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ABSTRACT Small-scale battery energy storage systems (BESS), especially for behind-the-meter applica-
tions, are still relatively expensive, but we show that it can be a potent solution to render homes resilient
to storm related power outages. We present a stochastic programming model formulation to optimize
PV/BESS explicitly accounting for resilience benefits these investments entail, over and above their ability
to reduce cost of supply. The stochastic optimization considers uncertainties around storm related grid
supply failures as well as variability of solar PV. The model includes an embedded Monte Carlo simulation
module that considers storm related outage risks using climate model reanalysis data. It is a least-cost
planning framework that optimizes selection of BESS, solar PV, grid supply, and diesel generator, from
a home-owner’s perspective. We present two case studies with low and high storm risks that demonstrate
how different risk exposures can impact on the selection of alternative options to build resilience. Duals,
or shadow prices, of demand-supply constraints from the model for both normal days and for storm related
contingencies, provide interesting insights into the marginal cost of supply that can inform innovative pricing
schemes to promote customer level resilience measures. The case study results reveal significant merits of
BESS, in combination with PV, to enhance resilience. We find that in low-risk areas like Bethesda, MD,
incremental PV and BESS required for a more resilient system can add $79 (4%) to annual electricity costs
for a typical household, and a considerably higher $208 (10.6%) inMiami, FLwhich is at a much greater risk.
These options are, however, 27% (in Bethesda) and 20% (in Florida) less expensive than the conventional
solution of installing a diesel generator. These results provide insights into the value of BESS as part of a
resilient and clean energy solution for households.

INDEX TERMS Stochastic optimization model, battery storage, solar panel sizing, climate resilience, smart
meter data, stochastic programming, Monte Carlo simulation.

NOMENCLATURE
Indices:

t Hours/sub-hours of the day
d All day types
sund Sunny or normal day (no storms)
stormd Stormy days
m Months of the year
y Solar profiles: y=1, . . .Y
s Monte Carlo samples: s=1, . . . S

Input Parameters:

Weightd Weight associated with each day
type

Demandy,m,d,t Hourly/sub-hourly demand
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wt Hourly windspeed for a storm
in each location in mph

pt Hourly probability of power
outage due to winds

θ1s,t Stochastic parameter with uniform
distribution {0,1}

θs,t Grid supply availability, i.e.,
binary parameter determining
whether the household can
access the grid

AvailableSolary,m,d,t Solar irradiance in kW/m2 per
1 kW panels installed

Tariff Cost of energy from the grid
in $/kWh

LSPenalty Cost of unserved energy
ε Penalty on solar rejection
PanelCost Annualized cost in $/kW/year of

solar panels
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BuyBackRate Price in $/kWh which can be
earned by the household by selling
1 kWh of energy to the grid

TaxDiscount Percent of the solar panel cost
subsidized by the government

SolarEfficiency Efficiency of the solar panel
BatteryCost Annualized cost in $/kWh/year

of BESS
BatteryEfficiency BESS efficiency
ChargeRate The rate in kW that the battery

can charge
DischargeRate The rate in kW at which the

battery can discharge
M Diesel generator capacity in kW

(e.g., 10 kW)
DGCost Annualized cost in $/year of an

M-kW diesel generator
HourlyDGCost Cost of operating the diesel

generator in $/kWh

Decision Variables:

Cost Total cost of supply
SolarInstalled Amount of solar panels

installed by the model in
kW – first stage decision

BatterykW Size of battery in kW to be
installed – first stage decision

DGSelected Binary variable denoting
whether the model installs a
diesel generator – first stage
decision

Gridy,m,d,t Supply of energy from the grid
in kWh

Grid∗y,m,d,t,s Supply of energy from the grid
in kWh in sample s

Solary,m,d,t Available solar energy in kWh
Solar∗y,m,d,t Available solar energy in kWh

in sample s
SolarInHousey,m,d,t Solar energy in kW being used

in the household
SolarInHouse∗y,m,d,t,s Solar energy in kW being used

in the household in sample s
SolarExporty,m,d,t Solar energy in kWh being sold

to the grid
SolarExport∗y,m,d,t,s Solar energy in kWh being

sold to the grid in sample s
SolarRejecty,m,d,t Solar energy in kWh being

rejected (incurs a penalty)
SolarReject∗y,m,d,t,s Solar energy in kWh being

rejected in sample s (incurs
a penalty)

BatteryIny,m,d,t Energy in kWh entering the
battery from solar panels

BatteryIn∗y,m,d,t,s Energy in kWh entering the
battery from solar panels in
sample s

GridChargey,m,d,t Energy in kWh entering the
battery from the grid

GridCharge∗y,m,d,t,s Energy in kWh entering the
battery from grid in
sample s

BatteryOuty,m,d,t Energy in kWh entering the
household from the battery

BatteryOut∗y,m,d,t,s Energy in kWh entering the
household from the battery in
sample s

BatteryLevely,m,d,t Energy in kWh stored in the
battery (household BESS)

BatteryLevel∗y,m,d,t,s Energy in kWh stored in the
battery in sample s (household
BESS)

DieselSupplyy,m,storm,t,s Energy in kWh entering the
household from the diesel
generator

LoadShedy,m,storm,t,s Demand in kWh that cannot
be met.

I. INTRODUCTION
The United States Department of Energy found that an aver-
age household in the United States goes without power for
8 hours in a year [1]. This number varies widely among
individual states: households in Florida lose power supply on
average for 40 hours, whereas those inWashington, D.C. lose
power supply for about 2 hours. These power outages occur
for a variety of reasons, that range from natural events to
intentional attacks on the power supply. A recent paper found
that between 2012 and 2016, over 96.2% of power outages
occurred due to the impact of severe weather [2] on trans-
mission, and to a greater extent, on distribution networks [3].
Storms and hurricanes account for the vast majority of these
outages. Resilience of a system can be defined as its ability to
prepare, predict, sustain and recover from an outage [3]. This
definition is applicable to the power system as a whole or one
of its components, such as a household.
Households have several options available to them in terms

of both supplementing or ‘‘cleaning’’ their energy supply and
protecting against outages. As an example, they can install
photovoltaic panels (PV), household battery energy storage
systems (BESS), or small diesel/propane/natural gas fired
backup generators.
Figure 1 shows the difference in probability of power

outages (i.e., grid supply failures) during a typical stormy day
in Bethesda (Maryland) and Miami (Florida)—two locations
chosen for our illustrative case studies. These probabilities
are correlated to wind gust and can be derived from climate
model reanalysis data as discussed later.
Motivation for This Study: There is a growing literature

on system level power sector resilience as the frequency and
intensity of major storms are on the rise, e.g., [3]. Still,
the role of BESS and solar PV is relatively unexplored com-
pared to that of fossil fuel-based generators in providing
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FIGURE 1. Comparison of power outage probabilities between Bethesda
and Miami.

backup power during storms [3]. As an example, none of
the commercially available tools for PV/BESS sizing analy-
sis consider these aspects. These solar PV assessment tools
are also deterministic in nature. Since the resilience prob-
lem intrinsically considers risk of outages (and variability
of solar power), there is a need for stochastic optimization.
We address this gap by considering how resilience can be
integrated into a household-level energy supply analysis.
A second motivation for this study is to understand the role
uncertainty of solar resources plays in this regard and what
this in turn implies for level of storage needed to render a
household resilient. We consider variability of solar resource
– both inter-annual and intra-annual variability – to see how
PV/BESS sizing and its competitiveness against other options
like diesel is influenced by it.

The concept of incremental investments to add resilience
can in fact be generalized to cover other areas of study.
It would, first of all, be interesting to see how house-
holds in substantially different geographies are affected by
extreme weather events with different risk profiles and solar
resources. Secondly, this study addresses household-level
investment decisions, but the concepts and the framework
can be applied to analyze the resilience needs of larger com-
munities, mini-grids or a power system for that matter with
utility-scale solar farm and BESS considered for resilience.
Thirdly, these concepts can be further extended to address
other sources of risks. In this study, we address power outages
due to extreme winds, but the framework used in the study
can be extended to include outage risks due to flooding or
wildfires. Finally, the model used in the study to combine
the flexibility of stochastic programming with a Monte Carlo
simulation can be adapted to represent a wide variety of
weather-related risks prevalent in varying parts of the globe.

Application of this study is imminent from the preceding
discussion and further illustrated in case studies that we
discuss in section 4. The analytical framework and the model
developed can be used by property owners, rooftop PV and

BESS vendors, as well as distribution utilities in order to
accurately estimate the volume of PV andBESS for a building
to maximize economic and resilience benefits. The study can
be further used by a wider group of planning bodies and
regulatory agencies to reduce dependence on fossil-fuel based
back-up generation facilities. The proposed methodology can
be applied immediately in the form of enhancements to the
existing tools that do not consider resilience related issues.
There are commercial tools developed by solar panel compa-
nies that do not in most instances co-optimize BESS. There
are other tools offered by agencies such as NREL, IRENA,
Google, etc that do not consider resilience either. Part of our
motivation therefore is also that the proposed methodology
and model can fill a useful niche in existing commercial and
research grade tools.

In summary, the motivation of our study is to ensure
resilience analysis is put into practice and decision makers
at all levels including homeowners can make investment
decisions on PV/BESS sizing that explicitly recognize the
associated resilience benefits.

The remainder of this paper is organized as follows:
Section 2 provides a survey of the existing literature in this
area. Section 3 describes the stochastic model that is devel-
oped to perform the analysis, followed by case studies in
Section 4. Section 5 summarizes the key findings of the
analysis.

II. LITERATURE SURVEY
There is a substantial literature on usage of optimization
tools for managing residential load. Capehart et al. [4], pub-
lished in the 1980s showed how household electricity costs
can be reduced by lowering their consumption during the
peak. Since then, there have been many developments in the
general area of home energy management system (HEMS).
Rahman and Bhatnagar [5] and Wacks [6] are important
examples of this. Rahman and Bhatnagar [5] discusses the
advantages of computerized energymanagement systems and
how they perform in comparison to mechanical controllers.
Khatib et al. [7] describes available methods for optimizing
system level PV capacity.

We have focused on four key aspects of the literature,
namely: (a) operational simulation of a household level
energy system; (b) optimization of PV andBESS capacity and
diesel generators; (c) smart meter data to inform optimiza-
tion; and (d) customer-level-resilience represented through a
Monte Carlo simulation.

Literature on HEMS has grown over the years. There have
been significant developments in embracing smart grid, roof-
top PV, and BESS. Beaudin and Zariepour [8] provides a
good overview of the recent literature on HEMS on these top-
ics. Simulation of household level energy system operation,
as opposed to capacity optimization, has also grown over the
years. Zhao et al. [9] introduced an advanced Energy Man-
agement Controller (EMC) design and includes an optimal
power scheduling scheme for each appliance. The proposed
power scheduling method in Zhao et al. [9] would effectively
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strengthen the stability of the power system while also reduc-
ing costs. Zhou et al. [10] extends the concept of a smart
HEMS to consider renewable energy sources such as solar,
biomass, wind, etc. HEMS capabilities have been progres-
sively extended to prioritize appliances [11], include demand
response combined with storage [12], and electric vehicles
(EV) [13]. Hosseinnezhad et al. [14], [15] uses artificial intel-
ligence techniques to solve the HEMS scheduling problem.
Hosseinnezhad et al. [14] demonstrates benefits of using a
self-healing strategy that will sectionalize an isolated area of
the distribution system into island partitions to provide reli-
able power supply to the critical loads continuously. It shows
how an intelligent network reconfiguration strategy can add
to system resilience. Hosseinnezhad et al. [15] presents a
HEMSwith day-aheadmanagement and real-time regulation.
Their case studies show that the model can reliably locate
the optimal operating scenario. Shareef et al. [16] is a recent
summary of the HEMS applications.

Falling costs of BESS in recent years has encouraged com-
bining PV with it to provide stable power supply. Both lin-
ear and nonlinear mixed integer programming (MIP) models
have been used to optimize PV and BESS capacity [17]–[22].
Zhao et al. [17] co-optimizes BESS and PV for microgrids
and households. Zhao et al. [17] makes significant progress
in improving accuracy of solar panel sizing analysis by
introducing an additional penalty for battery-life loss.
Their analysis involves maximizing the life of the BESS.
Zhou et al. [18] also performs this co-optimization using a
comprehensive nonlinearMIP (MINLP)model that considers
alternative pricing schemes. Results from Zhou et al. [18]
indicate that economics of PV under a standard tariff pol-
icy is not attractive. However, it is economic to install a
PV-only system under a stepwise power tariff, whereas the
PV together with BESS can only be justified under a time-of-
use and real-time-pricing tariff. Hemmati [19] and Hemmati
and Saboori [20] adopt a similar approach. Hemmati and
Saboori [20] introduces uncertainty in PV output using a
Monte Carlo simulation model to minimize annual utility
bills of customers. The analysis in Hemmati and Saboori [20]
indicates that it is possible to achieve a net-zero energy model
if both PV and BESS are installed. Okoye and Solyali [21]
used an integer programming model to determine the optimal
PV and BESS capacity in Nigeria that reduces the usage of
diesel. Analysis of the annualized costs in [21] demonstrates
that the PV system is not only environmentally friendly,
but also 30% cheaper than the conventional alternative of
diesel generators. Erdinc et al. [22] used a mixed integer
programming model to co-optimize distributed generation,
storage and demand response. Their work was a significant
step forward in HEMS analysis through the integration of
BESS in the model.

Accurate load profiles are critical to PV/BESS capac-
ity optimization and operation including resilience con-
siderations, that can come from smart meter data. Smart
meter data analytics until 2019 [23], however, shows limited
application of it in PV/BESS sizing. There has been some

application of it to identify demand response measures
(e.g., [24]). Dyson et al. [24] presents a new method
for assessing demand-response potential of residential air-
conditioning using smart-meter data from 30,000 households
in Northern California. Liang et al. [25] used smart meter
data from 5,000 installations to analyze the number of solar
panels needed to render the system net zero energy (NZE)
but did not perform a capacity optimization. Case studies
from Liang et al. [25] include actual feeder topology in
Duke Energy North Carolina service areas to demonstrate the
impact of an NZE strategy on customer bills and power flow
changes in the distribution system. Chatterji and Bazilian [26]
used smart meter data to optimize selection of PV, BESS and
EV charging mode using a stochastic mixed integer program-
ming model. Analysis of PV and BESS in [26] as well as [18]
showed that even with low cost of BESS in recent years,
it is hard to justify behind-the-meter application of storage
without time-of-use, special EV tariffs [26] or subsidies [18].
Past analyses however did not consider the resilience benefits
of BESS.

Power system resilience is a topic that connects to multi-
ple sources of risks including severe weather events, cyber
security, and conflict. Our work focuses specifically on the
extreme weather driven outages and building resilience at a
household level. As we noted, Houser et al. [2] conclusively
demonstrated how vast majority of the recent power outages
in the US were caused by the impact of severe weather
on the infrastructure. This is also evident from the data
presented by the Energy Information Administration (EIA),
which in recent years, shows a breakdown of the role of the
weather events [1]. References [27]–[29] analyze methods
of improving system resilience in different locations of the
world. O’Neil-Carrillo and Irizarry-Rivera [27] shows how
a combination of microgrids, PV, and BESS can be applied
to hurricane-prone Puerto Rico to improve power system
resilience. Their proposed solution includes a ‘grid of micro-
grids’ that essentially comprise 2 kW PV and 10 kWh BESS
for 200,000 customers who are particularly vulnerable to
hurricanes. Although this solution comes at a significant cost
$1.4 billion, they aptly make the point that ‘‘it’s just a fraction
of what the Puerto Rico government has proposed spending
on an enhanced central grid.’’ Panteli et al. [28] provides an
analysis of the key concepts of power system analysis. They
also analyzed methods to harden Great Britain’s transmission
network. Bristow [29] presents a resilience assessment for
the city of Toronto using a novel methodology. This analysis
considers the interdependencies of multiple infrastructures
in an investigation of Toronto’s ability to efficiently recover
from extreme events.

This concept is further explored in Guidotti et al. [30], who
present a sophisticated methodology for modeling correlated
infrastructure networks. Interdependence in infrastructure
is also considered in Bie et al. [31], wherein a frame-
work for power system resilience evaluation is presented
along with a load restoration framework. This methodol-
ogy places emphasis on new technologies such as topology
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reconfiguration and distribution automation. In order to accu-
rately assess the resilience of power systems, Panteli and
Mancarella [32] present a conceptual framework that makes
use of a sequential Monte-Carlo-based time-series simula-
tion model to compute random weather-related events and
considered time dependent failure probabilities of system
components. An important contribution of their work is an
integration of the ‘fragility curve’ concept in power system
resilience analysis for applying weather- and time-dependent
failure probabilities to system components. Duque et al. [33]
presents a comprehensive optimization framework that dis-
patches oil tank trucks to supply resources based on another
model that predicts demand for diesel based on historic
weather forecasts. Although [33] does not consider renewable
resources to impart resilience, it highlights the complexi-
ties and costs associated with usage of diesel as a back-up
resource. Their work also introduces a logistic regression
model that predicts the probability of a power outage from
wind gust speeds which forms the basis of storm outages
probabilities in our analysis.

Yan et al. [34] introduced a sophisticated framework and an
algorithm to reduce customer operational costs, also integrat-
ing electric vehicle (EV) charge scheduling in a commercial
building. Their analysis shows that operational costs in a
commercial building can be lowered while also increasing
tolerance to uncertain power outages. This algorithm includes
battery storage and PV generation. Their model makes use
of hourly load data sourced from a commercial building.
It should be noted though that the model in [34] is an opera-
tional planning model in which the capacity for BESS/PV is
pre-fixed.

As the discussion above alludes to, there are several ele-
ments of a holistic framework for addressing resilience issues.
These include inter alia assessment of storm probability [33],
stochastic optimization [26] and Monte Carlo technique [32],
and operational simulation of storm resilience [34]. Yet, there
is no comprehensive framework and model we are aware of
that brings these elements together to analyze contribution
of PV/BESS towards resilience of supply for a household
customer.

III. METHODOLOGY
This paper builds on our previous work [26] to extend an
optimization model that determines optimal PV and BESS
size, and includes the following considerations (the specific
additions to the methodology in [26] are shown in italics):
(a) hourly smart meter load data at a household level to rep-

resent load, including variability in load across different
years in conjunction with solar insolation and extreme
weather events (namely, storms in our case studies);

(b) co-optimization of solar and battery capacity to minimize
household utility bills while matching the load, solar and
weather driven outage profiles;

(c) analysis of solar irradiance and wind data available in
the public domain (e.g., NASA’sMERRA-2) to represent
(i) hourly variability of solar within a year and also

inter-annual variability; and (ii) extreme wind speed rep-
resenting stormy conditions that may cause grid supply
failures;

(d) stochastic modeling as an integral part of the optimiza-
tion of (i) multiple solar profiles to capture inter-annual
variability; and (ii) storm related power outages;

(e) explicit consideration of net metering policy for the
state/country, including restrictions on quantity of kWh
that can be exported to the grid, which holds interesting
implications for selection of BESS for resilience and
marginal cost of supply;

(f) customer-level resilience through investments in BESS
and/or back-up generation facility based on grid failure
probability driven by wind gust speed;

(g) integrated assessment of investment decisions on such
hardening measures (namely, additional PV and BESS
specifically to cover storm related outage risks and also
an option to install diesel generator to provide power in
case of power outages);

(h) operational decisions for grid supply, solar usage
in-house and export to grid, BESS charging and dis-
charging decisions and back-up generation for both nor-
mal and contingency conditions (namely storm related
outages) including coverage of critical loads;

(i) economic load-shedding beyond critical load, in the case
it is too expensive to invest in hardening measures rela-
tive to the cost of unserved energy; and

(j) elicit shadow prices or marginal cost of supply at a
household level for normal and contingency conditions
that may provide insights into investments needed for
hardening distribution system infrastructure.

A. OVERVIEW OF THE MODEL
The model is formulated as a mixed integer linear program-
ming (MILP) problem which considers historic smart meter
load data, solar resource profiles and hourly windspeeds cor-
responding to a household location. It is used to minimize
the annual household electricity costs including (annualized)
investments in solar, BESS, or other back-up generation facil-
ities, some of which may be needed to reduce exposure to
weather driven outage risks. The selection of the core mixed-
integer programming modeling framework is done on the
premise that it is robust and well established in the domain of
power system planning including most system planning and
market related applications. Stochastic optimization includ-
ing stochastic programming andMonte Carlo simulation have
been fully embedded in the same framework to ensure that the
results are robust, can be implemented through production-
grade commercial optimization solvers, and ensures the opti-
mal solution with a high degree of reliability and hence fully
replicable.

The stochastic optimization framework adopted for the
analysis is generic and can consider any type of outages and
related hardening measures. The use cases consider storm
related outages and diesel generators as a back-up because
these are shown as a dominant source of risk and hardening
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FIGURE 2. Model schematic.

option for most parts of US, including Florida [33] which is
our key focus.

The model selects a discrete PV size and decides whether
to install a back-up generation option. It makes second stage
hourly/sub-hourly decisions to meet demand including criti-
cal load. Electricity supply options for the household include
energy from grid, solar panels, BESS, or diesel generators,
subject to the uncertainties on solar availability, which we
represent using different historic solar profiles [26], as well as
grid supply failures [33]. The household can also sell energy
to the grid when it is profitable to do so (following the appli-
cable net metering and other regulations). If (non-critical)
demand cannot be met using all of these options, load will
be shed and penalized at a predetermined cost of unserved
energy. We adopt the reduction in expected unserved energy
arising from storms as a measure of system resilience.

Solar PV decisions are driven by policy parameters which
include tax incentives for PVs, and net metering (or similar)
limits prevailing in most states. A schematic overview of the
model with variable names is provided in Figure 2 and shows
how the demand in the household is met by different sources.

The model considers uncertainties around availability of
solar power as well as grid supply failures. It is cast as a
stochastic programming problem with multiple solar profiles
for the former, and a Monte Carlo process for the latter.
The Monte Carlo framework adopted in the present model
is generic and can work with any probability distribution
with additional weather or other sources for supply failures.
The model uses representative days. We have, for instance,
used three representative days for our illustrative case studies
discussed in a subsequent section that correspond to a ‘‘Nor-
mal’’, ‘‘unusually sunny (Sunny)’’, and ‘‘unusually stormy
(Stormy)’’ days. The precise number of representative days
depends on the load characteristics and can be determined
using a proper clustering technique as has been discussed
in [35]. Data for wind speeds and solar irradiance are taken
from NASA’s climate reanalysis model, MERRA-2 [36].
As Figure 2 depicts, the probability of grid power loss can
be approximated as a nonlinear function of wind gust. Duque
et al [33] has estimated the coefficients as: β = 0.0889 and
β0 = −6.388 which we have adopted for our case studies.

Duque et al [33] have also considered a number of other
explanatory variables to power losses including flooding and
concluded that gust speed is the only significant one, albeit it
is quite possible that power outages in other jurisdictions may
require additional considerations [3]. We have represented
unusually stormy day power outage probabilities as shown
in Figure 1. The optimization model embeds a Monte Carlo
simulation containing a large number of samples to represent
the effects of power outages on BESS/diesel generator sizing
decisions. Each sample represents a ‘‘contingency’’ event
of grid supply failure for one or more hours. The model
chooses remedial/recourse measures to cover for the contin-
gency, e.g., BESS discharge or diesel generation, which in
turn determines investment decisions in (additional) BESS or
installation of diesel generator. Decision variables associated
with the contingencies are denoted with a superscript (∗)
for each contingency state/sample. The precise number of
samples depends on the number of representative days and
other options included in the model. In our experiments we
varied the number from 100 to 1000 with relatively small
impact on the level of accuracy beyond the first 100 samples.

B. OPTIMIZATION MODEL
The objective function for the model defines cost of the
household’s electricity as Cost. The total electricity supply
cost for the household comprises:

a. The annualized capital cost of PV and BESS;
b. The annualized capital cost of the diesel generator;
c. Cost of diesel generation;
d. Cost of energy from the grid; and
e. Penalties associated with load shed and rejected solar

energy.

These costs are included in the objective function of the
model, which is defined in Equation (1).

Cost

= SolarInstalled ∗ PanelCost ∗ TaxDiscount + BatterykW

∗BatteryCost + DGSelected ∗ DGCost

+

∑
y,m,sun,t

Weightsun
((
Gridy,m,sun,t+GridChargey,m,sun,t

)
∗GridCost − SolarExporty,m,sun,t ∗ BuyBackRate

+SolarRejecty,m,sun,t ∗ ε
)
+

∑
y,m,storm,t,s

Weightstorm

×

((
Grid∗y,m,storm,t,s + GridCharge

∗
y,m,storm,t,s

)
∗GridCost − SolarExport∗y,m,storm,t,s
∗BuyBackRate+ SolarReject∗y,m,storm,t,s ∗ ε

+DieselSupplyy,m,storm,t,s ∗ HourlyDGCost

+LoadShedy,m,storm,t,s ∗ LSPenalty
)
/S (1)

In order to introduce storm-driven power outages to
the model, the following equation is used based on
Duque et al. [33] to relate hourly windspeeds to the
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probability of a grid failure:

pt = (1+ e−(0.0889wt−6.388)) (2)

These probabilities are used in another equation which
decides whether grid supply is (θs,t = 0) or not (θs,t = 1)
available to the household:

θs,t =

{
1, θ1s,t ≤ pt
0, θ1s,t > pt

(3)

Equation (4) defines how total supply from grid, solar
panels and BESS, meets the hourly demand for day-types
when there are no power outages. It should be noted that this
equation integrates the round-trip BESS efficiency by scaling
down the output of BESS:

SolarInHousey,m,sun,t + Gridy,m,sun,t
+BatteryOuty,m,sun,t ∗ BatteryEfficiency

= Demandy,m,sun,t (4)

This equation is modified for the Stormy day-type. It is
defined over each of the samples and includes important
details:
a. Energy from the grid is only accessible when θs,t = 0;
b. Load can additionally be met by the diesel generator;

and
c. Hourly demand that cannot be met through any of the

available provisions can be shed.
The modified equation is defined as follows:

SolarInHouse∗y,m,storm,t,s + (1− θs,t )Grid∗y,m,storm,t,s
+BatteryOut∗y,m,storm,t,s ∗ BatteryEfficiency

+DieselSupplyy,m,storm,t,s + LoadShedy,m,storm,t,s
= Demand∗y,m,storm,t,s (5)

The duals, or shadow prices, associated with equations (4)
and (5) represent the marginal cost of supply to the house-
hold for Normal/Sunny and Stormy days, respectively. For
example, the shadow prices for storm related contingencies
associated with equation (5) are as follows:

λy,m,d,t,s = ∂(Cost)/∂(Demandy,m,d,t,s) (6)

The household can only access energy from aM-kW diesel
generator if it has been selected:

DieselSupplyy,m,storm,t,s ≤ M ∗ DGSelected (7)

Solar energy production is limited by solar resource as
well as the size of the system installed. It should be noted
the model does not account for changes in PV efficiency
due to changes in solar insolation level and cell tempera-
ture. Although these can be incorporated into the model,
we have chosen to keep the model computationally tractable
by assuming a constant average panel efficiency as is typical
of most planning studies:

Solary,m,sun,t ≤ AvailableSolary,m,sun,t ∗ SolarInstalled

∗ SolarEfficiency (8)

This equation is also modified for the Stormy day-type and
defined over each of the samples:

Solar∗y,m,storm,t,s≤ AvailableSolary,m,storm,t ∗ SolarInstalled

∗ SolarEfficiency (9)

The energy generated by the solar panels can then be either:
a. Used in the household to meet the hourly demand,
b. Sent into the BESS for later use,
c. Sold to the grid, or
d. Be rejected.
This is reflected in the following equation:

SolarExporty,m,sun,t + BatteryIny,m,sun,t
+ SolarRejecty,m,sun,t + SolarInHousey,m,sun,t

= Solary,m,sun,t (10)

This equation is defined over each of the samples for the
Stormy day-type:

SolarExport∗y,m,storm,t,s + BatteryIn
∗
y,m,storm,t,s

+ SolarReject∗y,m,storm,t,s + SolarInHouse
∗
y,m,storm,t,s

= Solar∗y,m,storm,t,s (11)

In order to reflect the net-metering policy in the state, the
following equation is defined to restrict the amount of energy
that can be exported to the grid. The model stipulates that the
quantity of solar energy exported cannot exceed the quantity
of energy used in-house:∑
m,sun,t

SolarExporty,m,sun,t ≤
∑

m,sun,t

SolarInHousey,m,sun,t

(12)

This equation is defined once more over each of the sam-
ples for the Stormy day-type:∑
m,storm,t,s

SolarExport∗y,m,storm,t,s

≤

∑
m,storm,t,s

SolarInHouse∗y,m,storm,t,s (13)

The following equation defines the energy balance for the
BESS for the first hour of the day, namely, the battery can be
charged through the PV systems or through the grid.

BatteryLevely,m,sun,t=1
= BatteryIny,m,sun,t − BatteryOuty,m,sun,t
+GridChargey,m,sun.t (14)

This equation is defined over each of the samples for
the Stormy day-type and includes an additional change: the
household starts the Stormy day-typewith a fully charged bat-
tery. This is because households can be expected to prepare
for disastrous storms ahead of time based onweather forecast.

BatteryLevel∗y,m,storm,t,s
= BatteryIn∗y,m,storm,t − BatteryOut

∗
y,m,storm,t,s

+GridCharge∗y,m,storm.t,s + BatterykW ∈ t = 1 (15)
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The following equation defines the energy balance of the
BESS for all other hours of the day:

BatteryLevely,m,sun,t
= BatteryLevely,m,sun,t−1 + BatteryIny,m,sun,t
−BatteryOuty,m,sun,t + GridChargey,m,sun.t ∀t 6= 1

(16)

For the Stormy day-type, this equation is defined over each
of the samples:

BatteryLevel∗y,m,storm,t>1,s
= BatteryLevel∗y,m,storm,t−1,s + BatteryIn

∗
y,m,storm,t,s

−BatteryOut∗y,m,storm,t,s + GridCharge
∗
y,m,storm.t,s

(17)

The charge and discharge rates for the battery are prede-
fined and incorporated as follows:

BatteryIny,m,sun,t ≤ BatterykW ∗ ChargeRate (18)

BatteryOuty,m,sun,t ≤ BatterykW ∗ DischargeRate (19)

BatteryIn∗y,m,storm,t,s ≤ BatterykW ∗ ChargeRate (20)

BatteryOut∗y,m,storm,t,s ≤ BatterykW ∗ DischargeRate (21)

The model is implemented using GAMS (General Alge-
braic Modeling System [38]) and solved using the CPLEX
Barrier algorithm. The stochastic version of the model for
1000 Monte Carlo samples, 3 solar resource profiles, and
3 representative days contains 0.8 million variables, 0.6 mil-
lion constraints, and 2.3 million non-zeroes. It solves in
roughly 45 seconds on an i7-9750H (ninth generation)
processor with 32 GB RAM.

IV. CASE STUDY RESULTS
This section presents findings for two illustrative cases for:
(a) Bethesda, MD which typically exhibits relatively low
storm related outage risks, and (b) Miami, FL which has
almost five times as many hours of outages. Both cases use
the same smart meter load and solar irradiance data (i.e., iden-
tical solar profile1) to maintain comparability across these
two cases in terms of the hardening decisions. In other words,
the probability of storm related outage is the key parameter
that is different across the two locations so that we can
directly compare the resilience measures across these. For
Bethesda, the probability estimates suggest an annual outage
duration of 8 hours. This is very similar to the average outage
for households across the United States [2]. Annual outage
duration in Miami is estimated at 38 hours which also aligns
well the average outage duration in the state of Florida [2].

The model is set up for a single year in hourly resolution
for three representative days. The model uses a total installed
cost of $3000/kW for a PV system, and $300/kWh for fully

1There is relatively low difference in solar irradiance across the two
locations in any case. A comparison of solar irradiance data between Miami
and Bethesda shows that the mean capacity factor varies by only 0.4% [36].

installed BESS. We assume a 10 kW diesel generator (com-
mensurate with the 9.94 kW peak demand for the household)
that has an up-front cost of $5000 [37] (or $515 pa for a
10 kWgenerator in annualized cost). Solar PV costs represent
commercial quotes [26] and battery costs are based on the
NREL projections [38]. These investment costs are annual-
ized assuming a 10-year lifespan for BESS and 25-year life
for solar PV and diesel generator.

The solar PV capacity factors for Normal, Sunny and
Stormy day-types are 18%, 25%, and 10%, respectively.
We have considered two additional solar profiles: a high
capacity factor resource profile wherein the capacity factor
for all day types is 20% higher, and a low capacity factor
resource profile wherein the capacity factor for all day-types
is 20% lower. These additional profiles are considered in
subsection D only – all other cases in subsections A-C use
the average solar resource profile only.

Energy from the grid is assumed at a flat tariff
of 15.65 c/kWh. A high penalty of $20/kWh that represents
the high end of the estimate by LBNL [39] is imposed on any
unserved energy. Load is represented for a year using three
representative days: Normal (311-312 days per year with a
peak demand of 2.64 kW), Sunny (50 days per year with a
peak demand of 9.94 kW) and Stormy (3-4 days with a peak
demand of 2.73 kW). The number of unusually stormy days
based on extreme wind gust data is three for Bethesda, and
four forMiami, although the gust speed and hence probability
of outage is much higher for the latter.

We first present the results for five key scenarios for each
location, namely:
(a) No Power Outage scenario that represents the status

quo, wherein outage risks are ignored in making deci-
sions on PV/BESS;

(b) Base Case wherein these storm related outage risks and
all available mitigation options (PV, BESS and diesel) are
considered;

(c) No Resilience Consideration, which essentially takes
the decision from the No Power Outage scenario, does
not consider any mitigation option but then imposes the
outages to assess the impact of a naïve non-resilient
solution;

(d) No BESS that repeats the Base Case but drops BESS
from the set of options; and

(e) No Solar or BESSwhich also drops solar from the set of
options, leaving diesel as the only source of energy in an
outage.

A. CASE STUDY 1: BETHESDA
Key findings for the Bethesda case study are summarized
in Table 1 and discussed below.
1. The ‘‘No Power Outage’’ scenario serves as a reference

for both the cost and PV/BESS/diesel sizing decisions.
The model chooses to install a 4 kW PV system, and no
BESS or diesel generator, purely on economic ground.
The electricity supply cost to the household including the
annualized cost of solar PV, is $1955, which is the lowest
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TABLE 1. Comparison of scenarios: Bethesda.

among all cases. The results for this case were obtained
by neglecting power outages and these are representa-
tive of the vast majority of the current models [17]–[26]
including commercial tools that ignore resilience issues.
Although the models in the literature optimize PV (and
BESS in some cases such as [18], [26]), they do not con-
sider grid supply outages that are left to be covered with
more expensive solutions like fossil fuel based generation.
A naïve least-cost solution such as this one saves some
investments in PV/BESS, but the true cost incorporating
that of unserved energy due to outages, can outweigh
these investment costs, as we see in the ‘No Resilience
Consideration’ scenario;

2. The ‘‘Base Case’’ shows the model’s results when no
restrictions are placed on PV or BESS installations and
power outage are considered. The PV size increases to
5 kW PV system and 1.4 kWh of BESS is also included
in the optimal mix. Put differently, the extra kW of PV
and 1.4 kWh of BESS are added purely from a resilience
perspective. The additional total investment cost of $3,420
($3,000 for 1 kW of PV and $420 towards 1.4 kWh of
BESS) may seem substantial. The solution however does
not include installation of a diesel generator which would
have cost $5000. Additional investment in PV/BESS is
warranted to prevent unserved energy due to storm related
outages. As the Puerto Rico study [27] discussed, such
investments are not only economic from a household point
of view (over diesel) but may also obviate the need to
harden the distribution system. Expected unserved energy
is 0.544 kWh which is deemed to be economic despite a
high ($20/kWh) cost of unserved energy imposed. Invest-
ments in infrastructure to guard against very low probabil-
ity events can be very expensive – an issue that has been
noted in the literature including [27], [29], [31], [33] and
we revisit this point in a later sub-section;

3. The ‘‘No Resilience Consideration’’ case uses the ‘‘No
Power Outage’’ investments i.e., 4 kW of PV and no
BESS, and as a result has much higher expected unserved
energy of 2.69 kWh. As some of the earlier studies –
notably [18] and [26] – have also observed, justification
for BESS given its high cost is difficult, but miss the

point that they can be useful to cover for grid supply
failures. System costs including costs of outages in this
case is higher than the Base Case that demonstrates some
investment in resilience is beneficial even for areas that
are not at major risk of storm related outages;

4. The ‘‘No BESS’’ case prohibits the model from installing
BESS. To supply the household with energy during out-
ages, the model installs a diesel generator which elimi-
nates the unserved energy, however the annual cost for
the household jumps by $436 or 21% relative to the Base
Case. The model installs only 4 kW of PV in this case.
This scenario also demonstrates that solar PV alone does
not contribute significantly to resilience in this case and
cannot obviate the investment in back-up generation; and

5. The ‘‘No solar or BESS’’ scenario prohibits the installa-
tion of both PV and BESS. The diesel generator installed
in this case supplies the household 3.59 kWh of energy
during the outages. System cost goes up further by $553 or
27%, relative to the Base Case. The cost impact is higher
than the ‘No BESS’ case which shows the contribution
solar PV makes both in terms of economic supply and
displacing a small number of units of diesel generation
during power outages;

The difference between the costs in the ‘‘No Power
Outage’’ and the ‘‘Base Case’’ scenarios indicates that
the additional sizing recommendations are not significantly
expensive. It adds only $78.94 or 4% to annual cost.

The value of PV and BESS is further demonstrated in
Figure 3, which shows how these two resources are used on
the Stormy day for each of the 1000 samples for the Base
Case. Daily contribution of PV and BESS in terms of kWh
during power outage are added and the values are sorted
according to the daily discharge from the BESS. It is clear that
BESS can complement solar well duringmajor outage events.
Following the terminology used by Panteli et al. [28], a com-
bination of PV and BESS can add resilience during Phase I

FIGURE 3. Daily usage from PV and BESS across 1000 samples for the
Stormy day during power outage: Bethesda ‘‘Base Case’’.
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(Disturbance Progress) as well as Phase II (Post Disturbance
Degraded State). BESS performs multiple cycles during the
day with the battery charged by PV and for intermittent
periods when power supply is restored. There may be some
outages that cannot be served by PV and BESS, depending
on the level of capacity installed. However, the model does
not select a diesel generator because the probability of such
an event is very low and the investments needed for it are not
economic.

Figure 4 further shows an average hourly profile for the
Stormy day across all 1000 samples for the Base Case.
It should be noted that when the grid is unavailable, solar
energy alone provides the household’s energy, although its
availability on the Stormy day is limited. BESS supplements
the grid later in the day when solar energy is not available.
The role of BESS and hence additional investments in BESS
become more critical if the solar resource quality drops. The
operational analysis conducted by Yan et al. [34] also showed
that if the actual solar availability differs significantly, BESS
state of charge will vary greatly through rapid discharge. This
is a consideration that will need to be built in sizing of the
BESS.

FIGURE 4. Energy balance (averaged across all samples) during Stormy
day: Bethesda ‘‘Base Case.’’

B. CASE STUDY 2: MIAMI
The Miami case study shows how the investment and oper-
ational decisions change when the frequency and duration
of the power outages are significantly increased. The load
profile is unchanged from the Bethesda case study for the
results to be comparable including the identical reference ‘No
Power Outage’ scenario.

Table 2 shows the model’s results for the remaining four
scenarios:
1. The ‘‘Base Case’’ still installs 5 kW of PV but BESS

level increases significantly to 4.2 kWh. There is therefore
a greater need for hardening relative to Bethesda driven
by significantly higher risk of outages, and hence the

TABLE 2. Comparison of scenarios: Miami.

annual electricity cost for the household goes up. There
is however no diesel generator selected albeit the expected
unserved energy rises to 0.85 kWh. The expected unserved
energy is below 1%of the total demand for the Stormy day,
and a tiny fraction of the annual demand which does not
warrant additional investments in BESS let alone diesel.
This is a significant finding because diesel remains the
mainstay for back-up power in the state of Florida [33]
and US in general [37];

2. The ‘‘No Resilience Consideration’’ case shows a sharp
increase in annual costs (including the cost of expected
unserved energy) demonstrating a naïve plan that does not
consider resilience will prove very expensive in Miami.
In fact, the critical load cannot be met in many of the
contingencies;

3. The ‘‘No BESS’’ scenario is almost identical to that for
Bethesda which installs 4 kW of PV and the diesel gen-
erator. This is a more expensive hardening measure com-
pared to the Base Case but avoids 100% of the outages.
We again see that solar on its own is less effective and the
combination of PV and BESS is critical for it to be a potent
measure for resilience; and

4. The ‘‘No solar or BESS’’ scenario is also quite similar
which relies entirely on the diesel generator to supply
power to the household and as a result diesel generation
goes up from 9.91 kWh to 13.6 kWh. Annual cost for the
household goes up further by $117 mainly because lower
cost solar PV generation is not available.

The Miami Base Case finds that the model responds pri-
marily by increasing the BESS capacity to meet demand
during outages. This comes at an annual cost $207.70 higher
than the ‘‘No Power Outage’’ scenario. This additional invest-
ment in BESS allows the model to restrict unserved energy to
0.853 kWh during the outages. The additional total invest-
ment for Miami is $4,260 (1 additional kW of PV and
4.2 kWh of BESS). This is a significant investment for a
household but still cheaper than buying, operating and main-
taining a diesel genset. The additional PV and BESS also
lower requirement to buy from the grid for vast majority
of normal days, and therefore offer additional benefits that
partly offset the investment.
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The ‘‘No BESS’’ and ‘‘No Solar or BESS’’ cases in
Bethesda and Miami end up being quite similar, and both
are significantly more expensive than the optimal solution in
the Base Case. As Figure 5 (Base Case) demonstrates, BESS
plays a significant role in meeting demand during evening in
the contingencies when the storm related outage probabilities
are high. These cases indicate that BESS is essential to the
mix for it to complement PV during Normal and Sunny
days and add resilience for the Stormy day. Compared to the
Base Case, the ‘‘No BESS’’ case costs an additional $311.80,
which is a significant benefit relative to its (annualized) cost.

FIGURE 5. Energy balance (averaged across all samples) during Stormy
day: Miami ‘‘Base Case.’’

C. COMPARISON OF CASE STUDIES
It is useful to compare the annual cost increase relative to the
‘‘No Power Outage’’ case for Bethesda andMiami for all four
scenarios (Figure 6). This is essentially the (annualized) cost
a customer pays to build resilience.

FIGURE 6. Cost to build resilience: annual electricity cost increase
relative to ‘‘No Power Outage’’ scenario - Bethesda vs Miami. ∗The model
could not meet the critical demand for this scenario.

FIGURE 7. Cumulative distributions of diesel generation: ‘‘No BESS.’’

As Figure 6 shows:
• A typical household in a low storm-risk zone (i.e.,
Bethesda) will see only $79 increase in annual costs,
compared to $208 in Miami. The difference is mostly
due to the additional investment needed in BESS in
Miami;

• However, the benefit of the added investment for Miami
is much greater at $788 compared to $160 in Bethesda
when we look at the ‘‘No Resilience Consideration’’
scenario. The incremental investments in BESS (and
PV) for hardening are indeed justified in both cases, but
the benefit to cost ratio for Miami, i.e., 788/208 or 3.78,
is almost double that for Bethesda, i.e., 160/78 or 2.05.
In other words, while hardening requirements may be
greater in areas that are more susceptible to outages,
the associated benefits may also be disproportionately
high;

• Absent BESS, both households would need a diesel gen-
erator. Since the expected unserved energy is typically
a small fraction of the overall demand even in Miami,
the recourse operational costs for extra diesel generation
is small compared to the investments needed in the
generator. The ‘‘No BESS’’ scenario cost impact there-
fore ends up being similar in both cases, differentiated
by only $2 towards the extra diesel generation cost in
Miami. It should be noted that the additional investment
in diesel is not justified in Bethesda but for the coverage
of critical load (which is treated as a hard constraint
in the model). This has significant ramification for the
implied levelized cost of diesel being extremely high for
Bethesda; and

• Similarly, the ‘‘No Solar or BESS’’ scenario also renders
the two households with similar costs. As noted before,
these costs are higher compared to the ‘‘No BESS’’
scenario because cheaper solar PV generation is dropped
from the supply mix.

Figure 7 for the ‘‘No BESS’’ scenario provides additional
insights into the nature of the contingencies for which the
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diesel generation across the samples is a good proxy. As the
cumulative distribution of diesel generation across 1000 sam-
ples show, Miami consistently has higher diesel generation
across the whole range including a minimum of 4 kWh.

Figure 8 highlights the implied levelized cost of diesel
generationwhich is extremely high for Bethesda at an average
of $96.52/kWh. In fact, in some of the samples with very
low diesel generation, these costs approach an astronomical
$1000/kWh. It underlines how unprofitable investment in
diesel generation can be. It adds over $500 to the annual cost
but it is rarely used making it a very expensive insurance. The
levelized costs for Miami in comparison are far lower than
that for Bethesda, but they also range from $8.3/kWh at the
lowest end to $27.5/kWh at the highest end, making it a very
expensive resource.

FIGURE 8. Cumulative distributions of average diesel generation cost:
‘‘No BESS.’’

Although the findings of the two case studies presented
are to some extent tied to the storm probabilities for the two
locations as well as the household load characteristics, some
of the conclusions can be generalized, namely:

• The role played by BESS in adding resilience is critical.
Absent a consideration of resilience benefits, BESS is
still relatively expensive and often do not form part of
optimal supply mix. Benefits associated with avoided
expected unserved energy not only due to storm, but also
an unreliable grid in general, can be critical for it to be
part of the optimal portfolio;

• Regions where the storm probability and intensity are
high – as is the case for Miami – BESS has a more
significant role to play;

• The combination of PV and BESS is important as these
two resources tend to complement each other. While PV
alone cannot fulfil the role, BESS also benefits from a
cheaper source of generation. As our previous analy-
sis [26] has demonstrated, a drop in PV cost helps to
make a stronger case for BESS. If resilience benefits are

TABLE 3. Varying solar resource profiles: base case.

considered, this complementarity would become even
stronger going forward; and

• The combination of rooftop PV and BESS even at their
relatively high cost in the US seems to push diesel out
of the mix and even in high risk areas like Miami. This
is a very significant finding. It holds great promise for
developing countries where the grid is less reliable and
the cost of solar is lower in places like India. Clean
distributed energy resources have significant potential to
displace diesel as a back-up resource.

D. ANALYSIS OF SOLAR PROFILES AND PRICING
Finally, we turn to a discussion on another source of uncer-
tainty, namely, variability in solar profiles that is shown to
have a significant impact on selection of solar [26], [35] as
well as BESS. In order to illustrate this issue, we have added
two additional scenarios (Table 3):
1. ‘‘All Solar Profiles’’: a high solar profile as well as a

low profile are added to the model, i.e., we consider the
average profile together with a profile 20% lower than the
average as well as a profile 20% higher than the average
in a single model; and

2. ‘‘Low Solar Profile’’: in which we consider only the Low
solar profile that will typically lead to a lower selection of
solar PV. This scenario also acts as a stress test for solar
PV/BESS selection for resilience purposes.
As Table 3 shows, addition of solar profiles has almost

no impact on the PV/BESS selection. On the other hand,
if we were to rely on a Low Solar Profile only, Bethesda
would see no solar PV at all in the mix and Miami would
also consider only 2 kW instead of 5 kW of solar PV. BESS
volume, however, increases for both locations as there is
less contribution from PV during contingency events. There
is also a slight increase in the expected unserved energy
level, albeit no diesel generator is selected in either location.
This analysis highlights the need to carefully select the solar
profile. Ideally, a broad range of profiles should be selected
for the investment decisions to be fully informed about the
inter-annual variability, rather than restricting the choice to a
specific low or high solar year. As [26] notes, variability of
solar is not considered in the commercially available tools in
any shape or form. This is particularly important for selection
of PV as well as BESS for resilience considerations. PV and
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FIGURE 9. Marginal cost of energy as it varies through the Sunny and
Normal days in Bethesda and Miami – All Solar Profiles (Base Case).

BESS selections are intricately linked and as the analysis
above demonstrates – relying on a single solar profile can lead
to quite distorted and sub-optimal outcomes.

Duals (or marginal costs) associated with the demand-
supply balance constraint in the model (Equations 4 and 5)
provides interesting insights into how the underlying
grid/PV/BESS resources are used and the impact of the net
metering policy. Prices differ significantly across the day
types. Figure 9 shows prices for Normal and Sunny days for
the All Solar Profiles scenario (Base Case that allows PV and
BESS to be selected).

Normal day spot prices coincide for both locations at the
grid supply cost of 15.65 c/kWh, or just marginally below it at
14.33 c/kWh which is the tariff obtained under the net meter-
ing policy. The latter prices occur when there is surplus solar
that can be sold back to the grid and the restriction on solar
export (Equations 10 and 11) imposed by the net metering
policy can be met by charging the BESS with surplus solar.
In other words, every kWh of solar fed back to the grid may
require a unit to be consumed in-house or stored on the battery
for later use at home. A marginal cost of 14.33 c/kWh occurs
when this condition is met.

On the Sunny day, however, solar surplus amount is high
and we see the marginal costs dropping to 4.33 c/kWh for
Miami and even negative [(-)4.93] c/kWh for Bethesda dur-
ing the day time hours. The household in Miami installs
higher level of BESS and as such has more ability to store
energy to lower the impact on marginal cost. These low-
price events essentially reflect that there is excess solar, espe-
cially associated with the High solar profile, that cannot be
consumed in-house or be stored. If the household demand
increases during these hours, it would cost only 4.33 c/kWh
in Miami and would even reduce household electricity cost
by 4.93 c/kWh in Bethesda. A reduction in cost may occur
because every unit of solar consumed in-house also allows
the household to earn extra revenue from selling solar power
back to the grid. This is equivalent to the negative price
phenomena observed in wholesale electricity markets and
holds interesting implications for household level pricing to
shape distributed PV/BESS investment decisions.

Figure 10 shows marginal costs or duals associated with
the demand-supply balance for the Stormy day (Equation 5).

FIGURE 10. Marginal cost of supply for the Stormy day in Bethesda and
Miami as it varies with the probability of power outage - Base Case.

These prices are an order of magnitude higher than that for
theNormal day and are in several dollars per kWh. These con-
tingency prices are associated with outages and reflect addi-
tional BESS/PV investments that are needed to cover for such
events during high demand periods. For instance, a combina-
tion of high demand (1.52 kW) and significant probability of
outage occurs at 2 PM that shows the expected contingency
price for this hour (i.e., average across all 1000 samples) to
peak at $5.31/kWh. Similarly, Miami has a high probability
and demand combination that occurs at 7 PM that leads to
a stronger price peak of $6.90/kWh. These prices are high
because the incremental investment needed for hardening is
ultimately associated with few extreme events. For instance,
if 1 kWh of additional BESS that costs $34 pa (in annualized
terms) is needed to cover for 4-8 hours of outage events in
a year, the levelized cost of this investment would be in the
range of $4.2-8.5/kWh. It should be noted however that the
prices in Figure 10 are still significantly lower than that for a
diesel option that range from $8.3-27.5/kWh for Miami.

Figure 11 shows the daily average prices for Miami for
the ‘‘All Solar Profile (Base Case)’’ for individual samples.
It reveals that for approximately half of the samples (of
Stormy day), daily average prices are low at 16.5 c/kWh
which is the BESS efficiency-adjusted grid supply cost. How-
ever, the other half of samples exhibits very high prices rising
up to $12.55/kWh.

In addition to the physical investment decisions that the
model produces, the marginal cost information elicited from
the model can also be a useful guide for devising innovative
pricing schemes for customers to adopt the right mix and level
of investments needed. As the penetration of rooftop PV with
BESS increases over the coming years throughout the world,
consumers and utilities both would need to consider such
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FIGURE 11. Cumulative distribution of marginal supply costs for all
1000 samples in Miami– Base Case.

innovative pricing schemes to make the right sizing decisions
and buy/sell power from/to the grid. These prices may also be
useful comparators to decide if hardening should be done at
an individual customer level or at a greater scale at the grid
level. While spot prices may need to increase considerably in
high-risk areas to justify investments in additional PV/BESS
– the alternative to harden the entire distribution system may
well prove to be even more expensive as the discussion for
Puerto Rico [27] suggests.

V. CONCLUDING REMARKS
The rapidly falling costs of PV and BESS provide sufficient
motivation to study their applications in households includ-
ing their competitiveness against fossil fuel-based back-up
generation for adding resilience. Absent such considerations,
behind-the-meter residential BESS are still relatively expen-
sive [18], [26] compared to other applications [40]. System-
level hardening strategies to address power system resilience
are well documented and there is a rich and growing liter-
ature on the topic. However, there is relatively less cover-
age of customer-level resilience outside of traditional fossil
fuel generators [33], [37]. The proposed model attempts to
fill this gap in the existing literature and uses a stochastic
programming methodology that explicitly captures resilience
issues as well as variability in solar PV output that in turn
determines the sizing of PV as well as BESS. We present
an analysis on how storm-related grid supply failures can
be minimized through an optimized mix of BESS/PV. The
modeling framework also provides a way to compare and
contrast PV/BESS options with more conventional options
such as diesel generators in terms of costs as well as resilience
of the household against weather driven outages.

These issues have been explored through a series of case
studies for two locations with varying frequency and dura-
tion of storm related outages. We have extended this analy-
sis further by observing the effect of solar resource profile
variations, i.e., inter-annual variability, on PV/BESS sizing
decisions. The shadow prices of a household level supply
model are also studied as these can provide insights into
the variability of marginal cost of supply that are useful in

shaping tariff structure and incremental costs for hardening
infrastructure at the household level.

We illustrate these key findings through an application
of the model for two case studies in Bethesda (Mary-
land) that has relatively low risk exposure to storms, and
Miami (Florida) that has much a greater exposure to storms
and hurricanes. Our analysis shows that:
• Changes in storm risk exposure can have significant
impacts on sizing decisions, but PV/BESS in both
Bethesda and Miami remain the least-cost solution for
resilience and 20%-27% cheaper than a diesel-based
solution;

• In fact, if PV/BESS options are eliminated to force a
diesel based solution in a low-risk area like Bethesda,
the imputed cost of diesel generation works out on aver-
age at $96.52/kWh making it an extremely expensive
resource that should be avoided;

• Additional volume of PV and BESS are needed exclu-
sively for resilience purposes. Specifically, additional
BESS volume needed for a high-risk area like Miami is
three times that of Bethesda, albeit it still is significantly
cheaper than diesel;

• Additional PV and BESS for resilience can add $79 to
the expected annual electricity supply cost for Bethesda,
compared to $208 in Miami. This is, however, impor-
tant because absent these additional investments, critical
load cannot be met even in Bethesda that has low risk
exposure representative of an average US household;
and

• Finally, the peak marginal cost of supply associated
with storm related contingencies can be very high, e.g.,
$5.31/kWh for Bethesda and $6.90/kWh for Miami at
their peak when high demand and high storm risk con-
ditions coincide. This is inevitable because the expected
unserved energy even for a high-risk area like Miami is
relatively small for which the incremental investments
need to be recovered. These prices can be useful in
comparing measures for system level vis-à-vis customer
end resilience.

These findings support the need for a stochastic optimiza-
tion framework to integrate resilience considerations. These
also demonstrate how PV and BESS can already be a more
economic solution than diesel. As we have noted at the outset,
the analytical construct adopted here can be extended and
generalized to cover other sources of risk and additional
geographies. The scope of analysis can also extend beyond
households to include mini-grids and systemwide analyses.
The proposed model can fill in a niche area to enhance
the existing commercial and research grade tools used for
PV/BESS that do not consider resilience aspects.
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