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ABSTRACT Unlike the locomotive, heavy-haul trains have large carrying capacity and consist of hundreds
of carriages; the longitudinal impulse in the train has significant coupled nonlinear characteristics during
its operation. With the continuous increase in traction weight, problems with the existing control models
gradually appear, vehicle decoupling and derailment occur, and the trains often fail to operate on schedule.
Using the coupler characteristic curve, this paper comprehensively considers uncertain factors such as
the train loading weight, line ramps, vehicle dynamic performance differences, and changeable operating
environment to accurately model the heavy-haul train coupling force and train longitudinal dynamic multiple
points. We optimize the target curve of the ideal running speed of the train and design the corresponding
running tracking control strategy. The simulation results show that the ideal target speed curve optimization
method designed in this paper can effectively improve key indicators such as safety, punctuality and energy
saving in train operation to make trains more safely and efficiently run.

INDEX TERMS Adaptive genetic algorithm, heavy-haul train, multi-objective optimization.

I. INTRODUCTION
Heavy-haul railway has the advantages of large transport
capacity, high efficiency and low cost [1]. In countries
with vast area and rich resources, such as China, Canada,
the United States, Brazil, Australia and South Africa, bulk
cargo transport has large proportion, and freight railway
has become the main power of economic development [2].
Since the functional positioning of large-scale existing rail-
ways will gradually shift from passenger to freight, the scale
of heavy-haul railway will gradually expand. The number
of trips for heavy-haul trains increased with each passing
day [3], [4]. However, heavy-haul trains are large-inertia and
highly nonlinear system that run in complex and variable line
conditions. Its operation control is an extremely complicated
multi-constrained, multi-objective, nonlinear time-varying
process, which makes driving difficult [5]–[8]. Therefore,
when the traction weight of heavy-haul trains continue to
increase, the existing operating mode problems gradually
become apparent, and vehicle decoupling and derailment
occur. Trains often fail to operate on schedule, and the huge
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demand for electrical energy seriously restricts the develop-
ment of heavy-haul railway transportation.

Research onATO (automatic train operation) system began
in the 1960s. Many studies and experiments on automatic
train control systems were performed in Europe, Japan and
western countries [9], [10]. In the 1980s, with the devel-
opment of information industry technology and artificial
intelligence technology, many countries have made great
progress in the research and application of ATO system,
such as the United Kingdom, Germany, Japan, Australia, and
France [11]. In 1987, Japan developed an intelligent train
automatic driving system based on fuzzy predictive control
and successfully applied it to the Sendai subway in Japan.
This method combined with the predictive control method
and solved the shortcoming of low-accuracy fuzzy control,
which became a model of the predictive control method in
ATO systems [12]. Australian scholars theoretically proved
that the best maneuvering strategies for train operation on an
ideal line are: maximum force traction, cruise, idle and maxi-
mum force braking. The method was used in the Galler Cen-
tral Railway and achieved satisfactory results [13]. The UK
developed a computer-controlled train inertia system, TCAS,
which could prompt the driver to perform idle maneuver
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FIGURE 1. Overall framework of a heavy-haul train ATO system.

FIGURE 2. Architecture of a heavy-haul train ATO system.

in a timely manner while ensuring the punctuality of the
train [14], [15]. In recent years, some researchers established
an automatic driving train model based on the basic per-
formance indicators of the train (punctuality and stability),
calculated and optimized the target speed curve based on the
model to achieve the efficient operation of the train. They
also designed a train automatic driving simulator to verify the
effectiveness of the control algorithm [16]–[18].

In summary, there are many challenges in the development
of the heavy-haul train automatic driving system, e.g., the
smooth control of a train on the undulating ramp, air brake
cycle control of the train during a long and large growing
downhill path and corresponding target curve generation with
no temporary breakthrough. Therefore, this paper analyzes
the characteristics and control laws of the heavy-haul train
ATO system, designs the train longitudinal dynamic model,
uses the multi-objective adaptive algorithm to improve the
optimal running sequence, optimizes the target curve of the
ideal train speed and designs the corresponding heavy-haul
train running tracking control strategy to ensure that the ideal
speed target curve can run stably and safely.

II. ATO SYSTEM ARCHITECTURE FOR
HEAVY-HAUL TRAIN
The ATO function of a heavy-haul train is mainly complete
by train operation status monitoring, data interaction, ATO
device, control command response and human-computer
interaction. This large system must consider the external
environment, its ownmechanical characteristics and the coor-
dination of various functional modules [19], [20] to ensure
the stability, efficiency and reliable operation. This paper
is based on an in-depth analysis of the functional modules
of the system, overall framework of the heavy-haul train
ATO system as shown in Figure 1 and architecture as shown
in Figure 2.

According to the above ATO system architecture of the
heavy-haul train, a complex heavy-haul train ATO simu-
lation platform can be modularly structured to ensure that
the interface of simulation platform is clear and reliable.
The functional module is shown in Figure 3. LKJ is the
train operation monitoring and recording device, TSC is the
on-board equipment of train operation status information
system, TCU is the automatic transmission control unit, CCU
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FIGURE 3. ATO control function module division.

FIGURE 4. Schematic diagram of the Multi-mass model for heavy-haul train.

is the interface equipment between computer system and data
circuit, HMI is a human machine interface, and MVB is a
multifunction vehicle bus to communicate between devices.

III. ATO SYSTEM MODEL
The heavy-haul train ATO is based on the train running status
and line condition information obtained in real time from the
host TSC2 [21], [22]. This paper optimizes and adjusts the
target running curve, which is generated offline, while using
the fuzzy PID adaptive controller to track the current optimal
target running curve, which is set in real time [23], [24].
Simultaneously, according to the feedback predicted value of
the coupling force, it adjusts the control command output in
time to ensure the coupler safety for heavy-haul train under
various operating conditions.

A. MULTI-MASS DYNAMICS MODELING AND DESIGN OF
THE COUPLING FORCE CALCULATION METHOD
Before generating the target curve of the heavy-haul train
running line, we model the mass point and calculate cou-
pling force. Based on the train operation data and actual
operating environment, a Multi-mass longitudinal dynamic

model of the heavy-haul train operation process is estab-
lished, as shown in Figure 4.

We consider each train as a mass point and analyze the
force of eachmass point. Then, a longitudinal dynamic model
of the i-th mass point of the heavy-haul train during operation
can be established:

miai = FCRi − FCFi − FRi −W − FBi + FTi − FDi (1)

Here, miai is the inertia force; FCRi is the front hook force;
FCFi is the rear hook force; W is the additional resistance;
FRi is the basic running resistance; FBi is the air braking
force; FTi and FDi are the locomotive traction and electric
braking force, respectively. The force characteristics of the
decoupling system of the heavy-haul train are mainly deter-
mined by the buffer, and the loading and unloading charac-
teristic curves are obtained according to the impact test of the
buffer. The coupler force analysis model is established based
on the buffer characteristic curve. This established coupler
force model fully considers the dynamic characteristics of
the coupler buffer in the pull force and depressing force and
includes factors such as the coupler clearance, buffer initial
pressure, and chassis rigid impact. Zhai method is used to
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iteratively calculate the coupler force model to predict the
coupler force of each mass point of a heavy-haul train under
various operating conditions.

B. MULTI-OBJECTIVE OPTIMIZATION MODEL FOR THE
TRAIN OPERATION
The train operation process is complicated, and conversion
among multiple operating conditions is frequent. Frequent
operating condition conversions increase the energy con-
sumption of train operation and greatly affect the stability
and safety of train operation. The operation and control
of heavy-haul train is a multi-objective, constrained, and
nonlinear complex time-varying control process. During
heavy-haul train operation, there are problems such as vehi-
cle decoupling, failure to operate on the train schedule, and
energy consumption by frequent switching between trac-
tion/braking condition [28]–[30]. The operating speed curve
of a heavy-haul train is mainly optimized based on these
problems to achieve safety, punctuality and energy saving.

The evaluation index for safe operation of the heavy-haul
train is mainly based on the running speed and coupling force
of the train. Moreover, the running speed of the train should
be less than the line speed limit [31]. During the operation of a
heavy-haul train, the coupling force is divided into two types:
pulling force and pressing force. When the current car has a
greater speed than the rear car, the buffer is in a stretched state,
and there is a pull force between two cars. When the current
car has a lower speed than rear car, the buffer is in a com-
pressed state, and there is a pressing force between two cars.
The coupler force during train operation should be less than
the value recommended by the China Academy of Railway
Sciences: the maximum coupler force is ≤1000 KN (normal
train operating conditions), and the maximum coupler force
is ≤2250KN (train emergency braking conditions). The safe
operation evaluation model of the train is:

FNUM =
∑N

i=1

Ficoupler
FUMAX

> γ (2)

FNUM =

∑N
j=1 FNUMj
N

(3)

FMAX =

∑N
j=1 FMAXj
N

(4)

FMIN =

∑N
j=1 FMINj
N

(5)

fs = k1 ∗
(
FMAX
FMAX

)
+ k2 ∗

(
FMIN
FMIN

)
+ k3 ∗

(
FNUM
FNUM

)
(6)

Ficoupler is the coupling force of the train at the i-th moment;
FUMAX is the rated maximum coupling force when the train
is running; γ is the proportionality factor, whose value is
0.75-1. FNUM is the number of times that thecoupling force
is greater than the rated maximum coupling force γ factor
during the j-th operation of the train; FMAX is the maximum
drag force value during the j-th operation of the train;FMIN is

the absolute maximum cramping force value during the j-th
operation of the train; FMAX is the average maximum pull
force of the train in the population; FMIN is the average max-
imum hook force of trains running in the population; FNUM
is the average number of times that the coupler force is large
during train operation; N is the population size; k1, k2, k3 are
the weight factors, which satisfy k1 + k2 + k3 = 1.

The energy saving operation evaluation index of the train
requires the train to operate with the least or less energy
consumption under the condition of safe operation and punc-
tuality. Referring to ‘‘Train Traction Calculation Rules’’ [32],
we establish an evaluation model for train energy saving
operation:

Q = Qy + Q0 (7)

The traction running power consumption is calculated
according to formula (8):

Qy =
Uw

∑
(Ip ∗ ty)
60

(8)

The power consumption of idle running, braking and stop-
ping is calculated according to formula (9):

Q0 =
Uw

∑
(Ip0 ∗ t0)
60

(9)

Uw is the grid pressure of the locomotive; ty is the traction
running time of the locomotive, and the unit of 60 is minutes;
t0 is the time of the locomotive in the idle running, air
braking and stopping states; Ip is the electric active current
for locomotive traction; Ip0 is the electric active current when
the locomotive is in the idle running, braking and stopping
states.

The on-time running evaluation index of the train refers
to the difference between running time of the train and time
specified in the train operating chart, and a smaller value is
better within a certain range. The punctual running evaluation
model of the train is:

T =
∑n

i=1
Ti − TU (10)

TU is the prescribed time of the train running chart; Ti is the
running time of each section of the train; there are n intervals
in total.

During the operation of the train, the safety optimization
goal of the train requires that the running speed of the train
is less than the line limit speed. In general, it is difficult
to realize the traction and braking of the locomotive when
the limit speed is 100 km/h, so it is appropriate to set the
limit speed equal to or less than 100 km/h. Simultaneously,
the operating conditions of the train should be less changed
to ensure that the coupler force of the train is relatively stable.
The on-time optimization goal of the train is to maintain a
consistent running time of the train with the time specified in
the train operating chart. In this case, more frequent changes
in operating conditions may occur during the train operation.
The train’s energy saving optimization goal is to require less
changes in operating conditions during the train operation and
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FIGURE 5. Flow chart of target train curve generation for heavy-haul train.

less use of traction and braking condition to make the train
run more in the idle mode. Among these three optimization
goals, there are conflicts between punctuality and safety and
between punctuality and energy saving. It is difficult to ensure
that these objectives are simultaneously optimized.

Based on the above analysis, considering the importance
of safety, punctuality and energy saving in the train run-
ning process, the train multi-objective optimization model is
designed:

f = w1 ∗ fs + w2 ∗
Qj
Q
+ w3 ∗

Tj
T

(11)

In this equation, Q̄ =
∑N

j=1 Qj
N ; T̄ =

∑N
j=1 Tj
N ; N is the

population size; w1,w2, and w3 are weight factor, which
satisfyw1+w2+w3 = 1. The security weight coefficientw1 is
0.5, positive point weight coefficient w2 is 0.3, energy saving
weight coefficient w3 is 0.2, and these weight coefficients are
set based on our experience.

C. DYNAMICALLY GENERATING THE OPTIMAL TARGET
OPERATING CURVE
Driving heavy-haul train is multi-constrained and multi-
target operation control process. It is necessary to consider
both speed limit, coupling force and front line condition (for
air brake predictive control). The target operation curve also
needs to be performed during operation optimize and adjust
in real time [33], [34]. Therefore, according to dynamic con-
straint during the operation, backtracking algorithm is used
to generate a target operating curve of 5 kilometers ahead of
heavy-haul train, as shown in Figure 5:

The current development and continuous improvement of
intelligent optimization algorithms have provided favorable
tools to obtain the optimal target operating curve. One of
the difficulties in multi-objective optimization is that the
dimensions of each index are not uniform. Using the penalty
function method, each performance index can be converted
into commensurable, e.g., all of them are transformed into
the shape expression of energy consumption [35], [36]. For
the large number of generated target operating curves, the

following multi-objective optimization indicators are estab-
lished for evaluation and screening:

À Safety: speed limitation, not exceeding the ATP emer-
gency braking trigger speed: vt < vem.

Á Precision stop:
∥∥st − sstop∥∥ < L.

Â Punctuality:
∥∥Treal − Tplax∥∥ = 1t .

Ã Stationarity: the acceleration and change rate can-
not be greater than the specified standards ‖a‖ <

amax ,
∥∥∥ da
dt

∥∥∥ < Jmax .
Ä Energy consumption:

J =
1
ξM

∫
FT dt + JAt + ξD

∫
FDvdt

v is the train speed; ξM the is multiplication factor to
convert traction electrical energy into mechanical energy;
ξB is the multiplication factor to convert braking mechanical
energy into electrical energy; JAis the train auxiliary power;
t is the train running time; FT and FD are the traction force
and electric braking force of the train, respectively; t is the
running time of the train.

D. SPEED TRACKING CONTROLLER DESIGN
The generalized predictive control algorithm has good con-
trol performance, but due to the introduction of Diophantine
equation, it increases the amount of calculation. The verti-
cal dynamic model established in this paper must calculate
the resistances of all carriages at each moment [37]–[39].
To speed up the calculation, this paper use an improved
generalized predictive control algorithm, which has basic
characteristics and advantages of generalized predictive con-
trol, abandons Diophantine equation and improves the cal-
culation speed [40]. Based on the established longitudinal
dynamics model, this paper uses an improved predictive
control algorithm to design the running speed tracking con-
troller that controls the ideal running speed target curve
obtained by heavy-haul train tracking for safety, punctuality
and energy saving. The train longitudinal dynamics model
can be described as a controlled autoregressive integrated
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FIGURE 6. Speed following control of heavy-haul train.

moving average process model (CARIMA):

a(z−1)y(t) = z−db(z−1)u(t)+ c(z−1)ξ (t) (12)

In the formula above:

a(z−1) = 1+ a1,1z−1 + a1,2z−2 + · · · + a1,naz
−na

b(z−1) = b1,0 + b1,1z−1 + b1,2z−2 + · · · + b1,nbz−nb ,

b1,0 6= 0

c(z−1) = 1

y(·), u(·) and ξ (·) are the model output, model input and
white noise; d = 1 is the delay coefficient; na and nb are the
orders of model output and input, respectively.

To obtain the control law, we construct the following per-
formance index function:

J = E
{
(Y − Yr )T (Y − Yr )+1UTR1U

}
(13)

In the formula above,

Y = [y(t + d)|t, y(t + d + 1|t), · · · , y(t + N |t)]T

1U = [1u(t),1u(t + 1), · · · ,1u(t + N − d)]T

Yr is the predicted output, which is obtained by the ideal
target curve; N is the predicted length; R is the control weight
matrix; 1 = 1− z−1.
Due to the complex and changeable line condition of

freight train and large hysteresis characteristics of air braking
of heavy-haul train, the changes in operating conditions of
heavy-haul train are complicated, and the control accuracy
and response efficiency of the speed following control algo-
rithm have high requirements [41], [8]. The fuzzy PID control
algorithm has the high precision of the PID control method
and the high robustness and fast response characteristics of
the fuzzy control algorithm. Therefore, this paper uses the
fuzzy PID control algorithm for speed following control and
adjust the locomotive control force output level based on
the online self-learning of train running status, as shown
in Figure 6.

In this model, the interaction force between the carriages
of a heavy-haul train is described by the longitudinal dynamic
model, and the change in control force output by the PID
controller on the running state of subsequent carriages is

obtained by solving the longitudinal dynamic model. Based
on the collected expert driving experience and analysis of air
braking characteristics, an air braking control rule model was
established, and the triggering and mitigation control of air
braking was performed based on the model.

IV. SIMULATION EXPERIMENTS
A. COUPLER FORCE EFFECT SIMULATION
After we established the dynamic longitudinal dynamics
model and decoupling device model of the train operation
process, according to the conditions and control requirements
of the international benchmark tests of heavy-haul train lon-
gitudinal dynamics simulators of nine international authorita-
tive organizations in the literature [42], [43] of the University
of Central Queensland, Spiryagi et al., the corresponding
simulation tests are performed in this paper. The results of
the maximum coupling force of 9 mechanisms in Spiryagi’s
paper [43] are shown in Figure 7. The results of the simulated
maximum coupling force in this paper are shown in Figure 8.
The paper selects the simulation results of coupler force
change trend of the 10th coupler for comparison.

FIGURE 7. Maximum coupling force simulated by 9 mechanisms in
reference [43].

Figure 7 shows that the experimental results of several
dynamic simulators with better effects in the 9 mechanisms
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TABLE 1. Data comparison between multiple target optimal policy in this paper and actual operation.

FIGURE 8. Tendency of the coupler force change of coupler No.10 coupler
in reference [43].

are mostly concentrated at 350 kN, and the pull force
is approximately 540 kN. In the simulation result of our
method, the maximum hook force is 350 kN, and the pull
force is 530 kN, which are very similar to the experi-
mental results with better values in the paper [43]. The
TANLDSS simulation curve at the bottom of Figure 8 is
the actual simulation curve of the TANLDSS mechanism.
The coupler force change curves above the TANLDSS curve
add effects of 200, 400, . . . , 1600 kN to the real coupler
force change curves simulated by different software for
convenience to compare the simulation results of different
software.

Figure 8 shows that the top seven software programs have
good simulation results, and the trends are generally con-
sistent with specific values. Figure 8 has better effects than
simulation result, it can be found that regardless of the trend
of coupler force or specific value of coupler force, simulation
results of this article are very similar experimental results
of the seven software. The international benchmark test of
the dynamic train simulator for heavy-haul train is compared
with the simulation results of many domestic and foreign
institutions. The simulation results in this paper are better
than or similar to those of many domestic and foreign institu-
tions. The accuracy of the established dynamic longitudinal
dynamics model and hook release device model in this paper
is verified.

B. SIMULATION OF THE TARGET CURVE AND SPEED
TRACKING EFFECT
According to the established vehicle ditch force model,
the optimally designed running target curve dynamic

FIGURE 9. Target running curve obtained from the dynamic generation
and online adjustment.

generation and online adjustment effect in this paper are
shown in Figure 9.

The tracking effect is shown in Figure 10, and the tracking
error is shown in Figure 11.

Based on Figures 10 and 11, we conclude that the
heavy-haul train speed tracking controller designed by the
improved generalized predictive control method has a good
tracking effect during the entire train operation. The ideal
running speed target curve is obtained from the aforemen-
tioned multi-objective optimization, which satisfies the train
safety, punctuality and energy saving requirements; its high-
precision tracking shows the effectiveness and accuracy of
the designed controller. Table 1 compares the target curve
optimization method, actual driving time, energy consump-
tion and safety factor (maximum hook) between this paper
and actual operation, it that the target curve obtained by
this method has better safety factor, punctuality rate and
energy saving than the actual driver, which indicates the
superiority and effectiveness of our method. And the trac-
tion/braking curve in Figure 12 basically maintains a con-
stant traction force in the start-up phase and can adapt
to the changeable line conditions by adjusting the trac-
tion/braking force in the midway operation stage. The entire
operation process gently changes, the condition conversion is
smooth, and there is no overshoot phenomenon, which sat-
isfies the traction/braking force characteristics of heavy-haul
train.
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FIGURE 10. Tracking effect of the train on the target curve.

FIGURE 11. Speed tracking control effect of the heavy-haul train.

FIGURE 12. Improved predictive control traction/braking curve.

V. CONCLUSION
Based on the actual operating line condition and restraint of a
decoupling system, a dynamic longitudinal dynamics model
of trains and a coupler-force restraint model are designed.
Considering the restraint of the decoupling force, several
operational optimization indicators such as safety, energy
saving and punctuality are the goals. The ideal running speed
target curve of a heavy-haul train is obtained by the adaptive
genetic algorithm. Compared to the performance of the actual
running speed curve, the result show that the multi-objective
optimized running speed curve guarantees the safety of train

operation and better evaluates both energy saving and punc-
tuality indicators than the driving result of an actual driver.
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