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ABSTRACT The moving object detection refers to the detection of physical moving objects from a video,
which is applied in video surveillance, object recognition, object counting, human-computer interaction, and
so on. Moreover, nowadays, real-time moving object detection is used as services in the cloud, edge, and
fog computing. However, the existing methods do not meet the trade-off between accuracy and complexity.
To address these issues, we present a background subtraction-based moving object detection method, called
Fast-D. In this paper, we look at the ‘non-smoothing color feature’ to make the moving object detection
more robust in real-time. Each color feature is given equal significance during the classification of a
pixel. Background model and threshold are initialized for each pixel. And then, the background model
and threshold are updated dynamically when there are changes in the background of the video. Adaptive
post-processing is considered to discard salt and pepper noise and fill holes in the detected moving object
silhouettes. The evaluation of our proposed method on four complex datasets exhibits the significance.

INDEX TERMS Real-time moving object detection, background subtraction, object segmentation, change

detection.

I. INTRODUCTION
Our proposed approach detects moving objects based on
background subtraction. The background subtraction (BGS)
is a method that segments moving foreground (FG) objects
and reconstructs the background (BG) from a video captured
by a fixed or moving camera. The moving FG object detec-
tion has become very important research interest in the field
of computer vision and image processing for many years
because of its wide area of applications: object recognition,
object tracking, activity recognition, video surveillance, air-
port and maritime monitoring, human-computer interaction,
and so on [1]-[3]. Moreover, real-time moving object detec-
tion applications are used as services in cloud computing, IoT,
fog computing, edge computing, smart cities, smart environ-
ment, smart home, robotics, drones, and so on [4]-[6].
Many moving object detection approaches have been
proposed until now. We divide moving object detection
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approaches into two types: the traditional image processing-
based method and the deep learning-based method. The tra-
ditional image processing-based methods cannot segment
a video more accurately. On the other hand, according to
Liu et al. [7], deep learning-based methods increase object
detection accuracy. In practice, deep features extract pixel
level to semantic level features which increase the expres-
sive power of deep models [8]. However, Liu et al. [7] and
Zhao et al. [8] analyzed that the success of deep learning-
based object detection methods heavily depended on large
scale training data, complex networks, and high computa-
tional cost during training as well as inference. In other
words, extraction of deep features using a deeper architec-
ture increases computational complexity in terms of running
time, memory, and storage usage [7], [8]. Therefore, we con-
clude that the existing approaches are either computationally
complex or less accurate in BG/FG segmentation. There-
fore, it needs a trade-off between segmentation accuracy
and algorithmic complexity. Recently, Bouwmans et al. [2]
observed the demand of moving object detection in real-time
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applications. Besides, Liu et al. [7] observes that object
detection algorithm needs to achieve two competitive goals
such as high accuracy and high computational efficiency.
Consequently, we propose amoving object detection method,
called Fast Detection (Fast-D), to more accurately segment
BG/FG in real-time. Moreover, limiting computing devices
and low main storage devices can use our proposed solution
for effective and efficient moving object detection.

In the beginning, frame difference [9], [10] and some
statistical-based BGS methods [11]-[13] were proposed for
BG/FG segmentation. For the first, Wang and Suter [14]
came up with a novel sample consensus strategy, called
SACON, used only color features for BGS. Later on,
SACON’s sample consensus policy was used by meth-
ods [15], [16] to improve classification accuracy. Recently,
Chen et al. [17] proposed sub-superpixel-based background
subtraction (SBS) to increase detection accuracy. Addition-
ally, in superpixel-level background estimation (SuperBE)
[18], superpixel-based segmentation was proposed to reduce
complexity. However, to reduce the complexity, SuperBE
considerably sacrificed segmentation accuracy. Though the
algorithmic complexity of the above BGS methods [9]-[17]
was low, the segmentation accuracy was very poor.
Afterward, Hofmann et al. [19] proposed a pixel-based adap-
tive segmenter (PBAS), newly created the dynamic back-
ground modeling policy, and used a sample consensus policy
and gradient magnitude feature in addition to color fea-
ture. PBAS observed the little improvement of segmenta-
tion accuracy due to the use of gradient magnitude. Also,
St. Charles ef al. [20] used local binary similarity patterns
(LBSP), and color features consensus to increase the clas-
sification accuracy. Then, St. Charles et al. [21] adopted the
dynamic background modeling policy of [19] to extended
their works [20]. The local binary similarity pattern (LBSP)
was a combination of intra-LBSP and inter-LBSP used
in [20], [21], which increased accuracy as well as com-
plexity. The segmentation accuracy and complexity of
the methods proposed by Hofmann er al. [19] and and
St. Charles et al. [20], [21] was high compared with methods
[9]1-[17]. However, we see that none paid attention to find
the trade-off between accuracy and complexity of the seg-
mentation. Therefore, we propose a method to consider this
trade-off.

Traditionally, smoothing functions are used in background
subtraction to reduce pixels’ noises due to camera sensors,
light fluctuation during video capture, and so on. However,
the smoothing functions also attenuate actual motion infor-
mation of moving objects in addition to noise compensa-
tion. Fig. 1 depicts smoothing effects versus non-smoothing
effects. To observe the differences between these effects,
we obtained a non-smoothing frame difference and the
smoothing frame differences. To experiment with the frame
differences, we took a background frame #1, an observed
frame #650, and a ground truth frame #650 from the office
video file in baseline category. The frames are respectively
shown in the upper row in Figs. 1a, 1b and 1c. Note that frame
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difference threshold was fixed to 17 and the window size
of the average filter, Gaussian filter, and median filter was
chosen 5 x 5, where the standard deviation of the Gaussian
filter was taken 1.5. The non-smoothing frame difference and
frame differences due to the average filter, Gaussian filter,
and median filter are respectively shown in Figs. 1d, le, 1f
and 1g. We see that the FG frame due to non-smoothing
frames in Fig.1d preserved more accurate edges of the object
silhouette, but incurred more salt and pepper noise than other
FG frames in Figs. le, 1f and 1g. The salt and pepper noise
is subsequently compensated by a post-processing operation.
Also, we observe that average filter FG and Gaussian filter
FG frames (Figs.le and 1f) removed more salt and pepper
noise than others. However, the FG frames in Figs. le and 1f
attenuated edges (a portion of right-hand edge) and added
more noises in the edges (thick edges in the mouth and left
shoulder) of the object silhouette than the non-smoothing FG
and median filter FG in Figs. 1d and 1g. Moreover, we numer-
ically measured the effects explained in Section IV-D to
more specifically analyze the differences. In that experiment,
non-smoothing gained more accuracy than the smoothing
functions. Therefore, we use non-smoothing input that keeps
sharp edges.

In this paper, we propose a per-pixel sample consensus-
based segmentation method. As we previously mentioned,
we use non-smoothing color features instead of smoothing
features of a pixel in order to keep all changes information.
To create BG reference, a certain number of BG samples
are temporarily stored for each pixel separately from the
first video frame. The BG samples are neighbors of a pixel,
which are updated in order to adapt to changes in the videos.
The changes may occur due to dynamic background scenes,
shadows, pan-tilt-zoom, and so on. Dynamic background
scenes are very complex background scenes containing much
intensity variation due to repetitive movements (shimmer-
ing water, fountain, tree shaken etc), varying illumination,
shadow, and so on. After BG samples initialization from
the first frame, BG/FG segmentation starts from the second
frame. The intensity distance of each pixel’s with its ref-
erence BG sample is measured in order to find similarity/
dissimilarity. The intensity distance determines BG and raw
FG pixels based on a certain threshold. We initially take the
threshold value empirically. The threshold is further modified
based on changes in a video like the BG samples to get more
robust segmentation. The raw FG frame may contain more
noises as we do not smooth input frames. Also, regions of
object silhouette in the FG frame may not be detected more
accurately. Therefore, the noises and unfilled regions of the
object’s silhouette are corrected by a post-processing opera-
tion. The key contributions of our work are as follows: (1) We
propose a non-smoothing color feature-based moving object
detection approach to effectively detect moving objects in
complex videos. (2) Per-pixel thresholds are adapted dynam-
ically to attain robust segmentation. (3) Three-color {R, G, B}
features are given equal significance during segmentation
to exploit equal contribution of each feature. (4) Adaptive
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(d) No-smoothing Frame Diff. (e) Average Filter Frame Diff.

(¢) Ground Truth Frame Diff.

(f) Gaussian Filter Frame Diff. (g) Median Filter Frame Diff.

FIGURE 1. (a) Background frame, (b) observed frame, and (c) corresponding ground truth frame difference are shown left to right in the upper row. The
background frame and the observed frame are smoothed by an average filter, a Gaussian filter, and a median filter separately. Then, the respective frame
differences of the filtered frames are obtained. In the lower row, (d) frame difference of no-smoothing frames, (e) frame difference of average filter
frames, (f) frame difference of Gaussian filter frames, and (g) frame difference of median filter frames are depicted from left to right.

post-processing operation is employed in order to compensate
for raw segmentation noises. (5) We develop a moving object
detection method that can be applied in limited computing
devices.

In the remainder of this paper, in Section II, the most
important aspects and drawbacks of related works are dis-
cussed. Section IIT describes the detailed description of our
proposed method. Section IV presents the hyperparameters
settings, the effects of a number of operations used in our
model, evaluation scores of our method, and accuracy and
the complexity comparison of our method with the existing
approaches. Section V summaries the important aspects of
the experimental results. In Section VI, we draw a conclusion
and list the applications and future research directions of our
proposal.

Il. PRIOR WORKS

Many background subtraction (BGS) approaches have been
proposed for moving object detection until now. BGS-
based moving object detection approaches are divided into
basic, sample consensus-based, statistical/cluster-based, and
learning-based, which are shown in Fig. 2.

1) Basic Approaches. The frame differences- [9], block
differences- [10], median- [22], and histogram-based
[23] BGS are simple methods that are less complex,
but less accurate compared to others. Also, this type of
methods falsely detect moving objects when there are
pan-tilt-zoom effects and dynamic background scenes
containing tree leaves swinging, shadow, and illumina-
tion variations in a video.

2) Sample Consensus-based BGS. The sample consensus-
based approaches [14]-[16], [19], [21], [24] stores fea-
tures (color/gray intensity, gradient magnitude, LBSP,
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and the like) for each pixel from its neighbors, and each
pixel is separately segmented as BG/FG pixel based
on the pixel’s features similarity/dissimilarity with its
reference BG pixel. In 2007, for the first, a sample
consensus-based BGS method called sample consen-
sus (SACON) [14] was proposed where it kept color
and motion features as background samples. However,
SACON cannot detect occluded objects more accurately.
Later on, like SACON, in 2011, Barnich et al. [15] also
proposed a sample consensus-based approach called
ViBe that only used color feature. Indeed, instead of a
selective background sample update in SACON, ViBe
took a random background update policy. Nevertheless,
ViBe fails in pan-tilt-zooming videos and less accu-
rately detect moving objects when there are dynamic
background scenes and intermittent object motion in
a video. Afterwards, Van et al. [16], [24] improved
ViBe and called ViBe™ and disruptive ViBe in 2012
and 2014, respectively. On the other hand, for the first,
Hofmann ez al. [19] proposed a dynamic background
modeling technique in PBAS. The new technique is used
to update the threshold and the background dynami-
cally. However, the individual color dissimilarities or
individual gradient magnitude distance were not uti-
lized for this segmentation, and the fusion of color and
gradient magnitude was static. Also, PBAS changes
threshold a constant amount whether there are small or
large dynamic scenes in background. Indeed, it needs to
update the magnitude of the threshold according to the
amount of background motion. Also, the method use a
median filter for post-processing which is not enough
for effective post-processing when much noise occurs.
Therefore, the method cannot detect moving objects
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FIGURE 2. A taxonomy of background subtraction-based moving object detection approach.

3)

more accurately because of the static fusion, ineffec-
tive weighted fusion of color and gradient magnitude,
constant threshold increment, and very simple post-
processing. Afterwards, St-Charles et al. came along
local binary similarity segmenter (LOBSTER) [20] and
self-balanced sensitivity segmenter (SUBSENSE) [21]
which used color/gray intensity and local binary simi-
larity pattern (LBSP) to describe a pixel. The LBSP, 32-
bit patterns, was a combination of intra-LBSP and inter-
LBSP. St-Charles ef al. [20], [21] improved the dynamic
background modeling mechanism proposed in PBAS
which resulted in more accurate detection. However,
color, LBSP, and dynamic background modeling mech-
anism incurred much computational cost. M*CD [25]
integrated chromaticity, brightness and texture features
(local ternary pattern (LTP)), estimated FG based on
Bayes rule, and used a Markov random field to make
an optimized post-processing operation. Nevertheless,
the use of multiple features and the complex post-
processing operation incurred additional computational
cost in addition to accuracy improvement. To simultane-
ously reduce complexity and increase accuracy of mov-
ing object detection in a video with dynamic background
scenes, we propose a sample consensus-based method,
called Fast-D.

Statistical/Cluster-based BGS. Statistical- and cluster-
based BGS approaches were proposed to classify BG/
FG in a video with non-dynamic background scenes.
Butler et al. [38] proposed K-means clustered-based
BGS where a pixel could reside in only one cluster at a
time. Alternatively, Gaussian distribution-based method
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called Gaussian Mixture Model (GMM) [12] that took
a pixel in more than one distribution at a time. After-
ward, MOG [11] corrected the learning rate alteration
of each mixture of Gaussian distribution by combining
BGS approaches [12], [39], [40]. Also, MoG2 [26] com-
bined [13] and [41] to further improve MoG. However,
in reality, the standard deviation of Gaussian distribution
can correct mild intensity variations. Therefore, GMM,
MoG, and MoG2 cannot distinguish dynamic and non-
dynamic background accurately. Also, GMM results in
false segmentation when an object remains a long time
in a location and then starts moving. Zivkovic et al. [13]
considered dynamic kernel instead of a fixed kernel,
called KNN. KNN methods use a global threshold which
results in false segmentation because the pixel intensity
changes are not identical in all the regions. Alternatively,
pixel intensity hugely varies in case of changing back-
grounds (tree leaves swinging, shadow, unstable video,
and so on). Therefore, to model a non-stationary back-
ground, the codebook-based method [42] was proposed
which captured the structural variation of a background.
However, it needs long training videos to model the
background and gives false classification in case of
dynamic background scenes in a video like KNN and
Gaussian distribution-based methods. Cuevas et al. [27]
used an adaptive kernel bandwidth estimation technique
to model BG and proposed a selective BG update pol-
icy to improve the accuracy of FG detection. Each BG
sample was assigned a weight according to the selective
BG update. However, the weight was non adaptively
selected. Berjon er al. [28] improved [27] by adding a
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particle filter to update the foreground pixel at the new
frame sequences. Haines et al. [29] presented a Dirich-
let process GMM for background modeling. Moreover,
a Bayesian method was used to avoid overfitting and
underfitting problem, and a continuous BG update tech-
nique was developed to adapt to BG scene changes.
According to Haines et al. [29], DP-GMM cannot con-
trol sudden lighting changes which result in more false
detection. In recent times, SBS [17] and SuperBE [18]
reduced computational complexity by sacrificing much
segmentation accuracy.

Learning-based BGS. Spatially Coherent Self-
Organizing Background Subtraction (SC-SOBS) [30]
and Weightless Neural Network (WNN) [31] meth-
ods were proposed to segment more accurately in a
video with gradual/sudden lightning changes. In 2016,
Braham et al. [32] came across a convolutional neural
network (CNN)-based scene-specific BG/FG segmenta-
tion. The background generated by the frame difference
method was used to train the CNN model. Later on,
in 2018, Babaee er al. [33] only replaced the back-
ground creation portion of Braham’s model and called
DeepBS. In DeepBS, the background was created by
the combination of SuBSENSE [21] and Flux Ten-
sor [43] instead of by frame difference method. How-
ever, deep learning-based methods [32], [33] depend
on the traditional computer vision and image process-
ing algorithm because there is no available ground
truth data set to effectively train the deep learning
models. Moreover, we observed that the learning-
based method incurred much computational cost to
slightly increase accuracy. Ramirez-Quintana et al. [34]
used a radial basis function to learn background pix-
els and took a retinotopic self-organizing neural net-
work (RESOM) to detect gradual illumination changes,
called RM-SOM. Although RB-SOM improved the
background reconstruction, it failed to achieve the
best foreground detection accuracy. Patil et al. [35] pre-
sented an end-to-end CNN architecture and motion
saliency foreground network (MSFgNet) to segment
BG/FG. In this method, a long video stream was
partitioned into small video streams. Subsequently,
MSFgNet reconstructed the background frame for each
small video stream. However, Patil et al. [35] did
not present how to segment a video in real-time.
In MS-ST [36], a spatial deep model that extracted
spatial deep features and a ConvLSTM model that
obtained multi-scale temporal features. According to
Yang et al. [36], MS-ST cannot segment low frame rate
videos, night videos, and PTZ videos more accurately
as non-challenging videos. Mondéjar-Guerra et al. [37]
proposed two nested deep models, called BMN-BSN:
the first deep model extracted background feature
and the second one carried out subtraction operation
between consecutive frames to model the background
frame. Nevertheless, Mondéjar-Guerra et al. did not
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show how to segment a video with camera viewpoint
variations.

Ill. COLOR CONSENSUS MODEL

We propose a background subtraction-based moving object
detection method. In our method, we use some hyper-
parameters and variables described in Table 1. A few hyper-
parameters in our method are the same as ViBe [15], ViBe™
[16], PBAS [19], LOBSTER [20], and SuBSENSE [21]
and the rest of the hyperparameters we determine as those
methods [15], [16], [19]-[21] obtained, which are explained
in Section IV-C. Fig. 3 shows the moving object detection
model. The model consists of three main blocks:

A) Input. Video/frame sequences are taken as input in our
method. We use the red green blue (RGB) color space.
Alternatively, our method can also detect moving objects
in a grayscale video. Note that we do not smooth the
video frame sequence as smoothing functions loses the
essential change information, explained in Sections I
and IV-D (See Section III-A).

B) Mid-level Processing. It is the main processing
block. The more detail description is discussed in
Section III-B. Moreover, we summarize the main pro-
cessing tasks here. Non-smoothing frame sequences are
the inputs and raw FG moving objects are the outputs in
the mid-level processing. This processing block includes
the following three sub-processes blocks:

1) BG Samples. BG samples are neighbors of a candidate
pixel. Before segmentation start, a certain number of
BG samples of each pixel from the first video frame
are temporarily stored, called BG samples initializa-
tion. Note that the initiated BG samples are replaced
over the BG/FG segmentation based on dynamic
or non-dynamic BG scenes. During segmentation,
an observed pixel’s proximity is compared with these
BG samples (See Section III-B1).

2) Threshold. A threshold is a certain value used to
decide BG/FG pixels. Note that our method uses a
per-pixel threshold for per-pixel segmentation. Ini-
tially, a value is assigned to each threshold. Then,
like the BG samples update, the thresholds are
also updated dynamically based on static/dynamic
scenes in the background. According to our analy-
sis, the threshold is a very important parameter that
has a major impact on segmentation accuracy (See
Section I11-B2).

3) Segmentation Decision. We propose a per-pixel BG/
FG segmentation method. The classification starts
with the second sequence of video frames. The BG/
FG is performed based on the color/gray intensity
difference between an observed pixel and its refer-
ence BG samples. If the intensity difference is less
than a certain threshold, the observed pixel will be
a BG pixel; otherwise, it will an FG pixel (See
Section I11-B3).
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TABLE 1. Description of hyper-parameters, variables, and its notations.

Variable/ Value Description/Definition

notation

T - The row number of a pixel

Y - The column number of a pixel

(& {R,G, B} The red, green, and blue channels

N 49 The number of BG samples

I¢(z,y) - The color/gray pixel, ¢ € {R, G, B}

Bf(z,y) - The background samples, i € [0, N —1],c €
{Rv G> B }

|P—Q)| - The Manhattan distance distance between P
and Q); let the intensity of an observed pixel
= P, and its corresponding BG samples = Q)

min|P - Q| - The minimum Manhattan distance in | P — Q)|

T(z,y) - The threshold

Sr - The raw segmented frame

Sr(z,y) - The segmented pixel of S,

D(P,Q) - The normalized minimum distance between
P and Q

Dnin(P,Q)  [0,1] The normalized minimum moving average

Mint 255 The maximum intensity of a pixel

M;(z,y) - The number of intensity similarity of an ob-
served pixel with BG samples, ¢ € [0, N —1]

H(z,y) 1 The threshold factor; initially, H (z,y) = 1

U(z,y) [2,256] The background factor;
initially, U(z,y) = 2

P(z,y) 1/U(z,y) The probability of BG samples update

Tmin 15 The initial threshold value

Min 2 The minimal number of required matches

o1 50 The moving average factor

Hs 0.01 The step size to update threshold factor

Rm 0.1 The minimum distance of background

Ugr 0.25 The step size of BG factor increment

Uin 0.50 The step size of BG factor decrement

C) Output. This output process block takes the raw
segmentation frame from mid-level processing block
as an input. Then, the raw segmentation frame
is post-processed to fill holes and discard noises.
Finally, we get filtered FG moving objects of interest
(See Section III-C).

A. INPUT

Our model takes RGB color video frames as inputs. Accord-
ing to Sajid et al. [44], red green blue (RGB), hue satura-
tion intensity (HSI), hue saturation value (HSV), and luma
blue-difference red-difference chroma components (YCbCr)
color models are mainly used for BG/FG segmentation. The
color spaces such as RGB, YCbCr, HSV, and HSI affect the
BG/FG segmentation accuracy [44]-[46]. Among the color
models, although YCbCer is considered the best, the chance of
miss classification of this color model increases when scenes
contain dark pixels [44]. However, the RGB color model
can be chosen for the reasons: (1) For good or bad lighting
conditions, the RGB color space is the best [44]. (2) The
color and brightness information are uniformly distributed
in those {R, G, B} channels [44]. (3) According to [45], this
color model is robust against noises due to camera and envi-
ronment. (4) The video format of the most camera is RGB,
consequently, there is no need for extra color conversion
cost [46].

VOLUME 8, 2020

Moreover, because of the above reasons, we choose the
RGB color space. The channels, C = {R, G, B}, are used
as inputs independently. On the other hand, our Fast-D also
classifies a gray-scale video. We do not take any smoothing
functions such as Gaussian filter, average filter, and median
filter, because these smoothing functions not only reduce
noises but also lose actual change information as explained
in more detail in Sections I and IV-D.

B. MID-LEVEL PROCESSING

Mid-level processing begins with RGB color/grayscale video
frames. Our approach initializes the BG samples from the
first video frame. Per-pixel BG/FG segmentation starts with
second frames. The similarity/dissimilarity intensity distance
of an observed pixel, /S(x,y), is measured with its corre-
sponding BG samples, Bf(x, y),i € [0,N—1],c € {R, G, B}.
And, IS(x, y) is classified as BG/FG based on this similarity/
dissimilarity distance. Based on the amount of background
motion, BG samples are replaced by a segmented BG pixel,
and thresholds are updated as well. After finishing the seg-
mentation of all the pixels in a frame, we get a raw segmen-
tation frame, S,(x, y). S;(x, y) is further processed according
to the output block. The mid-level processing is described in
more detail as follows.

1) BG SAMPLES

Before segmentation, BG samples, B°(x, y), are initialized.
BG samples are n x n neighbors of a pixel at coordinate
(x,¥). In our method, a7 x 7 = 49 = N window is chosen
empirically. Therefore, BG samples, B(x, y), are initialized
from the first video frame as

Bc(x’)’): { (C)(xy)’),B?(x’)’)n-B]Cvfl(x’)’)}, (1)

where each Bf(x, y),i € [0,N — 1], ¢ € {R, G, B}, is called
BG pixel of B°(x, y).

2) THRESHOLD

Segmentation frame, S, (x, y), is a binary image. In this binary
image, white color and black color refer to FG and BG,
respectively. These FG and BG pixels of an input video
frame, I¢(x, y), are determined if intensity distance between
an observed pixel, I$(x,y), and its corresponding BG sam-
ples, B (x, y), is respectively greater than or less than a thresh-
old. We consider a per-pixel threshold, T (x, y), for per-pixel
BG/FG segmentation. T (x, y) is calculated and dynamically
updated as

T(x,y) = TninH (x,y), @

where T, is the initial threshold. Note that 7},;, is deter-
mined according to the experiment discussed in Section I'V-C.
H (x, y) is the threshold factor, as in (8).

3) SEGMENTATION DECISION
In our proposal, an observed pixel, /5(x, y), of an observed

frame, I, is classified as either BG or FG. The segmented
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FIGURE 3. The non-smoothing color consensus-based moving object detection model.

BG and FG of I§(x, y) are represented as 0 and 1, respectively
in the corresponding pixel, S,(x,y), of the corresponding
segmented frame S,. When [S(x,y) is dissimilar with its
corresponding BG samples, Bf(x, ¥), I5(x,y) is classified as
FG (i.e., 1); otherwise, it is classified as BG (i.e., 0) as

Sy(x,y) =
r(©.) 0, otherwise,

3

where M,,;, is the minimum number of required matches.
We select M,,;, = 2 like the methods [15], [19]. M;(x,y)
is the intensity similarity measurement counter which counts
how many times the absolute intensity distance between
an observed pixel, I$(x, y), and its reference BG samples,
Bf(x, y), is less than or equal to the threshold, T (x, y). In other
words, M;(x, y) calculates the number of BG pixels that are
similar to an observed pixel, IS (x, y). When vaz 61 Mi(x, y)is
less than the required number of matches, M,y,;,, the observed
pixel, IS(x,y), is segmented as FG (i.e., 1); otherwise,
it is segmented as BG (i.e., 0). The similarity measurement
counter, Mj(x, y), i € [0, N — 1], is expressed as

1, if 3c|If(x,y) — B{(x,»)| < T(x,y)
0, otherwise,

Mi(x,y) = { “

where |[5(x,y) — Bf(x, y)| is the Manhattan distance
between /$(x, y) and B{(x,y),i < [0,N — 1], c € {R, G, B}.
T(x,y) is the threshold, as shown in (2). The statement
Jells(x, y) — Bi(x,y)| < T(x,y) is false if and only if there
is no absolute distance |/ (x, y) — Bf(x, y)| which is less than
or equal to T'(x, y); otherwise, it is true. Put it another way,
if |1,(x,y) — Bi(x, y)| is less than or equal to the threshold
T (x,y) for any channel C = {R, G, B}, the value of M;(x, y)
will be 1; otherwise, the value of M;(x,y) will be 0. This
fusion of {R, G, B} color components is called OR fusion
in our proposed method. Alternatively, to compare with the
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OR fusion, we present the AND fusion of {R, G, B} color
components as

1, ifVellS(x,y) — BS(x, y)| < T(x,y)

M;(x,y) =
i) 0, otherwise,

Q)
where the statement Vc|I5(x,y) — B{(x, y)| < T(x,y) is true
if and only if every absolute distances, |IS(x, y) — B{(x, y)|,
are less than or equal to T'(x,y); otherwise, it is false.
In other words, if |I,(x,y) — B;j(x, y)| is less than or equal
to the threshold 7' (x, y) for every channels C, the value of
M;(x,y) will be 1; otherwise, the value of M;(x,y) will be
0. In our approach, we propose the OR fusion because OR
fusion provided more accuracy over AND fusion, explained
in Section I'V-E.

The minimum moving average distance, Dmin(x,y),
is the normalized minimum Manhattan distance between an
observed pixel, /S(x, y), and its corresponding BG Samples,
Bi(x,y),i € [0,N — 1], ¢ € {R, G, B}, over recent frames.
Like [21], Dpin(x, y) is used to measure the amount of back-
ground motion. Din(x, ¥) is estimated as

Din(x, y) = (1 = ¥)Dmin(x, y) + yD(x, y), (6)

where y is the moving average factor. D(x,y) is the nor-
malized minimum absolute distance between /S(x,y) and
Bi(x,y), i € [0,N — 1], ¢ € {R,G,B}. In other words,
to estimate D(x, y), the sum of minimum absolute distances
between I,(x, y) and all samples in B(x, y) for all channels,
C = {R,G, B}, is calculated followed by normalization.
D(x, y) is expressed as

1
D(x,y) = min |IS(x,y) — BS(x,y)|, (7
(0.3 = e ;iew_u' S,y = Byl ()

where |C| denotes the cardinality of C = {R, G, B}, c € C,
and Mj,; is the maximum intensity of a pixel. At the begin-
ning, Dmin(x,y) is initialized to 0. It is bound to [0, 1].
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The value of Dnjin(x, y) indicates the amount of background
motion. In case of completely static background region,
Duin(x, y) & 0 and for entirely dynamic background region,
Dpin(x, y) & 1. Dpin(x, ¥) is used to determine threshold fac-
tor, H(x,y), and background factor, U(x, y). Subsequently,
H(x,y)and U(x, y) are respectively used to update threshold,
T(x,y), and BG samples, B (x, y).

We are inspired by [19], [21] to determine threshold fac-
tor, H(x, y), and background factor, U(x, y). H(x, y) is used
to update threshold 7'(x, y). H(x, y) is calculated, as in (8),
shown at the bottom of the page. In that equation, Hy is
the step size used to increase/decrease H(x,y). Initially,
H(x,y) = 1. H(x,y)is always > 1.

Background factor, U (x, y), is presented, as in (9), shown at
the bottom of the page. In that equation, R, is the minimum
background distance, Uy, is the step size used to decrease
U(x,y), and Uy, is the step size used to increase U(x, y).
Initially, U(x, y) = 2. U(x, y) is bound to [2, 256].

BG factor, U(x, y), determines probability used to update
background samples, B°(x, y). The probability is calculated
as P(x,y) = 1/U(x, y). Based on P(x, y), a background pixel
in B¢(x, y) is replaced by a segmented BG pixel determined,
as in (3). Also, based on P(x,y), the segmented BG pixel
randomly replaces neighbors BG samples to maintain spatial
consistency.

C. ouTPUT

The raw segmentation frame, S,, is a binary image frame
which is attained after the mid-level processing. This S, is
an unfiltered segmentation frame. Therefore, S, may contain
holes in the object silhouettes and salt and pepper noises.
These holes and noises are effectively discarded by a post-
processing operation discussed in the following.

1) POST-PROCESSING

We design a post-processing operation introduced in [21],
[47]. The post-processing is accomplished as follows. The
raw segmentation frame, S,, becomes the input of the post-
processing operation. Then, the morphological transforma-
tion performs the erosion and close operation on S,. After
that, flood fill operation fills the holes of object silhouettes.
After filling holes in the FG objects, a complement operation
is performed. Bitwise OR is carried out between S, and the
complemented frame. Finally, a median filter discards salt
and pepper noises. Therefore, we get filtered FG moving
objects, S.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the datasets such as CD-2012 [48],
CD-2014 [49], CMD [50], and LASIESTA [51] and list the
key evaluation metrics (KEM) used to evaluate our proposed
Fast-D. Moreover, we include (1) the hyperparameter setting,
(2) the smoothing effects versus non-smoothing effects, (3)
a fusion of RGB features, (4) accuracy on dynamic thresh-
old versus static threshold, (5) accuracy on post-processing
versus without post-processing, (6) the proposed method’s
performance on CD-2012, CD-2014, CMD, and LASIESTA
datasets, (7) the comparisons of methods on CMD dataset,
(8) the comparisons of methods on CD-2012 and CD-2014
datasets, (9) the comparisons of methods on LASIESTA
dataset, (10) the qualitative comparison of methods, (11)
an algorithmic complexity comparison, and (12) real-time
testing.

A. DATASETS
CD-2012 [48] is one of the most used dataset for the per-
formance evaluation of BGS approaches. It has 6 different
number of video categories: baseline (BL), camera jitters
(CJ), thermal (TR), intermittent object motion (IM), shadow
(SD), and dynamic background (DB). And, CD-2014 [49]
is a very complex dataset most frequently used for BG/FG
segmentation accuracy, which is an extension of CD-2012
dataset. In addition to 6 categories in CD-2012 dataset, CD-
2014 has 5 additional video categories: bad weather (BW),
low frame rate (LR), PTZ, turbulence (TB), and night video
(NV). CD-2012 and CD-2014 datasets consist of 31 and 53
videos, respectively, where each category has 4 ~ 6 videos.
Also, CMD [50] is a small dataset that has a video of 500
frames. Furthermore, LASIESTA [51] dataset has videos with
real indoor and outdoor scenes of indoor simple sequences
(I_ST), indoor camouflage (I_CA), indoor occlusions (I_OC),
indoor illumination changes (I_IL), indoor modified back-
ground (I_MB), indoor bootstrap (I_BS), outdoor cloudy
conditions (O_CL), outdoor rainy conditions (O_RA), out-
door snowy conditions (O_SN), and outdoor sunny condi-
tions (O_SU). The challenges of indoor and outdoor videos
include smooth shadows, moderate shadows, hard shadows,
camouflage, dynamic background, partial occlusion, total
occlusion, sudden illumination change, permanent changes in
the background, abandoned object, bootstrap, cloud, rain, and
snow. The resolution of the videos is 352 x 288.

To evaluate performance of object detection method, each
input frame of all datasets [48]-[51] has a corresponding

Hey) = 1H@ )+ Hs, if H(x,y) < (I + Dmin(x, ))* ®
’ max (l, (H(x,y) — HX)), otherwise,
Ulx,y) = min (256, (U(x, y) + Uin)), if Din(x, y) < Ry ©)
’ max (2, U,y — Ud,)), otherwise,
VOLUME 8, 2020 186763



IEEE Access

M. A. Hossain et al.: Fast-D: When Non-Smoothing Color Feature Meets Moving Object Detection in Real-Time

ground-truth frame. In this ground truth frame, background
and foreground pixels are assigned by 0 and 255 intensity
values, respectively.

B. KEY EVALUATION METRICS
Key evaluation metrics (KEM) such as Recall (Re), Speci-
ficity (Sp), False Positive Rate (FPR), False Negative Rate
(FNR), Percentage of Wrong Classification (PWC/PBC),
Precision (Pr), and F-Measure (F1-score/FM), which are used
to evaluate the performance of moving object detection [48].
Among KEM, Fl-score is widely recognized as the best met-
ric since F1-score is a harmonic mean of recall (Re) and pre-
cision (Pr). Moreover, according to [48], [49], among KEM,
Fl-score correlates most robustly to evaluate the moving
object detection/background subtraction on average. Descrip-
tion of True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) are listed as:

1) True Positive (TP): The correct foreground pixel.

2) True Negative (TN): The correct background pixel.

3) False Positive (FP): The incorrect foreground pixel.

4) False Negative (FN): The incorrect background pixel.
Given TP, TN, FP, and FN, formulas of KEM are expressed
as:

Specificity (Sp) N (10)
ecifici e ——
eIy P ep v
. FP
False Positive Rate (FPR): ——— (11)
FP+ TN
. FN
False Negative Rate (FNR): ——— (12)
FP+ TN
Percentage of Wrong Classification (PWC):
(FN + FP)
100 - (13)
(TP +FN 4+ FP+1N)
TP
Recall (Re): —— (14)
TP + FN
.. TP
Precision (Pr): —— (15)
TP + FP
2-Pr-R
F-Measure (Fl-score/FM):u (16)
Pr + Re

A small value of FPR, FNR, and PWC and a large value of
Sp, Re, Pr, and Fl-score are better. The categorical average
and overall average (Avg.) are the simple averages (arithmetic
averages) which are estimated as in [48].

C. HYPERPARAMETER SETTING

We inherited a few hyperparameters from previously pub-
lished methods such as ViBe [15], ViBe™t [16], PBAS [19],
LOBSTER [20], and SuBSENSE [21]. We use the following
parameters from those methods.

1) My,in = 2: The optimum number of required matches for
segmentation is taken like ViBe, ViBet, and PBAS.

2) H(x,y) = 1: The initial value of the threshold factor is,
H(x,y) =1, the same as LOBSTER. After that, it is
updated dynamically.

3) U(x,y) = [2,256]: Initially, U(x, y) = 2. The values of
the background factor are the same as SUBSENSE [21].
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FIGURE 4. Accuracy in terms of F1-score for various initial threshold 7,,;,
on CD-2014 and LASIESTA datasets. Different values of 7,,,;, are shown
along the x-axis. F1-scores due to the different values of 7,,;, are shown
along the y-axis. The cyan colored arrow indicates the best F1-scores due
to Tpyin-

Besides, the remaining hyperparameters were decided the
way the existing methods [15], [16], [19]-[21] determined.
Note that the existing methods chose the parameters based on
the set that provided the overall best scores across the dataset.
Therefore, we did experiments using the same parameter
sets on CD-2014 [49] and LASIESTA [51] datasets. Overall
Fl-scores on each dataset were estimated for the different
values of a parameter. The optimum values of the parameters
are chosen in Fast-D to obtain the overall best results across
all these datasets. According to the experimental results dis-
played in Fig. 4, we found the optimal value of the initial
threshold, T;,;; = 15. Besides, according to Fig. 5, we got the
optimal value of the moving average factor, y = 50. More-
over, in the same way, based on experiments, we achieved
the optimal values of the remaining hyperparameters in our
proposal.

D. SMOOTHING EFFECTS VERSUS NON-SMOOTHING
EFFECTS

In a video, the intensity of a pixel is usually changed (because
of noises) over time in a way that the intensity of the pixel is
higher or lower than neighbors. The intensity of the pixel is
primarily corrected by the image smoothing functions such
as average filter, Gaussian filter, and median filter. Based
on neighbors’ intensities of a pixel, the smoothing func-
tions decrease the higher intensity and increase the lower
intensity to correct intensity. To compensate noises, the fil-
tering functions lose the salient edge of the moving object
explained in Section I. Moreover, we did the experiments
to clearly observe the effects due to non-smoothing versus
smoothing video input in our proposed approach in terms of
F1-score. The experimental evaluations on CD-2014 dataset
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FIGURE 5. Accuracy in terms of F1-score for various moving average
values of y on CD-2014 and LASIESTA datasets. Different values of y are
shown along the x-axis. F1-scores due to the different values of y are
shown along the y-axis. The cyan colored arrow indicates the best

F1-scores due to y.

are shown in Fig. 6. We observed that among the smooth-
ing functions, the average filter showed the best accuracy.
However, Fl-scores of non-smoothing video categories on
CD-2014 dataset were always higher than smoothing video
cases except 10th (PTZ) video category. On an average,
our proposed Fast-D with the non-smoothing color features
obtained 0.79%, 2.47%, and 3.28% more F1-scores than the
average filter, median filter, and Gaussian filter, respectively.
Additionally, the smoothing functions incurred extra process-
ing costs (memory usage and running time). Therefore, we do
not smooth input frames in our proposed solution.

E. THE FUSION OF RGB FEATURES

RGB color features’ based similarity/dissimilarity is cal-
culated to segment BG/FG pixel. To measure similarity/
dissimilarity, OR and AND fusion of {R, G, B} channels were
calculated as in (4) and (5). We experimented with these
OR and AND fusions to observe the accuracy differences
between them. F1-scores due to OR fusion and AND fusion
on CD-2014 dataset are shown in Fig. 7. We observed that
the AND fusion always exhibited lower accuracy than the
OR fusion shown in Fig. 7. On an average, OR fusion
escalated 8.39% more F1-score than AND fusion. Therefore,
we choose the OR fusion to fuse {R, G, B} channels to classify

BG/FG.

F. ACCURACY ON DYNAMIC THRESHOLD VERSUS STATIC

THRESHOLD

The dynamic threshold is modified based on the amount of
dynamic background motion, as expressed in (6). Alterna-
tively, the static threshold is not updated during the BG/FG
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FIGURE 6. Non-smoothing versus smoothing effects of pixel’s intensity
on accuracy in terms of F1-score on CD-2014 dataset. The video categories
are shown along the x-axis. The videos in the number of categories were
filtered by the average filter, median filter, and Gaussian filter. F1-scores
due to these filtering videos and non-filtering (non-smoothing) videos are

shown along the y-axis.

OR Fusion Versus AND Fusion of RGB Channels
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FIGURE 7. Effect of OR fusion versus AND fusion in terms of F1-score on
CD-2014 dataset. The x-axis represents the video categories. F1-scores
due to OR fusion versus AND fusion are depicted along the y-axis.

segmentation over frame sequences. However, a pixel’s inten-
sity varies over time. Hence, the static threshold increases
more false positive and false negative than the dynamic
threshold. Performance differences in terms of F1-score due
to dynamic threshold and static threshold are displayed in
Fig. 8. We saw that the dynamic threshold-based segmenta-
tion outperformed than static threshold-based segmentation
except on 1th (BL), 9th (NV), 10th (PTZ), and 11th (TB)
videos. Overall, the dynamic threshold gained 1.05% more
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FIGURE 8. A comparison between the dynamic threshold and static
threshold in terms of F1-score on CD-2014 dataset. The video categories
are shown along the x-axis. F1-scores due to the dynamic threshold and
the static threshold are depicted along the y-axis.
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FIGURE 9. A comparison between post-processing and without
post-processing in terms of F1-score on CD-2014 dataset. The video
categories are shown along the x-axis. F1-scores due to the
post-processing and without post-processing are depicted along the
y-axis.

F1-score than the static threshold. Therefore, we consider the
dynamic threshold, as presented in (2) in our approach.

G. ACCURACY ON POST-PROCESSING VERSUS WITHOUT
POST-PROCESSING

Post-processing operation contributes more to accuracy
improvement. Fig. 9 shows the accuracy due to post-
processing and without post-processing in our proposed solu-
tion. We observe that there are sharp accuracy increments on
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TABLE 2. Experimental results on CD-2012, CD-2014, and CMD datasets
in terms of key evaluation metric (KEM).

Cate./Method ~ Sp FPR FNR PWC Re Pr F1

BL 0.9966 0.0034 0.0868 0.7187 0.9132 0.8834 0.8991
TR 0.9927 0.0073 0.2116 1.4336 0.7884 0.8714 0.8072
SD 0.9904 0.0095 0.1002 1.4614 0.8998 0.8235 0.8562
DB 0.9915 0.0008 0.1180 0.1722 0.8820 0.8871 0.8840
M 0.9922 0.0078 0.3546 3.3123 0.6453 0.8153 0.6319
CJ 0.9875 0.0125 0.1713 1.8580 0.8287 0.7854 0.8012
Avg.-2012  0.9931 0.0069 0.1738 1.4927 0.8262 0.8452 0.8133
BW 0.9988 0.0012 0.2202 0.4914 0.7798 0.9067 0.8359
LR 0.9869 0.0130 0.2246 1.8795 0.7754 0.5714 0.5887
NV 0.9613 0.0387 0.2459 4.3825 0.7541 0.3537 0.4404
PTZ 0.9516 0.0484 0.0597 4.8829 0.9403 0.2921 0.3741
TB 0.9997 0.0003 0.1997 0.1901 0.8003 0.9222 0.8533
Avg.-2014 09870 0.0130 0.1812 1.8893 0.8188 0.7379 0.7247

CMD 0.9961 0.0039 0.0286 0.5155 0.9714 0.9334 0.9520

TABLE 3. Key evaluation metric (KEM)-based experimental results on
LASIESTA dataset.

Category Sp FPR FNR PWC Re Pr F1

1_SI 0.9961 0.0039 0.0500 0.5481 0.9500 0.9084 0.9287
I_.CA 09939 0.0061 0.1415 22584 0.8585 0.9375 0.8924
1.OC 09949 0.0052 0.0214 0.5859 0.9786 0.8669 0.9194
LIL 0.8653 0.1347 0.0987 13.104 0.9013 0.3762 0.5021
I_.MB  0.9910 0.0090 0.0205 1.0102 0.9795 0.9109 0.9430
I_BS 0.9972  0.0027 0.4643 1.2397 0.5357 0.7666 0.6182
O_CL  0.9931 0.0069 0.0121 0.6359 0.9879 0.8912 0.9368
O_RA  0.9973 0.0027 0.0162 0.3205 0.9838 0.8961 0.9378
O_SN  0.9923 0.0078 0.0469 0.8095 0.9531 0.8154 0.8789
O_SU 09976 0.0024 0.0830 0.3279 0.9170 0.8319 0.8710
Average 0.9819 0.0181 0.0955 2.0840 0.9045 0.8201 0.8428

all the video cases due to the use of post-processing operation.
Moreover, the overall F1-score due to post-processed frames
jumped 18.01% than the raw segmented frames. As we pre-
viously mentioned that we do not smooth the input frames
which result in some blinking pixels in addition to sharp
object detection. The blinking pixels (salt and pepper noise)
are those foreground pixels that fluctuate between consecu-
tive segmented frames. We see that these blinking pixels are
compensated to a large extent with the use of post-processing
operation.

H. OUR METHOD’s PERFORMANCE ON CD-2012,
CD-2014, CMD, AND LASIESTA DATASETS

Tables 2 and 3 show evaluation of our method on CD-
2012 [48], CD-2014 [49], CMD [50], and LASIESTA
[51] datasets in terms of key evaluation metrics (KEM)
such as specificity (Sp), false positive rate (FPR), false
negative rate (FNR), percentage of wrong classification
(PWC), recall (Re), precision (Pr), and F1-score (F1). How-
ever, Fl-score is emphasized more to measure the accu-
racy of BG/FG segmentation as explained in Section IV-B.
According to Tables 2 and 3, our method achieved
81.33%, 72.47%, 95.20%, and 84.28% overall F1-scores on
CD-2012, CD-2014, CMD, and LASIESTA datasets, respec-
tively. Because we effectively used non-smoothing color
features, dynamic threshold, features’ fusion strategy, and
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post-processing operations in our proposed approach, seg-
mentation accuracy improved. However, due to the most
dynamic background scenes in CD-2014 dataset, segmenta-
tion accuracy in terms of F1-score on this dataset was lower
than CD-2012, CMD, and LASIESTA datasets. Besides, F1-
score of Fast-D on indoor illumination changes (I_IL) cate-
gory was lower than other categories in Table 3. Note that our
Fast-D is not illumination invariant; therefore, it cannot com-
pensate for sudden global illumination changes of the I_IL
videos which result in reduced F1-score and increased PWC.
Also, our method’s percentage of wrong classification (PWC)
on LASIESTA dataset shown in Table 3 was higher than
other datasets presented in Table 2. It happened because
I_IL category in Table 3 contributed the largest PWC score
which led to an increased average PWC score. Moreover,
recall (Re) scores were always greater than precision (Pr)
scores in Tables 2 and 3 as our proposed non-smoothing
color features detected more changes than smoothing color
features.

TABLE 4. Comparisons of methods on CMD dataset [50] in terms of key
evaluation metric (KEM).

Method Year Sp FPR FNR PWC Re Pr F1

Fast-D 0.9961 0.0039 0.0286 0.5155 0.9714 0.9334 0.9520
SuBS [21] 2015 0.9962 0.0038 0.0405 0.5738 0.9594 0.9335 0.9462
SBS [17] 2019 0.9975 0.0024 0.0014 0.3862 0.9170 0.8672 0.8914
PBAS [19] 2012 0.9981 0.0019 0.1872 1.1500 0.8128 0.9585 0.8797
LOB [20] 2014 0.9980 0.0020 0.1893 1.1910 0.8107 0.9565 0.8776
ViBe [15] 2011 0.9939 0.0060 0.0018 0.7800 0.8950 0.7209 0.7986

SuperBE [18] 2019 0.9994 0.0005 0.0105 1.0844 0.5343 0.9552 0.6852

I. COMPARISONS OF METHODS ON CMD DATASET

Table 4 shows the comparison of our method with the
state-of-the-art approaches in terms of key evaluation metric
(KEM). Moreover, recall (Re), precision (Pr), and F1-score
(F1) are the most important metrics in KEM. As in the
previous table, the bold, italic, and underlining text styles
denote the same ranks. Our method achieved the best accu-
racy with 97.14% Re and 95.20% F1-score, as displayed in
Table 4. However, in terms of precision (Pr) and percentage
of wrong classification (PWC), our method attained the third
rank. Besides, other KEM measures have not improved in
our proposed method like Re and F1. The reason is that
our proposed non-smoothing color features keep all changes
which increase false positive in addition to true positive.
Overall, our method outperformed compared with the exist-
ing approaches.

J. THE COMPARISON OF OUR METHOD ON CD-2012 AND
CD-2014 DATASETS

Table 5 shows the comparison of our proposed approach with
the existing methods in terms of F1-score on CD-2012 and
CD-2014 datasets. As we mentioned before, F1-score is the
most important metric to evaluate the accuracy of BG/FG
segmentation. Therefore, we use Fl-score for performance
comparison. Bold, italic, and underlining text represent first,
second, and third ranks, respectively. In Table 5, MS-ST
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method outperformed for all video cases. However, our pro-
posed Fast-D achieved the second-best accuracy on dynamic
background (DB), pan-tilt-zoom (PTZ), and turbulence (TB)
videos. Moreover, our method showed comparable accuracy
to DeepBS, and SuBSENSE (SuBS). We observed that more
pixel features (color + edge or texture features) incurred more
false detection on videos with dynamic background scenes,
pan-tilt-zoom, and turbulence. Therefore, we use only non-
smoothing color features in our proposed Fast-D.

K. COMPARISONS OF METHODS ON LASIESTA DATASET
Table 6 presents F1-score based category-wise comparisons.
Like previous Tables 4 and 5, the bold, italic, and underlin-
ing text provide first, second, and third ranks, respectively.
According to Table 6, our method achieved the best rank on
I_SI,I_MB, O_CL, O_RA, and O_SU videos with 92.87%,
94.30%, 93.68%, 93.78%, and 87.10% F-measures, respec-
tively. It happens because our proposed non-smoothing color
features with the OR fusion do not decay any changes and
keep more edge information of input frames, which increase
true positive; the adaptive threshold regulates false detection;
the post-processing operation decreases false positive by dis-
carding blinking pixels (The blinking pixel is a pixel that
either resides in the observed segmented frame or the previ-
ous segmented frame, but it does not stay in both frames.) and
increases true positive by filling holes in the object silhou-
ettes simultaneously. However, our proposal attained 50.21%
F1-score on I_IL video category. Note that I_IL category has
videos with sudden global illumination changes. As we previ-
ously mentioned that our method is not illumination invariant;
therefore, Fast-D detected more false positive in addition
to true positive, which led to decreased F-measure on I_IL
videos. Moreover, on average, Fast-D performed 88.07%
Fl-score whereas MSFgNet showed 86.92% F-measure
when excluding I_IL videos.

L. METHODS’ QUALITATIVE COMPARISON ON CD-2014
DATASET

For qualitative comparison, we choose M*CD [25], SuB-
SENSE [21], and DeepBS [33] methods. We select four
frames with challenging scenes such as TR_library #2575,
DB_overpass #2406, PTZ_intermittenobjctmotion #1241,
and TB_turbulence2 #2455 from CD-2014 [49] dataset to
show in Fig. 10. Input frames with their corresponding ground
truth frames and segmented frames of proposed Fast-D,
M#*CD, SuBSENSE, and DeepBS methods are shown from
left to right. It is clearly observed that our method more
accurately detects object silhouettes than the other methods.
The reasons for improved moving object detection are that
the non-smoothing color features do not lose any changes
in the input; therefore it keeps intact all edge information;
the OR fusion detects more changes than other fusions; the
floodfill operation in post-processing fills the holes in the raw
segmentation. All the segmented results on CD-2014 dataset
are available at our URL.!

1 https://github.com/alamgir39/Fast-D
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TABLE 5. Category-wise comparisons of methods on CD-2012 [48] and CD-2014 [49] datasets in terms of F1-score.

Method Year BL TR SD DB M CJ Avg.CD-2012 BW LR NV PTZ TB Avg.CD-2014
MS-ST [36] 2019 0.9895 0.9840 0.9874 0.9791 0.9893 0.9802 0.9849 0.9846 0.9013 0.9390 0.9314 0.9569 0.9657
DeepBS [33] 2018 0.9580 0.7583 0.9304 0.8761 0.6098 0.8990 0.8386 0.8301 0.6002 0.5835 0.3133 0.8455 0.7458
SuBS [21] 2015 0.9480 0.8184 0.8890 0.8138 0.6523 0.7694 0.8152 0.8528 0.6437 0.5390 0.3185 0.8197 0.7331
Fast-D - 0.8991 0.8072 0.8562 0.8840 0.6319 0.8012 0.8133 0.8359 0.5887 0.4404 0.3741 0.8533 0.7247
M4CD [25] 2018 0.9322 0.7448 0.8969 0.6857 0.6939 0.8231 0.7961 0.8136 0.6275 0.4946 0.2322 0.7978 0.7038
BMN-BSN [37] 2019 0.9521 0.7849 0.8588 0.6371 0.6369 0.6962 0.7610 - - - - - -
LOB [20] 2014 0.9242 0.8248 0.8728 0.5679 0.5770 0.7423 0.7515 0.6378 0.6738 0.4293 0.0875 0.5299 0.6230
PBAS [19] 2012 0.7363 0.6887 0.7732 0.6080 0.3618 0.5600 0.6280 0.7863 0.5366 0.3795 0.1130 0.7236 0.5734
MoG [11] 2002 0.6423 0.4354 0.6766 0.6855 0.3373 0.6316 0.5681 0.6512 0.6110 0.3748 0.2623 0.7650 0.5521
SC-SOBS [30] 2012 0.9333 0.6923 0.7784 0.6739 0.5918 0.7051 0.7283 - - - - - 0.5961
ViBeT [16] 2012 0.8710 0.6650 0.8150 0.7200 0.5090 0.7540 0.7220 - - - - - -
SBS [17] 2019 - - - - - - 0.7197 - - - - - -
ViBe [15] 2011 0.8700 0.6650 0.8030 0.5650 0.5070 0.6000 0.6680 - - - - - -
RB-SOM [34] 2018 - - - - - - - - - - - - 0.5591
SuperBE [18] 2019 - - - - - - 0.5356 - - - - - -
TABLE 6. F1-score based category-wise methods’ comparisons on LASIESTA dataset [51].
Method Year LSI I_CA 1.0C LIL I_MB I_BS O_CL O_RA O_SN O_SU Average
MSFgNet [35] 2018  0.9264 09213 0.9163  0.8967 0.9143  0.7157 0.8806  0.8659  0.8952  0.7869 0.8717
Fast-D - 09287  0.8924  0.97194 05021 09430 0.6182  0.9368 0.9378 0.8789  0.8710 0.8428
Berjon et al. [28] 2018  0.8805  0.8444  0.7806  0.6487  0.9373  0.6644  0.9276  0.8669  0.7786  0.7221 0.8051
Haines ez al. [29] 2013 0.8876  0.8938  0.9223  0.8491  0.8440  0.6809  0.8267  0.8908  0.1750  0.8568 0.7826
Cuevas eral. [27] 2013 0.7859  0.7361 0.8527  0.7915  0.7288  0.5836  0.8638  0.8085  0.4555  0.7305 0.7335

libr. 42575

over.#2406

£2.442455 PTZ#1241

(b) Ground truth (¢) Proposed Fast-D

(d) M*CD [25]

(e) SUBSENSE [21] (f) DeepBS [33]

(a) Input Frame

FIGURE 10. Typical segmented frames for various input frame sequences on CD-2014 dataset; input frames and corresponding ground truth frames, and
segmented frames of Fast-D, M*CD, SUBSENSE, and DeepBS are depicted from left to right.

M. THE ALGORITHMIC COMPLEXITY COMPARISON

We implemented proposed Fast-D, ViBe™ [16], PBAS
[19], LOBSTER (LOB) [20], and SuBSENSE (SuBS)
[21] in a desktop computer with the configuration
shown in Table 7. To compare computational complex-
ity, we used baseline_higway, baseline_pedestrians, and
shadow_peopleinshade videos with the size of 320 x 240,
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360 x 240, and 380 x 244, respectively. Moreover, experi-
mental setup of M*CD [25], SC-SOBS [30], DeepBS [33],
RB-SOM [34], MSFgNet [35], and MS-ST [36] methods is
shown in Table 8. Memory usage and processing time are
respectively measured in terms of bytes per pixel (bpp) and
frames per second (fps). First, second, and third ranks are
respectively denoted by bold, italic, and underlining as shown
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TABLE 7. Experimental setup of proposed Fast-D, ViBe* [16], PBAS [19],
LOBSTER (LOB) [20], and SuBSENSE (SuBS) [21] for complexity
comparison.

Hardware/Software Description

Operating system Windows 10 (64 bit)

CPU Intel Core i5-8400 2.80 GHz
RAM 16 GB

Programming language C++

Additional library OpenCV 3.3.0

IDE Microsoft Visual Studio 2015
Webcam @INFO ALC-M800

TABLE 8. Experimental setup of existing methods for the comparison.

Method CPU GPU/RAM Language
M4CD [25] Intel Corei5- - Matlab
3210M
DeepBS [33] Intel Xeon (R) GeForce Titan Lua
CPU E5-1620 v3 X
@3.5GHz x 8
RB-SOM [34] IntelCore i5 8 GBRAM Matlab-2016
2.7GHz
MSFgNet [35] Intel Corei7 420 NVIDIA GTX -
GHz 1080 11GB
MS-ST [36] - NVIDIA Tensorflow
1080Ti
SC-SOBS [30]  Core i3-330M - C

2.13GHz

in the previous tables. Note that a small value for bpp and a
large value for fps are better.

Table 9 shows a comparison of computational complex-
ity in terms of bpp and fps. In this comparison, we see
that our proposed Fast-D takes only 3 bpp whereas PBAS,
LOBSTER, and SuBSENSE use 15 bpp and ViBe* allo-
cates 4 bpp. In other words, our proposal achieved the first
best rank in terms of bpp. According to Table 9, our pro-
posed method also outperformed in terms of fps like memory
usage. More explicitly, the frame rates of our approach were
74.24 fps, 69.51 fps, and 59.64 fps for the frames dimension
of 320 x 240, 360 x 240, and 380 x 244, respectively. Put it
another way, our method processed frames faster than real-
time frame rate. Alternatively, PBAS and LOBSTER took
the second-best rank and the third-best rank, respectively.
However, MSFgNet attained 59.88 fps for the frame size of
256 x 256 while using a GPU.

N. REAL-TIME TESTING

Real-time testing refers to the process of evaluating a real-
time system. For real-time testing, we implemented our pro-
posed Fast-D on a desktop computer with a webcam. The
detailed experimental setup is shown in Table 7. Video frames
captured from the webcam were the size of 320 x 240. Video
capture and moving object detection were performed con-
currently. In each video frame, there was only one moving
foreground which was detected by our developed system.
Figs. 11a and 11b show input frames and their corresponding
segmented binary frames, respectively. Moreover, our Fast-D
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TABLE 9. Methods’ complexity comparisons in terms of bytes per
pixel (bpp) and frames per second (fps).

fps

Method Year bpp 256 x 256 320 x 240 360 x 240 380 x 244

resolution resolution resolution resolution
Fast-D -3 - 74.24 69.51 59.64
MSFgNet [35] 2018 - 59.88 - - -
PBAS [19] 2012 15 - 47.71 46.88 41.98
LOB [20] 2014 15 - 35.09 38.75 36.52
SuBS [21] 2015 15 - 23.60 25.69 22.79
SC-SOBS [30] 2012 - - 23.00 - -
ViBet [16] 2012 4 - 15.22 16.76 13.04
MS-ST [36] 2019 - - 11.00 - -
DeepBS [33] 2018 - - 10.00 - -
RB-SOM [34] 2018 - - 07.00 - -
M4CD[25] 2018 6 - 00.21 - -

(a) Input Frames

(b) Segmented Frames

FIGURE 11. The real-time moving object detection for the webcam input.
(a) input frames and (b) corresponding segmented frames are shown side
by side. White and black pixels represent foreground and background in
the segmented frames, respectively.

processed 77.05 frames per second. Therefore, we observe
that our proposed system can accurately detect moving FG
and ran frames faster than real-time frame rate.

V. DISCUSSION
In this section, we summarize the experimental outcomes
from Section IV and list the advantages of our proposal.

Our proposal consisted of non-smoothing input frames,
segmentation strategy, dynamic threshold, and adaptive post-
processing operation increased the BG/FG segmentation
accuracy. We briefly describe the important aspects of the
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experiments of non-smoothing frames, segmentation strat-
egy, dynamic threshold, and adaptive post-processing oper-
ation below.

1) Smoothing functions are generally used to reduce noises
in an image. In addition to filtering noises, the smooth-
ing functions also modify essential information about
moving objects, which results in decreasing segmen-
tation accuracy. However, according to the experiment
shown in Fig. 6, the average filter, median filter, and
Gaussian filter, respectively achieved 0.79%, 2.47%,
and 3.28% less Fl-scores than non-smoothing frames
on an average. Therefore, we do not smooth input video
frames.

2) We observed much impact of the fusion of {R, G, B}
color features on segmentation accuracy. We evaluated
the logical AND versus logical OR fusion of {R, G, B}
color features. The evaluation experiment is shown in
Fig. 7. In the experiment, the OR fusion increased 8.39%
more Fl-score than the AND fusion on an average.
Hence, we take a logical OR operation to combine the
pixel features during the classification.

3) Throughout the classification, the static threshold is
not modified whereas the dynamic threshold is altered
based on static/dynamic background motion. Overall,
the dynamic threshold increased 1.05% more F1-score
than the static threshold which is shown in Fig. 8. There-
fore, we use the dynamic threshold in our proposed
method.

4) Like the previous operations, a post-processing opera-
tion can change classification accuracy that is depicted
in Fig. 9. On an average, the post-processing increased
18.01% more F1-score than the raw segmentation. This
happens because the non-smoothing frame does not
lose any information which leads to an accurate bound-
ary edge detection of the object silhouette. Note that
a flood fill operation incurs additional errors if all
boundaries of an object are not completely detected.
Therefore, our used flood fill in the post-processing
operation made the least errors to fill the unfilled
region of the object silhouette. Consequently, this adap-
tive post-processing operation is used in our proposed
approach.

We combine the above four operations to increase video seg-
mentation accuracy. Our proposed approach obtained 95.20%
F1-score on CMD dataset (Table 4). Additionally, overall, our
proposal showed 81.33%, 72.47%, and 84.28% F1-scores
on CD-2012, CD-2014, and LASIESTA datasets, respec-
tively (Tables 5 and 6). However, we observed that the clas-
sification accuracy on the most challenging videos fairly
decreased than the least challenging videos (Tables 5 and 6).
In terms of computational complexity, according to Table 9,
our method used 3 bytes per pixel (bpp), and displayed
74.24, 69.51, and 59.64 frames per second (fps) for the video
frames dimension of 320 x 240, 360 x 240, and 380 x 244,
respectively.
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Tables 4, 6, and 9 presented the advantages of proposed
Fast-D as follows. According to Table 4, proposed Fast-
D provided the best recall (Re) and the best Fl-score (F1)
on CMD dataset [50]. Moreover, in Table 6, our proposal
achieved the best F1-score onI_SI,I_MB, O_CL, O_RA, and
O_SU videos of LASIESTA dataset [51]. However, Fast-D
showed lower performance on I_IL videos with sudden global
illumination fluctuations. Therefore, when I_IL videos were
excluded, our method obtained 88.07% F-measure whereas
MSFgNet performed 86.92% F1-score on average. On the
other hand, in terms of complexity comparisons in Table 9,
Fast-D obtained the best performance. Put it another way,
our method processed more frames per second than real-time
frame rate and used very limited memory so that it can be
used in very limited resource devices.

Segmentation accuracy and computational complexity are
simultaneously used to compare each method in our paper.
The segmentation accuracy of Fast-D is not as promising as
the deep learning-based models such as MS_ST, DeepBS, and
MSFgNet and the shallow learning-based approach such as
SuBSENSE. However, according to Table 9, proposed Fast-
D provides lower computational complexity than MS_ST,
DeepBS, MSFgNet, and SuBSENSE. Also, our method
presents better accuracy than DeepBS on TR, DB, IM, BW,
PTZ, and TB videos in Table 5. Moreover, according to
Tables 4 and 5, proposed method obtains better F-measures
than SubSENSE on DB, CJ, PTZ, and TB videos and achieves
better recall (Re) and F1-score on CMD dataset. Furthermore,
Fast-D shows better F1-scores than MSFgNet on I_SI, I_OC,
I_MB, O_CL, O_RA, and O_SU videos in Table 6.

VI. CONCLUSION

We propose an effective and efficient moving object detec-
tion method based on background subtraction. In our pro-
posed Fast-D, non-smoothing RGB features’ fusion, dynamic
threshold, and adaptive post-processing increased the BG/FG
classification accuracy at a low computational cost. Exper-
imentally, our non-smoothing color features-based moving
object detection method outperformed onI_SI,I_MB, O_CL,
O_RA, and O_SU videos on LASIESTA dataset. Moreover,
our proposal achieved the best accuracy on CMD dataset.
On the other hand, the proposed approach is less complex
compared to the existing approaches. Our Fast-D processed
67.80 fps on an average. Hence, Fast-D displays frames faster
than real-time frame rate.

Our proposed solution worked better for a video with
the effects of strong BG motion with cloudy, rainy, and
sunny conditions, camouflage, hard shadows, camera motion,
patrolling, and zoom and used limited resources. Therefore,
security robots can use our method for video surveillance
during autonomous patrolling. Also, this solution can be
applied in outdoor scenarios with strong BG motion (video
with moving objects in a tree shaken by the wind, video with
moving objects on the shimmering water, and so on) and
videos that are captured by a moving camera. Moreover, most
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importantly, Fast-D can be used in limited computing and low
memory devices.

In the future, we will modify the threshold determination
technique to more effectively choose the threshold dynami-
cally. Also, instead of random BG samples update, we will
replace less reliable BG samples by the more reliable BG
pixels. Moreover, we will use deep features in addition to
the non-smoothing color feature to improve the segmentation
performance.
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