ {1, 2} and the selection
remains unchanged over all transmission rounds. Explicitly,
RRH π (1) compression ûπ(1) with LDPC code to obtain
the syndrome bit sequence ŝπ (1), whose length is shorter
than the original sequence.2 Therefore, the remaining fron-
thaul capacity can be used to transfer an extra quantiza-
tion bit sequence ûext,π (1) which is generated by quantizing
a part of the received signal at RRH π (1) with a higher
precision.

RRH π (1) and RRH π (2) (where π (2) = 3− π (1))
transmit the bit sequences {ŝπ (1), ûext,π (1)} and ûπ(2) to the
BBU pool through the fronthaul, respectively. At the BBU
pool, the quantized bit sequence ûπ(1) is firstly recovered
from ûπ(2) and ŝπ (1) by belief propagation (BP) algorithm.
With ûπ(1), ûπ(2) and ûext,π (1), iterative multi-user detector
(MU detector) and decoding based on BP algorithm are per-
formed to recover both users’ messages. When the decoding
is successful, an ACK is fed back to both users.

III. RATELESS CODED MULTI-USER UPLINK
TRANSMISSION WITH DISTRIBUTED COMPRESSION
In this section, we discuss the proposed rateless coded uplink
transmission scheme with distributed fronthaul compression
in detail. We first introduce the rateless encoding at the user,
then the compression scheme at the RRH and finally the

1Note that RRH selection will affect the system achievable rate. We will
discuss the RRH selection scheme in Section IV.

2Note that the degree profile of the LDPC compression code may be
changed in each transmission round according to the current channel state.

detailed algorithms for signal decompression and message
recovery at the BBU pool.

A. RATELESS ENCODER AT THE USER
Each user i, i = 1, 2, encodes its message mi into Raptor
coded bits wi, where mi is firstly encoded by an LDPC code
with rateRP, and then by an LT code. LT code is characterized
by its output node degree profile:

�i(x) =
∑dc

d=1
�i,dxd , i = 1, 2, (2)

where dc is the maximum output node degree, and �i,d
represents the probability that a LT coded bit (hereinafter
referred to as the output bit) is with degree d . For an output
bit with degree d , d bits are randomly selected from the
LDPC coded bits (hereinafter referred to as the input bit) and
XORed to generate the value of the output bit. Through the
above encoding process, Raptor coded bits can be continu-
ously generated. For simplicity, we use binary modulation
on the coded bits, i.e., bits 0 and 1 are mapped to 1 and -1,
respectively.

B. DISTRIBUTED FRONTHAUL COMPRESSION
AT THE RRH
According to (1), the pre-pocessed baseband signal at RRH j
is given by:

yj = hj1
√
Px1 + hj2

√
Px2 + nj, j = 1, 2. (3)

Its variance can be calculated as follows:

D
(
yj
)
= E

(
y2j
)
− E2(yj) = Pσ 2

j1 + Pσ
2
j2 + σ

2
0 , (4)

where σ 2
ji represents the variance of the channel gain hji.

Then each RRH first quantizes the baseband signal to meet
the fronthaul capacity limit. Scalar quantization is utilized,
wherein the quantization threshold is fixed during the trans-
mission, since it is related to the hardware implementation.
According to [34], it can be regarded that the value of yj is

almost distributed in the range
(
−3Dj, 3Dj

)
,Dj =

√
D
(
yj
)
.

Assume that the fronthaul capacity between each RRH and
the BBU pool is B bits/symbol. Then the number of quanti-
zation levels should satisfy MB = 2B. The quantized signal
ŷj,B is generated from the signal yj according to the following
rules:

ŷj,B = Qj(yj)

=


qj,1, yj < −3Dj +1j,B
qj,k , −3Dj+(k−1)1j,B≤yj < −3Dj + k1j,B,

k = 2, . . . ,MB − 1
qj,MB , yj ≥3Dj −1j,B

(5)

where qj,k = −3Dj +
(
k − 1

2

)
1j,B, k = 1, . . . ,MB is the

quantized value and 1j,B =
3Dj
MB

is the quantization interval.
Then each quantized signal ŷj,B = qj,k is mapped to a

quantization bit sequence lj of length B:

lj ,
{
lj [1] , . . . , lj [B]

}
, (6)
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FIGURE 2. Illustration of 2-bit and 3-bit scalar quantizers.

where lj is generated by decimal-to-binary conversion of k .
According to (4), the received signals at both RRHs are
correlated, so are l1 and l2. The transition probability from
l2[r] to l1[r] is given by:

P(l1[r]|l2[r]) =
P(l1[r], l2[r])
P(l2[r])

=
1
2

∑
w1,w2∈ψ

P(l1[r]|w1,w2)P(l2[r]|w1,w2),

(7)

where r = 1, 2, . . . ,B, P (l2 [r]) = 1
2 , ψ represents the set

{0, 1}. Taking the case {w1 = 0,w2 = 0} as an example,
P(l1[r]|w1,w2) is calculated as follows:

P(l1[r]|w1 = 0,w2 = 0) =
∫
<r (l1[r])

1√
2πσ 2

0

e
−

(x−h11−h12)
2

2σ20 dx,

(8)

where the integral range <r (l1 [r]) consists of all the quanti-
zation intervals that the r-th bit of the corresponding quan-
tization bit sequence is l1[r]. An illustration is given in
Fig. 2(a), where the quantization bit number B = 2. In the
case of l1 [1] = 1, <1(l1 [1]) represents the third and fourth
quantization intervals; If l1 [2] = 1, <2(l1 [2]) includes
the second and fourth quantization intervals. Calculation of
P(l2[r]|w1,w2) is similar.

Each RRH j, j = 1, 2, packs the quantization bits
corresponding to eachN quantized signals into a bit sequence
ûj of length NB. That is, ûj = [lj1, . . . , ljN ], where
ljk , k = 1, . . . ,N , denotes the quantization bit sequence
corresponding to the kth signal in the block. RRH π (1)
compresses the bit sequence ûπ(1) using LDPC code.
Explicitly, ûπ(1) is modular multiplied with the LDPC
check matrix Am×NB to obtain a syndrome bit sequence

ŝπ (1) = [s1, . . . , sm] of length m. Now the remaining fron-
thaul capacity for RRH π (1) is (B− m

N ) bits/symbol. To fully
utilized it, (BN −m) out of each N received signals yπ (1) are
randomly selected which are quantized with a finer quantizer
with quantization bit number B+ 1.
Remark 1: In Section IV-A, we will discuss how to

determine the length of the syndrome bit sequence, i.e., m.
Note that (BN − m) may be greater than N under some
channel states. In this case, RRH π (1) can select a part of
received signals and apply a more precise quantizer on the
selected signals, e.g., with quantization bit number B + 2.
In the following, wemainly discuss the case thatBN−m < N
for simplicity.

For the finer quantizer with quantization bit number B+1,
the number of quantization levels MB+1 = 2B+1. Then the
quantized signal ŷπ(1),B+1 with quantization bit number B+1
is generated according to the following rule:

ŷπ(1),B+1
= Q1,B+1(yπ(1))

,


q1,1, yπ (1) < −3D1 +11,B+1
q1,k , −3

√
D1+(k−1)11,B+1 ≤ yπ (1) < −3

√
D1

+ k11,B+1 k = 2, . . . ,MB+1 − 1
q1,MB+1 , yπ (1) ≥3D1 −11,B+1

(9)

where 11,b+1 =
3D1
MB+1

. The quantized signal ŷπ(1),B+1 with
quantization bit numberB+1 is mapped to a new bit sequence
l ′j of length B + 1 according the same rule in (6). Note that
the first B bits l ′1 are exactly the original bit sequence l1 of
length B, as illustrated in Fig. 2(b). All the additional quan-
tization bits corresponding to the selected (BN − m) signals
from an extra bit sequence ûext,π (1) of length (BN−m). RRH
π (1) transmits ŝπ (1) and ûext,π (1) to the BBU pool, without
violating the capacity constraint of the fronthaul. On the other
hand, RRH π (2) directly transmits the bit sequence ûπ(2) to
the BBU.

C. DECOMPRESSION AND ITERATIVE MU DETECTION
AND DECODING AT THE BBU POOL
As shown in Fig. 1, upon receiving the bit sequences from
both RRHs, the BBU pool firstly recovers ûπ(1) according to
ŝπ (1) from RRH π (1) and ûπ(2) from RRH π (2). Then the
MU detector and Raptor decoding are iteratively performed
to recover both users’ messages according to ûπ(1), ûπ(2) and
ûext,π (1).

1) DECOMPRESSION AT THE BBU POOL
The LDPC decoder recovers ûπ(1) = [lπ(1)1, . . . , lπ(1)N ]
which is the quantization bit sequence of length NB corre-
sponding toN received signals at RRHπ (1). Fig. 3 shows the
LDPC decoding graph for decompression, where the variable
nodes correspond to ûπ(1) to be recovered and the check
nodes correspond to the syndrome bit sequence ŝπ (1) from
RRH π (1). According to the correlation between ûπ(1) and
ûπ(2) given by (7), the input log-likelihood-ratio (LLR) of the
variable node corresponding to the r-th quantization bit of
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FIGURE 3. LDPC decoding graph for decompression at the BBU pool.

the k-th signal in ûπ(1), i.e., lπ(1)k [r], is expressed as (where
r = 1, . . . ,B, k = 1, . . . ,N ):

LLR[lπ(1)k [r]]

= ln
P(lπ(1)k [r] = 0|lπ(2)k [r])
P(lπ(1)k [r] = 1|lπ(2)k [r])

= ln

∑
w1,w2∈Êψ

P(lπ(2)k [r]|w1,w2)P(lπ(1)k [r]=0|w1,w2)∑
w1,w2∈Êψ

P(lπ(2)k [r]|w1,w2)P(lπ(1)k [r]=1|w1,w2)
,

(11)

which can be calculated according to (7).
BP algorithm is executed on the decoding graph in Fig. 3.

In iteration 0, the LLR message q(0)vc from the variable node v
to the check node c is the input LLR (11):

q(0)vc = LLR[lπ(1)k [r]], (12)

where node v corresponds to the r-th quantization bit corre-
sponding to the k-th signal.

In the t-th iteration, the message from the variable node v
to the check node c is given by:

q(t)vc = q(0)vc +
∑

c′∈ÊCv\{c}
q(t−1)c′v , (13)

where Cv denotes a set of check nodes connected to variable
node v, q(t−1)c′v represents the message passed from the check
node c′ to the variable node v in the previous round. The
message from the check node c to the variable node v is
updated as follows:

tanh

(
q(t)cv
2

)
= (1− 2sc)

∏
v′ 6=v

tanh

(
q(t)v′c
2

)
, (15)

FIGURE 4. Decoding graph for MU detection and Raptor decoding at the
BBU pool.

where sc represents the syndrome bit in ŝ corresponding to
the check node c, v′ denotes the variable node connected to
the check node c except the variable node v, q(t)v′c represents the
message passed from the variable node v′ to the check node c.
The above iterations end when the check equation

û′1A
T
m×NB = ŝ1 is satisfied or the maximum iteration number

is reached, where û′1 is the recovered bit sequence correspond-
ing to the variable nodes. In the case of successfully decoding,
û′1 = ûπ(1). Note that in the case of unsuccessful decoding,
the LDPC decoder will still output the results to the following
MU detector and decoder. Absolutely, the wrong quantiza-
tion bits will degrade the performance of MU detector and
decoder.

2) JOINT MU DETECTION AND DECODING AT THE BBU
POOL
With the sequence ûπ(1) and ûext,π (1), the BBU can recon-
struct the quantized received signals at RRH π (1) which
can be divided into two classes according to the quantization
bit number, i.e., ŷπ(1),B and ŷπ(1),B+1 (recalling (5) and (9)).
Then the iterative MU detection and decoding is performed
to recover users’ messages mi, i = 1, 2, from the quantized
signals at both RRHs. The decoding graph is given in Fig. 4,

LLRa[wi] = ln
p(wi = 0|ŷπ(1),B, ŷπ(2),B,LLRe[wi′ ])
p(wi = 1|ŷπ(1),B, ŷπ(2),B,LLRe[wi′ ])

= ln
p(ŷπ(1),B, ŷπ(2),B|wi = 0,wi = 1)+ p(wi′=0)

p(wi′=1)
p(ŷπ(1),B, ŷπ(2),B|wi = 0,wi′ = 0)

p(ŷπ(1),B, ŷπ(2),B|wi = 1,wi′ = 1)+ p(wi′=0)
p(wi′=1)

p(ŷπ(1),B, ŷπ(2),B|wi = 1,wi′ = 0)
(14)
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where the two subgraph in the upper part and middle part
correspond to the LDPC precoder and the LT code of the
Raptor code and the lower part is the MU detector. The input
nodes correspond to input bits (LDPC coded bits) and the
output nodes correspond to the (Raptor coded) output bits
wi for each user. For simplicity, each output node and the
LT check node are regarded as a whole and referred to as
‘output node’ in the following. The MU detector calculates
the LLR of the output bit wi of user i, i = 1, 2, based on
the quantized received signals ŷπ(1),B or ŷπ(1),B+1 at RRH
π (1), ŷπ(2),B at RRH π (2), and the output LLRe[wi] from
the Raptor decoders, where i′ = 3− i. For example, when the
quantization bit number of the received signal at RRH π (1)
corresponding to the output bit wi is B, the output LLR from
the MU detector is given as follows:

where p(wi′=0)
p(wi′=1)

equals 1 in the first decoding iteration and

equals eLLR
e[wi′ ] in the following iterations. Taking the case

{i = 1,w1 = 1,w2 = 1} as an example, according to (5),
P(ŷπ(1),B, ŷπ(2),B|w1 = 1,w2 = 1 is calculated as follows:

p(ŷπ (1),B, ŷπ (2),B|w1 = 1,w2 = 1)

=

∫
<(ŷπ (1),B)

1√
2πσ 2

0

e
−

(x+h11−h12)
2

2σ20 dx

×

∫
<(ŷπ (2),B)

1√
2πσ 2

0

e
−

(x+h21−h22)
2

2σ20 dx, (16)

where <(ŷπ(1),B) and <(ŷπ(2),B) respectively represent the
quantization intervals corresponding to ŷπ(1),B and ŷπ(2),B
according to (5) and Fig. 2. The other three conditional
probability in (14), as shown at the bottom of the previous
page, can be derived accordingly.

The iterative detection and decoding process can be divided
into two stage. In the first stage, the decoding iterations
are performed on the whole decoding graph in Fig. 4. The
first stage ends when the mean of the absolute LLR of the
input nodes of both users exceeds threshold Lth, which is
necessary for the successful decoding of the LDPC precoder
[35]. In the second stage, decoding iterations are executed
individually on the LDPC decoding graph of each user to
eliminate remaining errors. The detailed decoding procedure
in the t-th iteration of stage 1 is given as follows (taking the
decoding for user 1 as an example):

Step 1: In the decoding graph for user 1, the message
conveyed from the input node i to the LDPC check node c
is updated by:

m(t)
ic =

∑
o
m(t−1)
oi , (17)

where m(t−1)
oi represents the message transmitted from the

output node to the input node in the (t − 1) round.
Step 2: The message from the LDPC check node c to the

input node i is updated as follows:

tanh

(
m(t)ci
2

)
=

∏
i′ 6=i

tanh

(
m(t)i′c
2

)
, (18)

where m(t)i′c means that the message is from all input nodes
(except i) to the LDPC check node c.

Step 3: The message from the input node i to the LT output
node o is:

m(t)
io =

∑
o′ 6=o

m(t−1)
o′i +

∑
c
m(t)
ci , (19)

where m(t−1)
o′i represents the message transmitted from the

output node o′ to the input node i in the (t−1) round. m(l)
ci

represents the message from LDPC check node c to the input
node i.
Step 4: LLRe [w1] transferred to the MU detector is given

by:

LLRe [w1] =
∑

o
m(t−1)
oi +

∑
c
m(t)
ci , (20)

Then the MU detector transmitted the above LLR message
to the decoding graph of user 2. The decoding procedure is
similar to step 1-4.

Step 5: LT output node o returns the message to the input
node i:

tanh

(
m(t)oi
2

)
= tanh

( z0
2

)∏
i′ 6=i

tanh

(
m(t)i′o
2

)
, (21)

where z0 = LLRa[w1] represents the message from the MU
detector which is calculated by (14).

Step 6: After each iteration, the LLR of the input bit
corresponding to the input node i is:

m(t)
i =

∑
o
m(t)
oi . (22)

The second stage of decoding is performed individually
on the LDPC decoding graph for each user. The process is
similar to step 1 and step 2.

IV. EXIT ANALYSIS AND DEGREE PROFILE
OPTIMIZATION
In this section, we first present the optimization scheme for
the variable node degree profile of the LDPC compression
code applied at the RRH. Then we discuss the selection
of the RRH to perform LDCP-based compression and the
optimization of the output node degree profiles of Raptor
code for each user to maximize the average throughput of
the system. Recalling that since RRHs and BBU pool are
assumed to be aware of the instant CSI, the selected RRH can
adopt the optimized LDPC compression code for the current
channel state. On the other hand, each user does not acquire
the instant CSI and solely applies the pre-determined Rap-
tor code degree profile over all transmission rounds. So the
Raptor code profiles should be optimized to accommodate
all possible channel states.

For all the above code optimization, we resort to the EXIT
analysis.We investigate the extrinsic information (EI) passing
on the decoding graph during the decoding iteration, where
EI is defined as mutual information of the message bit and its
corresponding LLR, and derive the EI update rules. Based on
this, the optimization problems are formulated.
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FIGURE 5. EI transfer on the LDPC decoding graph for decompression.

A. DEGREE PROFILE OPTIMIZATION FOR LDPC
COMPRESSION CODE
Firstly we introduce some notations for the LDPC decod-
ing graph given in Fig. 3. The LDPC variable node degree
distribution is defined as ξ (x) =

∑dv
d=1 ξdx

d , where ξd
represents the ratio of variable nodes with degree d to all
variable nodes, dv is the maximum degree of the variable
node. LDPC variable node edge distribution is defined as
ξ̃ (x) =

∑dv
d=1 ξ̃dx

d−1, where ξ̃d is the probability of the
edges connected to the variable node with degree d to all
edges. LDPC check node edge distribution is defined as
ρ̃ (x) =

∑dc
d=1 ρ̃dx

d−1, where ρ̃d is the probability of the
edges connected to the check node with degree d to all
edges. The LDPC check node degree distribution is defined as
ρ (x) =

∑dc
d=1 ρdx

d , where ρd represents the ratio of check
nodes with degree d to all check nodes. Here we consider
LDPC code with identical check node degree ρ̃, i.e., ρ̃ (x) =
ρ (x) = x ρ̃ .
Recalling (5) and (6), the LDPC variable nodes cor-

responding to the quantization bit sequence ûπ(1) =

[lπ(1)1, . . . , lπ(1)N ] can be divided into B groups each of
which consists of N nodes. Explicitly, each node in the r-th
group (r = 1, . . . ,B) corresponds to the r-th bit of lπ(1)k ,
k = 1, . . . ,N .

Fig. 5 illustrate the EI update between the check nodes
and the variable nodes in the LDPC decoding graph given
in Fig. 3. For the t-th round of decoding iteration, the EI is
updated as follows:

Step 1: EI transferred from the variable node in group
r, r = 1, . . . ,B, to the check node is given by:

x(t)v,r =
∑dv

d=1
ξ̃dJ

(
(i− 1) J−1

(
x(t−1)u

)
+ J−1

(
I (lπ(1)k [r] ;LLR[lπ(1)k [r]])

)
, (23)

where x(t−1)u represents EI transferred from the check node
to the variable node in round (t − 1), J (τ ) is the EI corre-
sponding to the LLR message satisfying symmetric Gaussian
distribution with mean τ [36]:

J (τ ) = 1−
1
√
4πτ

∫
+∞

−∞

log2(1+ e
−v)e

(
−
(v− τ )2

4τ

)
dv.

(24)

The input EI I (lπ(1)k [r] ;LLR
[
lπ(1)k [r]

]
) can be derived as

follows:

I
(
lπ(1)k [r] ;LLR

[
lπ(1)k [r]

])
= H

(
lπ(1)k [r]

)
− H

(
lπ(1)k [r] |LLR

[
lπ(1)k [r]

])
= 1− Hr , (25)

where Hr , H (lπ(1)k [r]|LLR[lπ(1)k [r]]).
Note that the B groups have the same number of variable

nodes, the average EI passed from all variable nodes to check
nodes is:

x(t)v =
1
B

∑B

r=1
x(t)v,r . (26)

Step 2: The EI from the variable nodes to the check nodes
is:

x(t)u = 1−
∑dc

d=1
ρ̃dJ

(
(j− 1) J−1

(
1− x(t)v

))
. (27)

Substituting (23) and (25) into (27), we can get the update
rule of x(t)u , which is denoted as a function 8(·):

x(t)u = 8
(
x(t−1)u , I (lπ(1)k [r];LLR[lπ(1)k [r]]), ρ̂, {ξ̃d }

)
. (28)

Obviously, (28) is linear with the variable node edge
distribution {ξ̃d }.

Recalling the distributed fronthaul compression scheme
proposed in Section III-B, a shorter syndrome bit sequence
ŝπ (1) = [s1, . . . , sm] results in larger remaining fron-
thaul capacity. Therefore, we optimize {ξ̃d } to minimize the
required syndrome bits number m (or, equivalently, the num-
ber of check nodes) for successfully decompression at the
BBU pool. Since the number of check nodes is given by

NB(ρ̂
∑dv

d=1
ξ̃d
d )
−1

, the optimization problem is formulated as
follows:

max
ρ̂{ξ̃d }

ρ̂
∑dv

=1

ξ̃d

d
C1 :

∑dv

d=1
ξ̃d = 1

C2 : ξd ≥ 0, d = 1, . . . ,D
C3 : 8

(
xu, I

(
lπ (1)k [r];LLR

[
lπ (1)k [r]

])
, ρ̄, {ξd }

)
> xu
(29)

where C1 indicates that the sum of the edge distribution
coefficients {ξ̃d } is 1, C2 means that coefficients {ξ̃d } are no
smaller than 0, C3 means that EI should keep ascending dur-
ing the decoding iteration. Note that xu in C3 is continuous.
To make it tractable, xu is discretized into N equal-spaced
values within the range [0, 1].
To solve the above problem, firstly we can use LP to obtain

the optimal variable node edge distribution ξ̃ (x) under an
arbitrary fixed ρ̄. Then the optimal ρ̄ can be obtained by
exhaustive searching. Finally, the variable node degree profile
ξ (x) of the LDPC code can be derived according to the
equality ξ̃ (x) = ξ ′(x)

ξ ′(1) .
Remark 2: Note that under fixed channel state, no mat-

ter which RRH is selected to perform the compression,
the resulted optimized LDPC code profile is the same. Recall-
ing the input EI given in (25), we have the following equality:
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I
(
lπ(1)k [r] ;LLR

[
lπ(1)k [r]

])
= I

(
lπ(1)k [r] ; lπ(2)k [r]

)
=

I
(
lπ(2)k [r] ;LLR

[
lπ(2)k [r]

])
. That indicates no matter RRH

1 or RRH 2 is selected to perform the compression, the
input EI is the same for the proposed LDPC code opti-
mization problem, which results in the same optimization
result. Nevertheless, the value ofπ (1) affects the Raptor code
optimization as shown in the next subsection.
Remark 3: The proposed optimization is based on infinite

LDPC code length. In practice, the code length NB is quite
limited since it results in the signal processing latency at
the RRH π (1). To guarantee a satisfactory decompression
performance at the BBU pool, we choose a slightly larger
syndrome bits number than the optimized result in (28) is
given as follows:

m = NB(ρ̂
∑dv

=1

ξ̃d

d
)−1(1+ ϑ), (30)

where ϑ is a small positive number. Using PEG algorithm
[37], the LDPC check matrix Am×NB for compressing û1 into
ŝπ (1) is generated according to the node degree profile ξ (x)
and the syndrome bit number m. Finally, in the case that the
m is larger than NB, RRH π (1) will not apply the LDPC
compression.

B. DEGREE PROFILE OPTIMIZATION FOR RAPTOR CODE
In this subsection, we jointly optimize the output node degree
profiles of Raptor code for both users.

Firstly we introduce some notations for the decoding graph
given in Fig. 4. The LDPC variable node degree distribution is
defined as ζ (x) =

∑dv
d=1 ζdx

d , where ζd represents the ratio
of variable nodes with degree d to all variable nodes, dv is
the maximum degree. LDPC check node edge distribution is
defined as %̃ (x) =

∑dc
d=1 %̃dx

d−1, where %̃d is the probability
of an edge connected to the check node with degree d . The
input node degree distribution of user i, i = 1, 2, is defined as
αi (x) =

∑d ′v
d=1 αi,dx

d , where d ′v is the maximum degree of
the input node and αi,d is the probability of the input node
of user i with degree d . The input node edge distribution
of user i is defined as α̃i (x) =

∑d ′v
d=1 α̃i,dx

d−1, where
α̃i,d is the probability of an edges connected to the input
node with degree d . According to [38], αi (x) and α̃i (x) can
be approximate by Poisson distribution with mean ᾱi. The
output node edge distribution of user i is defined as ωi (x) =∑d ′c

d=1 ωi,dx
d−1, where ωi,d is the probability of an edge

connected to the output node with degree d . The relationship
between the output node degree distribution�i (x) and ωi (x)
can be expressed as:

ωi (x) =
�′i (x)

�′i (1)
. (31)

Recall that the iterative MU detection and decoding has
two stages. In the first stage, the decoding iteration is exe-
cuted on the whole graph in Fig. 4. Then in the second stage,
decoding is individually performed on the LDPC subgraph.
Fig. 6 shows the update process of EI transferred between
each node in the first decoding stage. According to the pro-
posed distributed fronthaul compression scheme, for each N

FIGURE 6. EI transfer on the decoding graph for MU detection and Raptor
decoding at the BBU pool.

received signals yπ (1) at RRH π (1), (BN − m) signals are
quantized by B+ 1 bits, while the other by B bits. Therefore,
the output nodes in the Raptor decoding graph for each
use should be divided into two parts corresponding to the
different quantization bit numbers.

Now we analyze the EI update in Fig. 6. In the t-th round,
the EI update in the decoding subgraph for user 1 is given as
follows, which can be derived accordingly for user 2.

Step 1: The LT input nodes transmit the LLR messages to
the LDPC check nodes, and the corresponding EI is:

x(t−1)1,ext =
∑d ′v

d=1
α1,dJ (dJ−1

(
x(t−1)1,u

)
), (32)

where x(t−1)1,u is the average EI transmitted from the output
nodes to the input nodes in the round (t − 1).
Step 2: The EI from the LDPC check nodes to the input

nodes of user i is:

T
(
x(t−1)1,ext

)
=

∑dv

d=1
ζdJ (dJ−1

(
1−

∑d ′c

j=1
%̃jJ ((j−1)J−1

(
1− x(t−1)1,ext

)
)
)
).

(33)

Step 3: The EI from the input nodes to the output nodes is:

x(t)1,v =

d ′v∑
d=1

α̃1,dJ ((d − 1) J−1
(
x(t−1)1,u

)
+ J−1(T (x(t−1)1,ext ))).

(34)

Step 4: The EI from LT output nodes for user 1 to MU
detector is:

I (t)out1 = 1−
∑d ′c

d=1
�1,dJ (dJ−1

(
1− x(t−1)1,v

)
). (35)

Step 5: The EI from the output nodes corresponding to
quantization bit number B to the input nodes is:

x(t)1,u,B = 1−
∑d ′c

d=1
ω1,dJ

(
(d − 1) J−1

(
1− x(t)1,v

)
+ J−1

(
1− IB,DET1(I

(t−1)
out2 ;H)

))
. (36)

The EI from the output nodes corresponding to
quantization bit number B+ 1 to the input nodes is:

x(t)1,u,B+1 = 1−
∑d ′c

d=1
ω1,dJ

(
(d − 1) J−1

(
1− x(t)1,v

)
+ J−1

(
1− IB+1,DET1(I

(t−1)
out2 ;H)

))
. (37)
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In (35) and (36), IB,DET1(I
(t−1)
out2 ;H) and IB+1,DET1(I

(t−1)
out2 ;H)

represent the output EI from the MU detector to the output
nodes of user 1 where the corresponding quantization bit
number for yπ (1) is B and B + 1, respectively. The deriva-
tion of IB,DET1(I

(t−1)
out2 ;H) and IB+1,DET1(I

(t−1)
out2 ;H) will be

discussed later.
Step 6: The average EI from all output nodes to the input

nodes in the subgraph for user 1 is given by:

x(t)1,u = (B− m/N )x(t)1,u,B+1 + (1− B+ m/N )x(t)1,u,B. (38)

In Step 5, IB,DET1 (Iout2;H) and IB+1,DET1 (Iout2;H) are
functions of the input EI Iout2 from the output nodes of
user 2 to the MU detector in t-th iteration and the channel
matrix H. Both functions can be evaluated by Monte Carlo
method [39]. In the following we take IB+1,DET1 (Iout2;H)
as an example. Firstly, set the transmitted signals x1 of
user 1 to be 1, and randomly generate the transmitted
symbols x2 of user 2, i.e., either 1 or −1, with uniform
probability. According to (1), under fixed H, we generate
Gaussian noise samples and get y1 and y2. Then according
to (9), we obtain ŷπ (1),B+1 and ŷπ (2),B. For an arbitrary
Iout2, we randomly generate the corresponding LLRe [w2]
from symmetric Gaussian distribution with mean τ and
−τ when the corresponding x2 equals 1 and −1, respec-
tively, where τ is calculated by (24). LLRa [w1] can be
obtained according to (14). In conclusion, by generating
a large number of x2 and Gaussian noise sample, we can
approximately obtain the conditional p.d.f. (i.e., probability
distribution function) of LLRa [w1] when x1 = 1, i.e.,
p (LLRa [w1] | x1 = 1) . Then p (LLRa [w1] | x1 = 1, x2 = 1)
and p (LLRa [w1] | x1 = 1, x2 = −1) can be obtained simi-
larly. With this, IB+1,DET1 (Iout2;H) is given by:
IB+1,DET1 (Iout2;H) =∑
x2=1,−1

p
(
LLRa [w1] | x1=1, x2

)
log

p (LLRa [w1] | x1=1, x2)
p (LLRa [w1] | x1=1)

(39)

Furthermore, from the numerical results, we find that under
fixed H, IB+1,DET1(Iout2,H) can be well approximated by a
linear function:

IB+1,DET1 = aIout2 + b, (40)

where a and b can be obtained by evaluating two special
cases:

IB+1,DET1 (0;H) = I
(
x1; ŷπ (1),B+1, ŷπ (2),B

)
, (41)

IB+1,DET1(1;H) = I (x2; ŷπ (1),B+1, ŷπ (2),B|x2). (42)

Fig. 7 gives the numerical IB+1,DET1(Iout2,H) and its linear
approximation, named ‘MC’ and ‘LA’, respectively, when
B = 2, SNR = P

σ0
= −1.58 dB and π (1) = 1.

Three channel matrices H are considered, i.e., case 1: H =[
1.8672 0.4413
1.3802 0.6236

]
, case 2: H =

[
0.8937 1.3841
0.6928 1.9839

]
, and

case 3: H =
[
2.9021 0.4483
0.3402 1.2053

]
. From Fig. 7, we can find

that the linear approximation is considerably accurate.

FIGURE 7. The relationship between the output and input EI for the MU
detector.

For successfully decoding, the conditions x(t+1)i,u > x(t)i,u and
x(lmax )i,u > x thi,u, i = 1, 2, should be satisfied, where lmax is
the maximal decoding iteration times, x thi,u is the minimal EI
required by successful decoding of the LDPC codes in the
second stage and can be calculated according to Lth given in
Section III-C with the method given in [35].

Based on the above EXIT analysis, we optimize the output
node degree profile of the Raptor code used at each user as
well as the RRH selection, i.e., π (1). Recall that under the
block fading channel, the channel state matrix H remains
unchanged during each round of transmission and changes
independently round by round. In one round of transmission,
both users continue to send Raptor codewords simultaneously
until the BBU pool successfully recover users’ messages. The
length of the Raptor codewords for each user in each round
of transmission is related to the current channel state matrix
H and the RRH selection π (1), which can be expressed as:

Li (H,P, π (1)) =
K
Rp
ᾱi(H,P, π (1))

∑d ′c

d=1

ωi,d

d
, (43)

where ᾱi(H,P, π (1)) is the average LT input node degree
for user i, i = 1, 2, under channel matrix H and P is
the user transmit power. In each round transmission, both
users start and stop transmission simultaneously, therefore let
L1 (H,P, π (1)) = L2 (H,P, π (1)) , L (H,P, π (1)).

Usually the channel state space is continuous. To make
the problem tractable, we discretize the space into Q states:
Hq, q = 1, . . . ,Q. The probability of each state is defined as
Pr(Hq). Then the average Raptor codeword length over all Q
state can be expressed as:

L̄i
(
Hq,P, π (1)

)
=

∑Q

q=1
Pr(Hq)

K
Rp
ᾱi(Hq,P, π (1))

∑d ′c

d=1

ωi,d

d
. (44)

For all channel states Hq, ᾱi(Hq,P, π (1)) can be approx-
imated as ᾱi

(
Hq,P, π (1)

)
= ᾱi,0C

−1
i (Hq,P, π (1)) [40],

where ᾱi,0 is a constant and independent on the channel state,
Ci(Hq,P, π (1)) represents the theoretical achievable rate of
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FIGURE 8. Illustration of the theoretical achievable rate region for the
two-user C-RAN uplink.

user i under channel matrix Hq. In the following, we derive
Ci(Hq,P, π (1)).

Note that (BN − m) out of N received signals at RRH
π (1) is quantized by B + 1 bits. In this case, the theoretical
achievable rate region for user 1 and user 2 is given by:

R1 ≤ I
(
x1; ŷπ(1),B+1, ŷπ(2),B | x2

)
, G1,B+1, (45)

R2 ≤ I
(
x2; ŷπ(1),B+1, ŷπ(2),B | x1

)
, G2,B+1, (46)

R1 + R2 ≤ I
(
x1, x2; ŷπ(1),B+1, ŷπ(2),B

)
, G12,B+1, (47)

The other received signals at RRH π (1) are quantized
by B bits, and the corresponding theoretical achievable rate
region is R1 ≤ G1,B, R2 ≤ G2,B and R1 + R2 ≤ G12,B.
Therefore, the overall theoretical achievable rate region under
RRH selection π (1) for the current round of transmission is:
R1 ≤ G1, R2 ≤ G2, and R1 + R2 ≤ G12, where G1, G2 and
G12 can be calculated as follows:

G1 = (B− m/N )G1,B+1 + (1− B+ m/N )G1,B, (48)

G2 = (B− m/N )G2,B+1 + (1− B+ m/N )G2,B, (49)

G12 = (B− m/N )G12,B+1 + (1− B+ m/N )G12,B. (50)

Fig. 8 illustrate the above region. Since the messages of both
users are of the same length, and the Raptor code length of
both users are the same as well, the achievable rate of both
user should be equal. Therefore, the maximal achievable rate
for both users is the intersection point of the line R1 = R2 and
the boundary of the achievable region, and we have:

C1
(
Hq,P, π (1)

)
= C2

(
Hq,P, π (1)

)
= C

(
Hq,P, π (1)

)
, min

(
G1,G2,

1
2
G12

)
. (51)

Remark 4:As discussed in Remark 3, in practice, theremay
be some channel states under which the distributed fronthaul
compression is inapplicable. For these channel states, the the-
oretical achievable rates of both users are given by:

C1,con
(
Hq,P

)
= C2,con

(
Hq,P

)
= Ccon

(
Hq,P

)
.

, min
(
G1,B,G2,B,

1
2
G12,B

)
. (52)

We define T = 2K
L̄(Hq,P,π(1))

as the average sum through-
put, which is inverse to the average Raptor code length of
both users. Our goal is to optimize both users’ Raptor code
degree profiles to maximize T , or equivalently, minimize
L̄
(
Hq,P, π (1)

)
under the constraint that BBU pool success-

fully decodes both users’ messages under all possible channel
states. This problem can not be solved by linear programming
method as in [31]. Instead, we resort to searching degree
profiles to minimize the required user transmit power while
ensuring successful decoding under fixed average code length
L̄
(
Hq,P, π (1)

)
. Note that this strategy has been used for

AWGN multiple access relay channel [32] [39]. Here we set
the fixed average code length to be the theoretical code length
required for successful recovery, which is given by:

L =
K
Rp

∑Q

q=1
Pr(Hq)C−1(Hq,P, π (1)). (53)

Overall, the optimization problem can be formulated as:

min
Pth,ᾱi,0,{ωi,d },π (1)

Pth

C1 :
d ′c∑
d=1

ωi,d = 1, i = 1, 2,

C2 : ωi,1 > ε, i = 1, 2,
C3 : x(lmax)

i,u > x thi,u, for all channel matrices Hq,
i = 1, 2,

C4 :
K
Rp

Q∑
q=1

Pr(Hq)ᾱi,0C−1(Hq,Pth, π (1))
d ′c∑
d=1

ωi,d

d
= L,

i = 1, 2,
(54)

where C1 indicates that the sum of the edge distribution
coefficients

{
ωi,d

}
for each user is 1, C2 is the BP starting

condition. C3 ensures successful decoding under all channel
states. C4 is derived from (43) and (53), i.e., the average
code length is fixed to L. To solve the above problem, firstly
we can use differential evolution (DE) method [41] to obtain
the corresponding optimization edge profile

{
ωi,d

}
under an

arbitrary fixed αi,0 and π (1). Then the optimal αi,0 and π (1)
can be obtained by exhaustive searching. Finally, the opti-
mal output node degree distributions �i,opt (x) are obtained
through (30).

C. COMPLEXITY ANALYSIS
The computational complexity of the proposed scheme
should be discussed from two aspects. The first is the com-
plexity for optimizing the degree profiles of the LDPC com-
pression codes and Raptor codes, and the RRH selection.
The second is the complexity to implement the proposed
transmission scheme with the optimized code profiles.

For the first aspect, firstly consider the complexity for
the optimization of the LDPC compression code, i.e., the
problem (28). The complexity is O(lLPqQ), wherein O (lLP)
is the complexity of LP [42] (usually a polynomial of the
variable number lLP), q denotes the number of the discrete
values of ρ̄ for exhaustive searching, and Q is the number of
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channel states (since (28) should be solved for each channel
state). Secondly, consider the degree profile optimization for
Raptor code, i.e., problem (53). The complexity is O(2lDEb),
wherein O (lDE ) is the complexity of DE [43] (which is the
product of the number of the variables, the generation number
and the number of agents), b denotes the number of the
discrete values of αi,0 for exhaustive searching, and 2 is the
number of possible values for π (1).

Now we discuss the complexity for the implementation
of the proposed scheme with the optimized code profiles.
Firstly, consider the fronthaul compression operation at the
selected RRH. The complexity is O (NBme), where O (NBm)
is the complexity for the modular multiplication of ûπ(1) and
the LDPC check matrix Am×NB and e denotes the number
of the blocks of length N into which one codeword can be
divided. Secondly, consider the complexity for the LDPC
decompression algorithm and the iterative MU detection and
decoding algorithm. Both are based on the BP algorithm.
Its complexity has been widely discussed in the existing
literature, e.g., [44], which is the product of the maximal
iteration number and a polynomial of the node number and
edge number in the decoding graph.

Finally, compared with [32], the additional complexity
of this work comes from: (1) The optimization for LDPC
compression code, which is executed only once. (2) The
fronthaul compression executed at one of the RRHs, which
is just modular multiplication. (4) The decompression at the
BBU pool, which is actually a BP-based LDPC decoding
algorithm.

D. EXTENSION TO THE SCENARIOS WITH MORE USERS
AND RRHs
We discuss the extension of this work to the scenarios with
more users and RRHs. Actually, the extension is non-trivial.
In the following we discuss some related issues.

The first issue is the decompression order at the BBU
pool. For the scenario with more than two RRHs, sequential
decompression [15] should be applied, with which the signals
from each RRH are decompressed by a certain order and the
decompression for the current RRH utilizes the decompres-
sion results before, similar to (11). The decompression order
affects the overall system performance, as well as the code
profile optimization for the LDPC code and Raptor code. The
decompression order should be optimized, and in [15], solely
a sub-optimal heuristic order selection scheme was proposed.

The second issue is on the MU detector at the BBU pool.
In this work, when deriving the output LLR for theMU detec-
tor, there are two possible combinations of quantization bit
numbers for the signals from the two RRHs, i.e., {B, B} and
{B, B + 1}, (recalling (14)). However, for the scenario with
more RRHs, since each RRH randomly selects the signals
for higher quantization precision, there will be considerably
more combinations of quantization precisions. This fact also
affects the EXIT analysis of the iterative MU detector and
decoder, wherein the Raptor output nodes should be divided
into more groups than that in Fig. 6.

The third issue is the EXIT analysis on the MU detector.
According to [39], for the three-user multiple access channel,
the output EI of MU detector can be approximated by some
closed-form function, as (40) for the two-user case. Never-
theless, for the scenarios with more users and RRHs where
the signals from the RRHs have non-uniform compression
precisions, it is also an open question whether the polynomial
approximation in [39] is accurate.

As for the computational complexity, it is obvious that the
extension to the scenarios of more users and more RRHs
will lead to higher complexity, due to the sequential decom-
pression at the BBU pool and the fact that the code profile
optimization for Raptor code and LDPC compression code
becomesmore complex and the possible decompression order
is factorial of the number of RRHs.

V. SIMULATION RESULTS
In the simulation, we consider the scenario with two users and
two RRHs. The users are not aware of the instant CSI while
RRHs and BBU pool are assumed to have the full CSI. The
message length for both users is set to K = 9500 bits. For
the Raptor code, a regular LDPC code with rate Rp = 0.95 is
applied as the precoder. The codebook of the regular LDPC
code is generated by PEG algorithm [45]. The variance of
Gaussian noise at each RRH is σ 2

0 = 1.22. The fronthaul
capacity for both RRHs is set to 2 bits/symbol, which is
a simplified system setting. In the simulation, we assume
that there are three channel states with uniform probabil-
ity. Each entry of the corresponding channel matrices are
independently and randomly generated according to Rayleigh

distribution with parameter 1: H1 =

[
1.8672 0.4413
1.3802 0.6236

]
,

H2 =

[
0.8937 1.3841
0.6928 1.9839

]
, H3 =

[
2.9021 0.4483
0.3402 1.2053

]
.

A. BER PERFORMANCE OF LDPC COMPRESSION CODE
Firstly, we simulate the performance of the LDPC com-
pression code under the three channel states H1, H2 and
H3, respectively. According to the optimization result of the
problem (53), RRH 2 is selected to perform the proposed
compression scheme. The transmit power of each user is
P = 1.616. In Fig. 9, the overhead is defined as:

overhead =
m∑B

r=1 HrN
− 1, (55)

where Hr is given by (25) and
∑B

r=1 HrN is the theoretically
required syndrome bit length for successful decompression.
The optimized LDPC code variable node degree profiles for
three channel states are listed here:

ξH1 (x) = 0.4904x2 + 0.3430x3 + 0.1044x6

+ 0.0161x7 + 0.0462x20. (56)

ξH2 (x) = 0.5544x2 + 0.3051x3 + 0.1067x6

+ 0.0338x20. (57)

ξH3 (x) = 0.8061x2 + 0.1136x3 + 0.0360x4

+ 0.0355x5 + 0.0089x20. (58)
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FIGURE 9. Compression performance of the optimized LDPC and regular
LDPC under different channel states: (a) H1, (b) H2, (c) H3.

With the 2-bit quantizer, the length of the quantization bit
sequence before LDPC compression for a block ofN received
signals is NL = 2N . In Fig. 9, we simulate the error perfor-
mance of the optimized LDPC compression code for different
NL under three channel states H1, H2 and H3. The regular
LDPC code is also simulated for comparisons. As shown in
the figure, the optimized LDPC compression code consid-
erably outperforms the benchmark under all channel states.
When NL = 4000, the optimized LDPC code achieves the
BER of 10−3 at a small overhead of 0.11. It can be observed
that a better error performance is achieved for a larger code
length NL . However, note that in practice, a large NL results
in a large processing delay at the RRH since the RRH should

wait forN received signals to do compression each time. This
will also affect the overall system delay. Finally, it should
be noted that, under each channel state, when the overhead
is larger than 0.458, 0.263 and 0.022, respectively, the dis-
tributed fronthaul compression is not applicable since in these
casesm ≥ NB, i.e., the length of the compressed bit sequence
exceeds the original one.

B. BER PERFORMANCE OF THE OVERALL SYSTEM
In this section, we simulate the error performance of the
proposed scheme under the three channel states H1, H2 and
H3, respectively. The transmit power of each user is P =
1.616. We set NL = 2000, and choose m which makes the
error performance is around 10−3 for the optimized LDPC
compression code and the regular LDPC code, respectively.
According to Remark 2 and Fig. 9, it can be found that under
the channel state H2 and H3, the compression using regular
LDPC can not work if we require BER to be 10−3. Similarly,
under channel stateH3, the compression using the optimized
LDPC can not be applied as well. Therefore, in the simula-
tion, the proposed distributed fronthaul compression with the
optimized LDPC code is applied underH1 andH2, while that
with the regular LDPC code is only applied under H1.

We optimize the Raptor code degree profiles for both users
considering the above situations with the method given in
Section IV-C. The resulted Raptor code degree profiles are
as follows:

�1,opt (x) = 0.0117x1 + 0.4229x2 + 0.2648x3

+ 0.0019x5 + 0.2115x6 + 0.0872x20, (59)

�2,opt (x) = 0.0113x1 + 0.4414x2 + 0.2531x3

+ 0.2162x6 + 0.0780x20. (60)

For comparisons, we consider the rateless coded
transmission instead of fixed-rate channel coded transmis-
sion since the latter requires CSI at the transmitter and the
transmission mechanism is quite different. For C-RAN with
distributed fronthaul compression, the coded transmission
design has not been investigated yet, except for the confer-
ence version of this paper. Therefore, we mainly consider the
following reference schemes:

Case 1-A: RRH 1 applies the proposed distributed
fronthaul compression with the optimized LDPC code. The
optimal Raptor code degree profile for binary erasure channel
(BEC) [39] is used at each user:

�BEC (x) = 0.0008x + 0.494x2 + 0.166x3

+ 0.073x4 + 0.083x5 + 0.056x8

+ 0.037x9 + 0.056x19 + 0.025x65

+ 0.003x66. (61)

Case 1-B: RRH 1 applies the proposed distributed fron-
thaul compression with the regular LDPC code. BEC profile
in (60) is used by each users.

Case 2: Each RRH applies the conventional scalar quan-
tization and no further compression is performed under all
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channel states. BEC profile is used by each users. This case
is also one of the benchmark schemes in [32].

Case 3: Each RRH applies the conventional scalar quanti-
zation and no further compression is performed. The Raptor
code degree profiles are optimized over all channel states.
This case is the proposed scheme in [32]. The optimal Raptor
code degree profile is:

�1,scalar (x) = 0.0120x1 + 0.4073x2 + 0.2663x3

+ 0.2220x6 + 0.0924x20. (62)

�2,scalar (x) = 0.0125x1 + 0.3804x2 + 0.2781x3

+ 0.0022x5 + 0.2252x6 + 0.1016x20. (63)

Fig. 10 shows the achieved sum BER of both users by
the proposed scheme with the optimized LDPC compres-
sion code applied at RRH 2 and the optimized Raptor code
for each user, under three channel states H1, H2 and H3.
In the figure, ‘Theoretical limit-1’ and ‘Theoretical limit-
2’ are the theoretically required length of Raptor code for
successful recovery of both users’ messages with and without
the distributed fronthaul compression. ‘Theoretical limit-1’
is derived as K

C(Hq,P,π(1))
, where C

(
Hq,P, π (1)

)
is calcu-

lated from (50). ‘Theoretical limit-2’ is derived as K
Ccon(Hq,P)

,

where Ccon
(
Hq,P

)
is calculated from (51).

In Fig. 10 (a) and (b), it can be observed that the proposed
scheme with optimized LDPC compression code and Rap-
tor code outperforms all the baselines. Especially, it can be
found that the proposed scheme shows a considerable gain
over case 2 and case 3 which deploy the conventional scalar
quantizer. This is due to the fact that, the distributed fronthaul
compression introduces lower quantization noise at the RRH
compared with the conventional scalar quantizer. As dis-
cussed before, H3 is not suitable for distributed fronthaul
compression even with the optimized LDPC code. Therefore,
we only plot the error performance for the proposed scheme
and Case 2 and ‘Theoretical limit-2’ in Fig. 10 (c). It can
be found that the optimized Raptor code with no fronthaul
compression still shows a considerable gain over case 2. The
reason is that, problem (54) for Raptor code optimization
has already taken into consideration the situation that the
compression can not be applied under some channel states.
Interestingly, it can be found that although the Raptor code
profiles are optimized in the sense of the average throughput,
a good error performance is achieved under all channel states.
Finally, it is observed that Case 1-A outperforms Case 1-B
both of which apply BEC profile. The reason lies in that
the optimized LDPC compression code results in a higher
compression rate, i.e., a smaller m, and a larger remaining
fronthaul capacity, which enables more received signals to be
quantized with a higher precision.

C. SYSTEM AVERAGE THROUGHPUT
We simulate the average system throughput under different
SNR. In the simulation, we fix σ 2

0 and change the user trans-
mission power P, and SNR is defined as P

/
σ 2
0 .

FIGURE 10. BER performance of the 2-user uplink C-RAN under different
channel states: (a) H1, (b) H2, (c) H3.

In Fig. 11, the average system sum throughput over the
three channel states achieved by the proposed scheme with
the optimized LDPC compression code and Raptor code as

186722 VOLUME 8, 2020



Y. Zhang et al.: Rateless Coded Multi-User Uplink Transmission With Distributed Fronthaul Compression in Cloud RAN

FIGURE 11. Average system sum throughput of the 2-user C-RAN uplink.

well as the other baseline schemes are simulated. The theo-
retically achievable sum rates with the proposed distributed
fronthaul compression and conventional scalar quantizer are
also plotted, respectively, which are derived as:

Clim,π(1) =
1∑3

q=1 C
−1(Hq,P, π (1))Pr(Hq)

, (64)

Clim,con =
1∑3

q=1 C
−1
con(Hq,P)Pr(Hq)

, (65)

where C
(
Hq,P, π (1)

)
and Ccon

(
Hq,P

)
are derived from

(50) and (51), respectively.
It can be observed that the proposed scheme with the

optimized code profiles achieves highest throughput over all
the baselines and only has 12% loss from the theoretical limit,
which validates the code optimization scheme discussed in
Section IV. Again, the distributed fronthaul compression
shows considerable performance gain over the conventional
scaler quantization, from both the theoretical and simulation
results. However, it is also shown that if the LDPC com-
pression code or the Raptor channel code are not properly
optimized, the gain will be reduced.

VI. CONCLUSION
In this work, we designed the Raptor coded transmission
for two-user uplink in C-RAN with two RRHs under block
fading channel, including the distributed fronthaul compres-
sion with LDPC code at RRHs and joint decompression
and decoding at the BBU pool. We also proposed the code
profile optimization schemes for the LDPC compression code
and Raptor channel code. Simulation results verify that the
proposed scheme with the optimized code profiles has a
good error performance under all possible channel states and
achieves considerable throughput gain compared with the
conventional rateless coded transmission scheme.

Note that the current work can be extended to the scenarios
with more users and RRHs. However, as discussed in
Section IV-D, some non-trivial issues should be investi-
gated in the design. We leave the extension as the future
work.
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