
Received September 21, 2020, accepted October 2, 2020, date of publication October 12, 2020, date of current version October 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3030060

Deep Longitudinal Feature Representations for
Detection of Postradiotherapy Brain Injury at
Presymptomatic Stage
LIMING ZHONG 1, XIAO ZHANG 1,2, YUHUA XI 1, ZHOUYANG LIAN 3,
QIANJIN FENG 1, (Member, IEEE), WUFAN CHEN 1, (Senior Member, IEEE),
SHUIXING ZHANG 4, AND WEI YANG 1
1Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515,
China
2Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai 519000, China
3Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
4Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China

Corresponding authors: Shuixing Zhang (shui7515@126.com) and Wei Yang (weiyanggm@gmail.com)

Liming Zhong and Xiao Zhang contributed equally to this work.

This work was supported in part by the National Natural Science Foundation of China under Grant 81771916, and in part by the
Guangdong Provincial Key Laboratory of Medical Image Processing under Grant 2014B030301042.

ABSTRACT Temporal lobe injury (TLI), a form of nervous system damage in the brain, is a major neurolog-
ical complication after radiation therapy (RT). TLI must be highly valued because of the irreversible brain
injury. This article aims to develop a predictive pipeline, called deep longitudinal feature representations
(DLFR), to detect TLI at the presymptomatic stage accurately via the learning of effective deep longitudinal
feature representations. DLFR characterizes high-level information and developmental changes within and
across subjects The DLFR consists of four components: (i) extraction of deep features from a pretrained
ResNet50 model; (ii) compression of learned highly representative features by the global max pooling;
(iii) fusion of deep longitudinal features for the fully use of all follow-up data; (iv) random forest-based
prediction of the diagnostic status. In total, 244 nasopharyngeal carcinoma patients before and after RT with
a follow-up period of 0 ∼ 9 years were included for analysis. All patients were divided into four different
latency groups, and the current latency was used for training to predict the diagnostic status of the next
latency. The AUCs of the predicted three different latency groups using DLFRwere 0.64± 0.11, 0.76± 0.10,
and 0.88± 0.05, while those of radiomics features were 0.56± 0.06, 0.63± 0.03, and 0.53± 0.04, and those
of histogram of oriented gradients features were 0.60± 0.09, 0.52± 0.03, and 0.58± 0.06.Most importantly,
the AUCs of the predicted three different latency groups for white matter regions were 0.66 ± 0.10, 0.80
± 0.09, and 0.78 ± 0.09. Our proposed method can dynamically detect TLI at the presymptomatic stage,
which can enable the administration of preventive neurological intervention.

INDEX TERMS Temporal lobe injury, nasopharyngeal carcinoma, deep longitudinal features, white matter.

I. INTRODUCTION
Nasopharyngeal carcinoma (NPC) [1], which develops from
the nasopharynx epithelium, is the most common malignant
tumor of the head and neck. NPC has a unique pattern of
ethnic and geographic distribution. As reported in 2012, 71%
of 86500 NPC patients were in the eastern and southeast-
ern parts of Asia, south-central Asia, and north and east
Africa [2]. The highest incidence is found among Southern
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Chinese individuals, especially those of Cantonese origin,
with 25∼30 per 100,000 persons per year [3].

Due to the high radiosensitivity of NPC, radiation ther-
apy (RT) is a routine and curative clinical treatment for this
cancer [1]. During RT, the medial temporal lobe along the RT
pathway and near the tumor is inevitably irradiated, causing
progressive and irreversible brain injury after several years
[4]. Postradiotherapy temporal lobe injury (TLI), a form of
nervous system damage in the brain, is a major neurological
complication after RT. The damage affects the ability of rec-
ognizing faces and understanding spoken words, along with a
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FIGURE 1. Illustration of feature representations for brain disease diagnosis, including voxel-based,
patch-based, radiomics-based, and deep feature-based representations.

disturbance with selective attention and the short-term mem-
ory loss [5], [6]. TLI is the cause of 65% of irradiation-related
deaths from NPC [7]. Most incipient symptoms can be
reversed through conservative treatment, whereas late symp-
toms, including more severe and irreversible symptoms, can
only be relieved via active treatment [8].

TLI remains poorly understood because of the complex-
ity of the time-evolving interaction between brain recovery,
plasticity, and degeneration. There are two major limitations
in the study of TLI in NPC patients. First, the survival time
and the less strict follow-up management of patients limit the
investigation of TLI [9]. Second, the diagnosis of TLI relies
on medical imaging including computed tomography (CT)
and magnetic resonance imaging (MRI). No special symp-
toms occur during the incipient stage, whereas white mat-
ter (WM) edema and demyelination generally appear in the
late stage [7]. Patients with normal imaging may suffer from
nervous system damage or loss of cognitive function. Current
studies [4], [7], [10], [11] have focused on MRI-visible TLI
in patients with NPC who typically have multiyear incuba-
tion periods after RT. However, TLI is irreversible at the
MRI-visible WM edema stage due to the limited recovery
ability and the impossibility of reversing impaired cognitive
function. Thus, developing a method to investigate TLI in
patients with NPC at the presymptomatic stage is desired
in the clinic. Various types of features or patterns extracted
from neuroimaging modalities for brain disease diagnosis
with machine learning-based classification methods can be
used to achieve this goal.

The previous feature representations (shown in Fig. 1)
can be classified into four categories: voxel-based, patch-
based, radiomics-based, and deep feature-based methods.
Voxel-based methods directly use the voxel intensities as fea-
tures in classification [12]–[14]. Two significant limitations
of the voxel-based method include the high-dimensionality
of feature vectors and ignoring of the region informa-
tion. Patch-based methods partition the images into smaller
patches based on different tissues, organs, cortical thickness,
or specific regions of interest (ROIs) [15]–[18]. These meth-
ods efficiently capture the local detailed heterogeneous struc-
tures and handle the high-dimensional features. Generally,
the formulation of patches can adapt to the local information

using superpixels [19] and descriptors [20]. However, these
patch-based methods involve mostly low-level features that
are unable to capture the neuropathological heterogene-
ity of brain tissue associated with the conversion to TLI.
Radiomics-based methods extract large amounts of advanced
and high-order quantitative features with high-throughput
and high-fidelity information using a large number of
automated feature extraction algorithms [21]–[24]. These
radiomics features effectively depict the in-depth information
that are not readily apparent in standard imaging analyses.
One major drawback of radiomics features is that the patho-
logical mechanism of TLI is completely different from that
of common tumors. Radiomics features are mainly designed
to extract tumor information. Another limitation is that they
can not provide visible details that reflect local alterations
in features associated with TLI. In contrast to the shallow
feature representations used in the aforementioned methods,
deep feature-based methods yield higher-level and richer
feature representations to enhance the accuracy of disease
diagnosis [25]–[27].

Recently, deep learning methods have shown excellent
performance in classification tasks [28]–[32] when compared
to existing radiomics methods. When the sample size is
small, it is more suitable to use a neural network to extract
the required deep feature representations for classification
rather than to train an end-to-end classification model. The
deep feature classification framework, which trains classic
machine learning methods using features extracted by pre-
trained neural network, has been applied for disease diag-
nosis. Moreover, deep feature classification can improve the
performance over conventional machine learning. To the best
of our knowledge, early detection of TLI in NPC patients
through deep longitudinal features has not been investigated.

In this article, by considering the difficulty in the strict
management of the follow-up of NPC patients after RT,
an effective deep longitudinal feature representation (DLFR)
method for automatic diagnosis of TLI was developed.
Deep learning methods [33], which learn image filters
for extracting latent feature representations by optimizing
their discriminative performance, have been successfully
applied to a variety of image analysis problems. Transfer
learning has been proven to obtain superior performance,
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FIGURE 2. The detailed steps of DLFR for early detection of TLI in NPC patients.

particularly when with domains with limited data [34].
The proposed method, the DLFR pipeline, extracts high-
dimensional deep features from a pretrained model. Global
max pooling (GMP) [35], a method in which no addi-
tional parameters are needed for optimization, is used to
compress the extracted high-dimensional features. After the
extraction of deep features, we propose the fusion of deep
longitudinal features (DLFs) to integrate the learned fea-
tures in one subject with follow-up data obtained at dif-
ferent times. Finally, random forest (RF) [36] is performed
to detect TLI at the presymptomatic stage. No additional
training model is required, and the extraction of longitudi-
nal feature representations with follow-up data obtained at
different times distinguishes our method from other deep
feature-based disease diagnosis methods. In the experi-
ments, five pretrained deep models including VGG16 [37],
ResNet50 [38], Densenet121 [39], Xception [40], and Incep-
tionV3 [41], and five machine learning methods including
RF, k-nearest neighbors (KNN) [42], Adaboost (AB) [43],
generalized linear regression (GLR) [44], and support vector
machines (SVM) [45] were respectively compared and ana-
lyzed. ResNet50 and RF achieved the best performance. The
detailed steps are shown in Fig. 2.

II. METHOD
A. DATA PREPARATION
Two hundred and forty-four NPC patients (mean age 48.61±
10.4 years, range 17∼ 76, 171males, and 73 females), treated
with RT with or without chemotherapy, were retrospectively
enrolled with follow-up periods of 0 ∼ 9 years and with
an average of 7.28 ± 3.03 examinations. Among them, two
hundred patients, based on the clinical manifestations of brain
lesions and related imaging studies, were diagnosedwith TLI.
These patients were subsequently followed up every half a
year to one year. The latency of TLI was measured from the
day after RT to the day diagnosed with TLI, which ranged
from several months to several years. In our longitudinal
study, due to the irreversible characteristics of TLI, it was
meaningless to add the last follow-up data diagnosed with
TLI into the analysis. The demographics of the patient popu-
lation are listed in Table 1.

TABLE 1. The demographics of the NPC patients.

Two types of MR image protocols, T1-weighted contrast-
enhanced (T1c) and T2-weighted (T2w), were used for an
auxiliary diagnosis of TLI. MR images were acquired on a
1.5T or 3T MR scanner (GE Medical Systems Signa Excite,
Philips Medical Systems Achieva, Philips Medical Systems
Gyroscan NT, and Siemens Espree). The acquisition param-
eters of T1c images were as follows: flip angle 69◦ ∼
126◦, echo time (TE) 5.41∼18 ms, repetition time (TR)
205.67∼716.69 ms, and voxel size 0.43 × 0.43 × 5 mm3 /
0.47 × 0.47 × 5 mm3. The acquisition parameters of T2w
images were as follows: 83◦ ∼ 142◦, TE 80∼197 ms,
TR 2470 ∼ 6440 ms, and voxel size 0.39 × 0.39 × 5 mm3 /
0.43× 0.43× 5 mm3.

B. MRI DATA PREPROCESSING
The MR images were processed by applying typical pro-
cedures, including bias correction, intensity normalization,
skull stripping, and segmentation of different tissue types.
N4 bias correction [46] was performed to correct nonuni-
form tissue intensities. Then, intensity normalization [47]
was used to reduce inhomogeneity across different patients,
different follow-up examinations, and MR images obtained
with different protocols. Due to the tight relation between
WM and TLI, the analysis of WM is needed at the presymp-
tomatic stage. Thus, three tissue types, including WM, gray
matter (GM), and cerebroSpinal fluid (CSF), were obtained
by using BET in the FSL package1 for skull stripping and

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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FAST in the FSL package for segmentation. For accurate
analysis of TLI, manual segmentation of the temporal lobe
was performed by a radiologist (with 10 years of experience)
using ITK-SNAP [48].

Due to a follow-up period of 0 ∼ 9 years for the patients
after RT, we divided all the presymptomatic patients into four
groups, including latency ≤ 1 year, 1 < latency ≤ 2 years,
2 < latency ≤ 3 years, and latency > 3 years. The division
of the TLI groups was based on the diagnostic status of the
last follow-up examinations. Patients who were not included
in the TLI group were classified into the No-TLI group. The
details of the patient partitions are illustrated in Table 2. Some
individuals missed or advanced their scheduled date of obser-
vation. Therefore, patients who missed the strict follow-up
time will temporarily not be included in the specific No-TLI
groups.

TABLE 2. The details of patient partitions at different periods.

C. EARLY DETECTION OF TLI
A schematic diagram of our DLFR framework for the detec-
tion of TLI is presented in Fig. 2. Our longitudinal study
consists of four major steps, including extraction of deep
features, compression of deep features, fusion of longitudinal
features, and detection of TLI.

1) EXTRACTION OF DEEP FEATURES
Given an NPC patient I after RT, we aim to obtain
the diagnostic status C through all training MR images
T = {I11 , I

2
2 , . . . , I

N
n } with their diagnostic status ψ =

{C1
1 ,C

2
2 , . . . ,C

N
n }, where N denotes the number of subjects,

and n is the number of follow-up examinations for each
patient. The likelihood of the diagnostic status C ∈ {0, 1}
of a new arrival patient can be formulated as:

yi = P(C(i)|I ;T , ψ), (1)

where the diagnostic status 0/1 denotes the NPC patient as
No-TLI/TLI, respectively.

The likelihood can be obtained by a classifier with learned
features. Thus, a pretrained convolutional neural network
model (ResNet50 [38]) was used to extract deep features
from the MR images. The ResNet50 model was pretrained
on the ImageNet LSVRC-20102 database, which contains
1,000 classes and 1.2 million 3-channel images for image
classification. ResNet50 contains five stages of blocks,
including one conventional convolution block (convolution,
batch normalization, rectified linear unit, and max pooling)

2 http://www.image-net.org/challenges/LSVRC/2010

in stage one, and a convolution block without max pooling
followed by an identity block in stages 2∼ 5. The output con-
volution feature maps are compressed by a fully-connected
layer, and connected with a final 1000-way softmax. The
fully-connected layer, which requires a pre-defined fixed-
size/length input, limits the flexibility in extracting deep
features. The temporal lobe in each slice of the MR images
was cropped out and duplicated into three channels. The pre-
trained ResNet50model was used to extract the convolutional
feature maps of the reshaped images, generating the feature
representation x ∈ k×k× f (where k is the size of the kernel,
and f is the number of filters). However, due to the high
dimensionality of the extracted feature x, it is inconvenient
to directly adopt the deep features into a classifier. Therefore,
it is desirable to develop compressed deep features.

2) COMPRESSION OF THE DEEP FEATURES
Compression of the deep features is needed to improve
the efficiency of a classifier due to the high dimension-
ality of the extracted deep features. In ResNet50 [38],
the fully-connected layer limits the input size of the images
[49], and the fixed size of input images restricts the flexibil-
ity of the deep model. Moreover, the fully connected layer
hampers the generalization ability of the network. Therefore,
in our study, we used global max pooling [35] to replace the
fully connected layer for compressing the learned features.
Each output feature representation x ∈ k × k × f can be
compressed through the maximum of each feature map, thus
generating a compressed feature vector x̃ ∈ 1× f .

3) FUSION OF DEEP LONGITUDINAL FEATURES
Given that patients may miss or advance their scheduled date
of observation, the number of observation times for the dif-
ferent patients is not uneven. One simple way to early detect
the diagnostic status of each patient, is to use the specific
MR data in current latency to predict the diagnostic status
of next latency. However, it is not recommended to use this
simple method because it ignores a lot of useful information.
Therefore, we proposed the fusion of DLFs to fully use all
follow-up data. Due to the need of 2D input for the pretrained
ResNet50 [38] model, the deep features for each patient with
different follow-up data can be fused via:

Xi = X̃ni +
n−1∑
j=1

(X̃ni − X̃
j
i ), i = 1, . . . ,N , (2)

where X̃ =
∑M

k=1 x̃
M is the mean of the deep features for M

slices in one MR volume.

4) CLASSIFICATION OF TLI
Given the output of the DLFs, we built three classifiedmodels
to predict the diagnostic status of the patients. In this study,
we used the random forest method for classification [36],
which is a well-known machine learning method by build-
ing a set of weak learners of decision trees to improve the
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FIGURE 3. Visualization of deep features extracted by our DLFR pipeline for patients with TLI and patients without TLI for one randomly selected fold
results in 2 < latency ≤ 3 years group, by t-SNE projection in different layers including (a) res-block1, (b) res-block2, (c) res-block3, (d) res-block4,
(e) res-block all. The third res-block shows the greatest discriminative power between the patients with TLI and patients without TLI in comparison with
other res-blocks.

generalization ability of the classifier. A fixed seed for ini-
tialization was set for random forest to avoid the uncertainty
in the results. For the training data, we used a bootstrapped
version (bagging) to train the models, and then averaged all
the outputs as the final value:

y =
1
B

B∑
b=1

ỹ(X ,C), (3)

where B is the number of bootstrapped times.
The detailed implementation of our proposed method is

provided in Table 3.

TABLE 3. Algorithm DLFR.

D. STATISTICAL ANALYSIS
All deep features extracted by the pretrained models were
implemented using Keras with TensorFlow backend frame-
work and obtained with 1 NVIDIA TITANXpGPU. The data
analysis was performed on MATLAB 2015b and Python 3.6.
The performance of our longitudinal analysis was evaluated
through the area under the curve (AUC), sensitivity (SEN),
specificity (SEP), and accuracy (ACC), defined as follows:

SEN =
TP

TP+ FN
, SEP =

TN
TN + FP

,

ACC =
TP+ TN

TP+ FP+ FN + TN
, (4)

where TP, TN , FP, and FN are the abbreviation of true
positives, true negatives, false positives and false negatives,
respectively. The prediction accuracy was computed by using
patient-wise five-fold cross-validation. In each fold, 20%
of patients were left out for testing, and the random forest
created an optimal classifier using the remaining 80% of
patients. Due to that the random forest classifier with random
seeds could result in random results, a fixed seed for initial-
ization was set for random forest. As illustrated in Table 2,
all the presymptomatic patients were partitioned into four
groups. In each fold, the random forest created an optimal
classifier using 80% of patients with latency < 1 years for
training, and the rest of patients with 1< latency≤ 2 years for
validation. The remaining models for the other groups were
trained and validated in the same manner. Unless otherwise
stated, all results were obtained by using T2w MR data.

III. RESULTS
In this section, we first show the effective layers of
ResNet50 [38]. Then, we report the experimental results
for TLI classification using different dimensional reduction
methods and machine learning-based classification methods.
Comparisons between different well-known deep learning
pretrained models and between different feature represen-
tations are also included. Most importantly, comparisons
between different modalities of MR images and between
different tissues are reported.

A. EFFECTIVE FEATURE REPRESENTATIONS
It is worth noting that the depth of the pretrained models
affects the classification performance. To analyze the dis-
criminating ability of the learned features with networks
of different depths, we visualized the extracted features at
the output of four different res-blocks. Extracted features,
generated by one randomly selected fold for detecting TLI
in the group of 2 < latency ≤ 3 years, were projected
down to 2 dimensions using the t-SNE dimension reduc-
tion algorithm [50]. As shown in Fig. 3 (a-e), the third
res-block showed the greatest discriminative power between
the patients with TLI and patients without TLI in comparison

184714 VOLUME 8, 2020
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FIGURE 4. Five-fold cross validation results using our DLFR pipeline with different depth of the model for patients with TLI vs. patients without TLI. The
features generated by the third res-block achieve the best performance for early detection in the groups of 1 < latency ≤ 2 years, 2 < latency ≤ 3 years,
and latency > 3 years.

FIGURE 5. The ROC plot for randomly selected folds of three different latencies obtained by different feature compressed methods.

with other res-blocks. To further evaluate the performance
of these res-blocks, we summarized the AUC, SEN, SEP,
and ACC results for three latency groups in Fig. 4. As pre-
sented in Fig. 4, the features generated by the third res-block
achieved the best performance for early detection in the
groups of 1 < latency ≤ 2 years, 2 < latency ≤ 3 years, and
latency > 3 years. Thus, we summarized the specific results
of the third res-block in Table 4. As presented in Fig. 3-4 and
Table 4, in our DLFR pipeline, the deep features extracted via
the third res-block of the pretrained ResNet50 model were
suitable for early detection of TLI at the presymptomatic
stage.

B. COMPARISONS OF DIFFERENT DIMENSIONAL
REDUCTION METHODS
In our DLFR pipeline, for the task of compressing the high-
dimensional features, we compared GMP with other differ-
ent dimensional reduction methods, including global average

TABLE 4. The specific early detection of TLI results using our DLFR
pipeline with res-block3 for three different latency.

pooling (GAP), principal components analysis (PCA) [51],
and independent components analysis (ICA) [52], to eval-
uate the performance in predicting the diagnostic status.
The GAP/GMP method compressed the output of the third
res-block of ResNet50 through average/maximum each fea-
ture map, and generated a vector of size 512. In both the PCA
and ICA methods, the top 512 main components of features
extracted from the third res-block of ResNet50 were selected
to maintain the fair comparisons. Fig. 5 shows the receiver
operating characteristic curve (ROC) for the results achieved
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FIGURE 6. Heatmap depicting the performance (AUC) of different classification methods including random forest (RF), k-nearest neighbors (KNN),
Adaboost (AB), generalized linear regression (GLR), and support vector machines (SVM).

by different dimensional reduction methods of randomly
selected folds of three different latency groups. The GMP
method yielded mean AUCs of 0.64 ± 0.11 (1 < latency ≤
2 years), 0.76±0.10 (2< latency≤ 3 years), and 0.88±0.05
(latency > 3 years), which were higher than those of GAP
(0.56±0.12, 0.67±0.04, and 0.76±0.12), PCA (0.55±0.08,
0.59± 0.10, and 0.69± 0.12), and ICA (0.61± 0.15, 0.56±
0.07, and 0.59±0.08). As presented in Fig. 5, GMP achieved
much better performance in predicting the diagnostic status.

C. COMPARISONS OF DIFFERENT CLASSIFICATION
METHODS
In our DLFR pipeline, the capability of the selected classifier
plays important roles in the task of prediction of diagnos-
tic status. For classification, we used RF [36], trained with
150 trees (detailed setting of trees is illustrated in Table S4),
a fixed seed of 161, and a minimum leaf size of 1 (mini-
mum number of observations per tree leaf). For comparison,
adaboost (AB) [43] was trained with 150 learning cycles;
k-nearest neighbor (KNN) [42] was trained with a single
nearest neighbors classifier using the Euclidean distance and
exhaustive NSMethod; generalized linear regression (GLR)
[44] was trained with a normal distribution; a support vector
machine (SVM) classifier [45] was trained with a linear
kernel, the parameters of which were trained by automatically
adjusting themaximum-margin hyperplane and correctly sep-
arating the instance hyperplane. Fig. 6 shows a heatmap
depicting the comparisons of different classificationmethods.
According to the AUCs, the RF method had the highest
performance in early detecting the TLI at the presymptomatic
stage with three latency groups (0.64±0.11, 0.76±0.10, and
0.88± 0.05), followed by AB (0.61± 0.11, 0.66± 0.06, and
0.79±0.04). KNN (0.53±0.03, 0.60±0.09, and 0.63±0.09),
GLR (0.53± 0.04, 0.55± 0.07, and 0.62± 0.09 ), and SVM
(0.57 ± 0.07, 0.58 ± 0.07, and 0.70 ± 0.06), were reported
with even lower AUCs.

D. COMPARISONS OF DIFFERENT DEEP LEARNING
METHODS
We tested five well-known pretrained deep learning models,
including VGG16 [37], ResNet50 [38], Densenet121 [39],
Xception [40], and InceptionV3 [41], by considering that the
choice of pretrained deep models affects the classification
performance in our DLFR pipeline. To ensure fair compari-
son, we used the output of the fourth downsampling block for
all the models. The input size was based on the size cropped
by the segmentation results for the temporal lobe. Due to the
differences in manual segmentation of the temporal lobe by
experts and MRI resolutions, the sizes of the cropped images
could vary. Table 5 and Table S5 (supplementary material)
illustrate the AUC, SEN, SEP, and ACC results of these
five pretrained models for three latency groups. As reported
in Table 5, ResNet50 outperformed the other methods for the
three latency groups except Xception. AUCs of the Xception
model were slightly higher than those of ResNet50 in the
groups of 1 < latency ≤ 2 years and 2 < latency ≤ 3 years.
Accordingly, the p values of the paired t-test with Bonferroni
correction between ResNet50 and Xception across all mea-
sures for the three latencies were 0.10, 0.48, and 0.004 (p <
0.05), respectively. Thus, ResNet50 is more suitable for the
extraction of deep features.

E. EFFECTIVENESS OF OUR DLFR PIPELINE
Considering the predictive values of the selected feature
representations, we evaluated our DLFR pipeline with four
high-level features including deep features not in combina-
tion with longitudinal data (DFs), output representation of
the fine-tuned ResNet50, radiomics features [22], and the
histogram of oriented gradients (HOG) features [20]. The
DFs were extracted from the specific MR data in current
latency without using any longitudinal data. The fine-tuned
ResNet50 model was trained with the specific MR data in
current latency, and further tested for predicting the diagnosis

184716 VOLUME 8, 2020
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TABLE 5. The comparisons between different deep features for developing our DLFR pipeline.

TABLE 6. The mean AUC, SEN, SEP, and ACC values of different feature representations, including DLFR, DFs, Fine-tuned ResNet50, Radiomics, and HOG.

status of the next latency. Considering the insufficient training
data as well as differences in follow-up data, fine-tuning the
entire ResNet50 model requires huge amounts of parameters
to train and can easily lead to overfitting.3 Thus, the weights
of the convolution layers were frozen, and only the last full
connection layers were fine-tuned. The fine-tuning network
was trained by minimizing the binary cross-entropy loss
function using a stochastic gradient descent (SGD) optimizer
with the momentum of 0.9, batch size of 8, weight decay of
1 × 10−6, an initial learning rate of 0.001 (detailed setting
of batch size and learning rate are illustrated in Table S7).
A predefined number of epochs was 100, which ended when
the network showed no significant reduction of loss on the
training set. The radiomics method, which was used in our
previous work [53], was applied to extract 2068 radiomics
features, including 4 non-texture features and 2064 textual
features. Table 6 and Table S6 (supplementary material) illus-
trate the AUC, SEN, SEP, and ACC results of the four differ-
ent feature representations. For the HOGmethod, the features
were extracted by using the VLFeat4 toolbox with a cell size

3https://cs231n.github.io/transferlearning/
4https://www.vlfeat.org/matlab/vl_hog.html

of 16. As seen from Table 6, our proposed DLFR method
achieved significant performance over the other high-level
features.

F. IMPORTANCE OF WHITE MATTER DETECTION
In this section, we compared different MR modalities and
tissues for the early detection of TLI in consideration of
the invasiveness of the white matter. Fig. 7 (a-c) shows the
results of five-fold cross-validation using T2w, T1c, and the
combination of T1c and T2w. The AUCs obtained by T2w
in three latency groups were 0.64 ± 0.11, 0.76 ± 0.10, and
0.88 ± 0.05, respectively, which were higher than those of
T1w (0.62± 0.10, 0.73± 0.05, and 0.75± 0.12) and similar
to those from the combination of T1c and T2w (0.64± 0.05,
0.76 ± 0.07, and 0.87 ± 0.01). It is obvious that T2w plays
the most important role in detecting the changes in NPC
patients. To further test the performance of different tissues,
Fig. 7 (d-i) reports the AUC, SEN, SEP, and ACC results of
the gray matter (GM) and white matter (WM) of T1c, T2w,
and the combination of T1c and T2w. As shown in Fig. 7 (d-i),
the results obtained fromGM andWMof T2wwere best. The
AUCs of GM in three latency groups were 0.58 ± 0.07,
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FIGURE 7. Comparisons of common, GM, and WM tissues using T2w, T1c, and the combination of T1c and T2w.

0.77± 0.10, and 0.67± 0.15, respectively, whereas those of
WM were 0.66± 0.10, 0.80± 0.09, and 0.78± 0.09.

IV. DISCUSSION
TLI is one of the most serious complications in postradio-
therapy NPC patients. This complication must be highly
considered because of the irreversible brain injury. In this
study, we proposed the extraction of deep longitudinal feature
representations for early detection of TLI in NPC patients.
To the best of our knowledge, the early detection of TLI in
NPC patients using deep features has yet to be investigated.

Ideally, the total number of patients in the group of latency
< 1 year (illustrated in Table 2) should be the same as the
number of patients we reported in Table 1. However, due
to the differences in subjective initiative of patients, some
patients may miss the recommended follow-up time. Thus,
the summary of these four latency groups was only based on
the specific follow-up time. This will result in the situation
that certain patients are not included in current latency but
occur in the next latency.

Recently, functional imaging techniques, including func-
tional magnetic resonance imaging (fMRI) and diffusion ten-
sor imaging (DTI), have been used to explore the invisible
WM changes in the temporal lobes [9], [54]–[56]. How-
ever, three major drawbacks of these methods include time
consumption for collecting additional nonstandard MRI

sequences, unsatisfactory precision of current neck and head
registration techniques, and limitation of the low spatial res-
olution for tract-based statistical analysis. Thus, it would be
more efficient to use standard MRI sequences to detect TLI
at the presymptomatic stage.

Due to the difficulty in following up the NPC patients
after RT, the number of collected TLI-related patients is
limited. It is problematic to directly train or to fine-tune
a deep learning model due to the need of sufficient data
in the training stage of deep classification models. To deal
with the limited data, similar to [57], five-fold-cross valida-
tion is used to choose the most suitable model for robustly
predicting the diagnostic of new arrival patients and new
examinations. Moreover, the pretrained model can be directly
used to extract highly representative features for the early
detection of TLI. Regarding the choice of feature compres-
sion methods, roipooling [58], designed for the input images
with random size/length, was not added into our compari-
son. One major limitation of adding the roipooling method
would be the need to determinate the parameters (including
the number and size of bounding boxes, and the size of
kernels). Note that feature selection methods can improve
the classification efficiency [59], however, the differences
in selection methods can affect the priority of effective fea-
tures for classification. Compression of the deep features
results in a relatively high number of features, but keeps
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more information and maintains high stability. Similar to
our method, Antropova et al. adopted an average-pooling
strategy along spatial dimensions to obtain the deep fea-
ture vectors and then performed modeling. Without feature
selection, the performance of deep features across 5-fold
cross-validation was still better than that of the radiomics
model. In the future, more optimization work will be tried.

As illustrated in Table 6, the comparisons were evalu-
ated among our proposed DLFR, DFs, fine-tuned ResNet50,
radiomics [22], and HOG [20]. The HOG features are
patch-based representations that count occurrences of gra-
dient orientation in localized portions of an image. Com-
parisons with the voxel-based representations could not be
done due to the difficulty in registration of all low contrast
MR images across different patients over a follow-up period
of 9 years. The performance of our proposed method was
better than that of fine-tuned ResNet50 model. Two major
drawbacks of the fine-tuned ResNet50 model include easy
overfitting by limited samples and the inability to learn
the longitudinal-related information. In the future, we will
develop a long short-term memory (LSTM) neural network
to learn the longitudinal-related information for the early
detection of TLI.

As shown in the latency ≤ 1 year group in Fig. 6,
the AUC results obtained by different classification methods
are very small. Besides, it can be seen from the p values in
Table 5 and 6, few significant differences can be found in the
first two latency. The difference and diversity of samples is
the key factor affecting the results. As illustrated in Table 2,
the average examinations are increased from 2.67 ± 1.10 in
latency ≤ 1 year group to 7.28 ± 3.03 in latency > 3 years
group. Especially in latency ≤ 1 year group, most of patients
have only one examination, so only limited image informa-
tion can be extracted by deep models for training. Due to
the increased examinations, the longitudinal information for
each patient are more abundant. The increased information
can ensure the stability of the trained models. As presented
in Table 5 and 6, the p values gradually decreased in three
latency groups for most methods to be compared. It is worth
noting that the p value is not the onlymeasurement to evaluate
the performance of models. We aim to use all measurements
to choose the most suitable model for robustly predicting the
diagnostic of new arrival patients and new examinations.

In this study, T1c and T2w MR images were collected
in our dataset. As shown in Fig. 7, the T2w MR images
are more suitable for the early detection of TLI than T1c or
the combination of T1c and T2w images. The major reason
may be that radiation damage commonly occurs in the white
matter and T2w images can better detect white matter lesions.
The increased heterogeneity in T2w signal intensity of a
white matter lesion is believed to represent demyelination,
gliosis, and edema [7]. Although inevitable errors existed in
the segmentation of GM and WM, the performance of WM
in detecting TLI was better than that of GM.

Several limitations exist in our work. First, the manual seg-
mentation of the temporal lobe relied on a senior radiologist

and may be accompanied by the intra-observer variation.
The segmentation of the temporal lobe was coarse because
low precision was needed for the delineation. It will be
more efficient to develop a method to automatically segment
the temporal lobe. Second, in this study, we only evalu-
ated the brain injury using the temporal lobe. We plan to
include more brain anatomical structures to fully explore
the brain injury. Third, due to the limited retrospective data
with an irregular follow-up period of 0 9 years of patients,
only one single cross-validation loop is applicable for both
suitable hyperparameter selection and the ‘‘best’’ model
identification. This strategy might result in a bit inflated
output because of the hyperparameter skew. Later, after
adding enough data, we will apply a nested cross valida-
tion loop or separate an independent validation set for more
robust hyperparameter selection to make a comprehensive
assessment.

V. CONCLUSION
In this study, we proposed a deep longitudinal feature
learning method for the early detection of postradiother-
apy brain injury in NPC patients with follow-up period of
0 ∼ 9 years. The pretrained ResNet50 model was used to
extract the high profile features, global max pooling was
used to compress the high-dimensional features, and the
longitudinal features were fused to combine all follow-up
information. Experimental results demonstrated the effective-
ness of the proposed method in the task of predicting the
diagnosis at the presymptomatic stage. In the future, we will
develop a method to automatically segment the temporal
lobe.
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