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ABSTRACT A prerequisite for implementing precision strike is to keep the target locked within the seeker’s
field-of-view (FOV). To address this constraint, a novel impact angle control guidance law based on the
dynamic surface control and time-varying asymmetric Barrier Lyapunov Function is proposed. The FOV
constraint, in this article, is equally transformed to a time-varying asymmetric limitation on the missile-target
relative velocity perpendicular to the line-of-sight (LOS). Under the proposed guidance law, the velocity
component is prevented from overstepping its limitation and eventually approaches zero, thus satisfying
the homing requirement and the FOV constraint in an integrated manner. Compared to previous studies,
the proposed guidance law does not require the target information and is applicable against moving targets.
Also, the proposed guidance law does not use any switching logic, and consequently the synthesized
guidance command is free from abrupt-jumping phenomenon. Numerical simulations and performance
comparison fully demonstrates the effectiveness and superiority of the proposed guidance law.

INDEX TERMS Barrier Lyapunov function, FOV constraint, impact angle control, dynamic surface control.

I. INTRODUCTION
Imposing desired terminal engagement geometries is increas-
ingly required by advanced guidance laws in the one or a com-
bination of the following applications: exploiting the weak
points of the target, increasing the warhead effectiveness,
avoiding directional defense mechanisms, adjusting the time
of arrival, reducing the collateral damage, etc [1]. The impact
angle control guidance law that is able to shape the missile
trajectory without decreasing the miss distance value has
become an important research focus.

There are quite a number of studies on impact angle con-
trol in the literature. Based on the proportional navigation
(PN), shaping the trajectory and consequently the impact
geometry were achieved in an early work by adding a time-
varying bias to PN commands [2]. In [3]–[5], the two-phase
guidance schemes with impact angle constraint were pro-
posed successively. The two-phase guidance scheme sug-
gested in [3] used a lower navigation gain to generate the
orientation guidance command in the first stage, followed by
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a conventional second stage that used a higher navigation to
impose the desired impact angle. In [4], this guidance scheme
was further extended to the case of moving targets. Com-
bining biased PN and pure PN, the two-phase guidance law
developed in [5] involved continuous integration of a constant
bias for the initial phase and its subsequent removal after
the integral reaches a certain value calculated from initial
engagement conditions and desired impact angle. Without
using any switching logic or bias term, a novel nonswitch-
ing guidance law that had a similar structure to the con-
ventional PN was recently proposed in [6], whose guidance
command was expressed as a function of line-of-sight (LOS)
angle and its angular rate to achieve desired impact angles
against a stationary target. Apart from PN-based guidance
law, the optimal control theory was also extensively applied
to address the impact angle control problem. Most of existing
optimal impact angle control guidance laws are similar in
their structures, but change the cost function to achieve a
specific guidance purpose, such asminimizing overall control
effort (quadratic cost function) [7], alleviating sensitivity to
initial heading error (polynomial/sinusoidal weighting func-
tion [8], [9]), shaping the trajectory and acceleration profiles
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(Gaussian weighting function) [10], enhancing robustness to
external disturbances or uncertainties (power weighing func-
tion) [11], and distributing acceleration demand against the
loss of aerodynamic maneuverability (exponential weighting
function) [12]. Although such a great number of optimal
impact angle control guidance laws have been proposed, how
to understand and analyze the nature of these guidance laws
to facilitate evaluating their reliability and predicting their
performance in practical applications is still unclear. Until
recently, Lee and Seo focused on this problem and corrected
previous inaccurate interpretations to reunderstand the char-
acteristics of optimal guidance laws, thereby providing a
new guideline for selecting appropriate gain that reflects the
physical meaning [13].

Independent of various guidance objectives, all missiles are
subject to physical constraints. Imposing a terminal impact
angle always makes the missile trajectory highly curved and
is easily prone to losing the target from themaximum seeker’s
field-of-view (FOV), evenmission failure. Although handling
the FOV constraint is of great important and urgent practical
need, it is rarely considered in the existing study of impact
angle control.

The studies focusing on the FOV constraint mainly have
their foundation within the framework of the optimal con-
trol theory. The first investigation in this direction was
completed by Xin et al. [14], wherein the θ − D nonlin-
ear control approach was used to address the FOV con-
straint and a closed-form optimal guidance lawwas designed.
In [15], Park et al. proposed an optimal guidance law based
on optimal control theory with state inequality constraint, and
further improved it in [16] to redistribute the control energy
along the flight trajectory, thereby maximizing the warhead
effect. Assuming the optimal guidance law as a polynomial
function of time-to-go, Lee et al. proposed to determine the
coefficients of the guidance command based on theworst case
to guarantee the FOV constraint not to be violated in [17].
To address the FOV constraint, a varying coefficient of
weighted optimal control guidance lawwas recently proposed
in [18], whose changeable weighting coefficients provided
an additional degree of freedom to shape the missile tra-
jectory while maintaining the lock-on condition. Also, there
are other forms of impact angle guidance laws developed
to address the FOV constraint, although they do not claim
optimality. A good example is the PN guidance law that
is enhanced by switching navigation gain/bias term logic.
Generally, the early studies in this direction selected the nav-
igation gain as N = 1 to constrain the maximum look angle
at the first phase and N ≥ 2 to achieve the desired impact
angle at the second phase [19], [20]. To be more precisely,
the values of navigation gains at midcourse and terminal
stages were calculated by a numerical algorithm proposed by
Tekin and Erer in [1]. Moreover, Ratnoo discussed the choice
of navigation gains in [21] to achieve all possible impact
angles without violating the FOV constraint. As for the biased
PN guidance law, its pioneering examples were those of
Park et al., wherein a bias-shaping addition were added to the

classical PN guidance command to intercept stationary [22]
and moving [23] targets at a desired impact angle under the
FOV constraint.

A novel impact angle control guidance law considering
the FOV constraint is proposed in this article. The FOV
constraint, actually imposed on the body-LOS (BLOS) angle,
is equally transformed to a time-varying asymmetric limita-
tion on the component of missile-target relative velocity per-
pendicular to the missile-target LOS. Based on the dynamic
surface control and time-varying asymmetric Barrier Lya-
punov Function (BLF), this relative velocity component can
be forced to approach zero to meet the homing require-
ment while being prevented from overstepping its time-
varying asymmetric limitation to satisfy the FOV constraint.
Compared to previous studies, the linearization of the engage-
ment equations and the estimation of time-to-go, which are
always required by the optimal impact angle control guidance
law, is no longer need to be implemented. On the contrary,
a nonlinear engagement dynamics that considers the vari-
ation of the missile velocity, the evading maneuver of the
target, and the effect of the gravity is modeled and used
during the process of guidance design. Moreover, different
from modified PN guidance laws, the proposed guidance law
do not involve any switching logic and consequently gen-
erate smooth guidance command, thus avoiding the abrupt-
jumping phenomenon.

The remainder of this article is organized as follows.
Section II presents this guidance problem and introduces
some preliminaries for the base of subsequent guidance
design. The time-varying asymmetric BLF-based impact
angle control guidance law is presented in Section III in
detail, and also the guidance performance analysis is given.
To fully testify the performance of the proposed guidance law,
extensive numerical simulations and performance compari-
son for simplified and realistic missile models against both
stationary and moving target are carried out in Section IV.
The conclusion in Section V ends this article.

FIGURE 1. Two-dimensional homing scenario.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION
Consider a two-dimensional homing scenario shown in Fig. 1,
where a roll stabilized axisymmetric missile and a station-
ary/moving ground target are marked as M and T in the
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inertial coordinate system OXY , respectively. For the sake of
guidance law design, the missile and target are assumed to
be point masses, and dynamics of autopilot and actuator are
fast enough to be neglected. The corresponding engagement
dynamics is given by

Ṙ = VT cos(θT − λ)− VM cos(θM − λ) (1)

Rλ̇ = VT sin(θT − λ)− VM sin(θM − λ) (2)

θ̇M =
aM
VM

(3)

θ̇T = 0 (4)

where R denotes the missile-target relative distance, and λ
denotes the missile-target LOS angle. VM and VT denote
the missile velocity and target velocity, θM and θT denote
the flight-path angle of the missile and target, respectively.
κ denotes the missile leading angle, and aM denotes the
missile lateral acceleration normal to its velocity. All angles
are defined as positive in the counterclockwise direction.

To maintain the lock-on condition during the whole hom-
ing phase, the BLOS angle, which is defined as the angle
between the missile body axis and the missile-target LOS,
should always be confined within the FOV of the missile
seeker. Generally, the optical axis of the missile seeker is
aligned with the missile body axis, and thus the BLOS angle
can be regarded as the sum of the missile leading angle κ
and the angle of attack α in the longitudinal plane. Under the
assumption that the missile’s angle of attack is small enough
(this is a commonly-used assumption in previous studies),
the BLOS angle can be further approximated by the leading
angle. Thus, the FOV constraint is equivalently transformed
to |κ| < κmax, where κmax is a positive constant determined
by the FOV constraint.

Because the lead angle cannot be measured in practice,
it is difficult to directly limit the lead angle within a certain
range. Alternatively, this constraint on the leading angle can
be achieved by restricting the missile-target relative veloc-
ity to the neighborhood of the LOS. Therefore, define the
components of the missile-target relative velocity along and
perpendicular to the LOS as

VR = Ṙ (5)

Vλ = Rλ̇ (6)

Differentiating (6) and substituting (1)–(5) yields

V̇λ = −
VRVλ
R
− aM cos(θM − λ)+ d (7)

d = V̇T sin(θT − λ)− V̇M sin(θM − λ) (8)

where d denotes the lumped disturbance caused by unknown
target maneuver and the missile velocity change.

Note that the lumped disturbance d cannot be measured
precisely in practice. However, the maneuver capacities of the
missile and target are both bounded due to the physical limit,
it is thus reasonable to make the following assumption.
Assumption 1: During the homing phase, the disturbance

d is always bounded, namely |d | ≤ D, where D is a positive
constant.

Define two new variables as

kb1 = VT sin(θT − λ)− VM sin κmax (9)

kb2 = VT sin(θT − λ)+ VM sin κmax (10)

Generally, the missile has a great speed advantage over the
target, it follows that VT < VM sin κmax. Thus, we have

kb1 = VT sin(θT − λ)− VM sin κmax
≤ VT − VM sin κmax < 0 (11)

kb2 = VT sin(θT − λ)+ VM sin κmax
≥ −VT + VM sin κmax > 0 (12)

Without loss of any generality, the following assumption is
made.
Assumption 2: The lock-on condition at the begin of hom-

ing phase is satisfied, namely |κ(t0)| < κmax.
Then the following lemma is introduced to handle the FOV

constraint.
Lemma 1: Under Assumption 2, the FOV constraint will

never be violated if the inequality kb1 < Vλ < kb2 always
holds during the homing phase.

Proof: Supposing that Assumption 2 is satisfied,
the inequality kb1 < Vλ < kb2 can be rewritten by combining
(2), (6), (9), and (10) as

VT sin(θT − λ)− VM sin κmax < VT sin(θT − λ)

−VM sin(θM − λ) < VT sin(θT − λ)+ VM sin κmax (13)

namely

− sin κmax < sin κ < sin κmax (14)

that is |κ| < κmax, thus meeting the FOV constraint.
Given that the target velocity can hardly be measured

accurately in practice, the variables kb1 , kb2 , according to (2),
is rewritten as

kb1 = Rλ̇+ VM sin(θM − λ)− VM sin κmax (15)

kb2 = Rλ̇+ VM sin(θM − λ)+ VM sin κmax (16)

Remark 1: By Lemma 1, the FOV constraint on the lead-
ing angle κ is finally transformed to a time-varying asymmet-
ric limitation on the component of the missile-target relative
velocity perpendicular to the LOS Vλ. Besides, according
to the parallel approach method, a sufficient condition of a
precise attack is to point the missile velocity to the target.
That is, Vλ should be forced to approach zero for homing
requirement. Thus, both the homing requirement and the FOV
constraint boil down to one control variable Vλ, which greatly
simplifies the guidance law design.

Just as [25], [26], the impact angle in this study is defined
as the LOS angle at the impact time λd . Then the final
nonlinear guidance model is derived based on (6)–(7) as

λ̇ =
Vλ
R

V̇λ = −
VRVλ
R
− aM cos(θM − λ)+ d

(17)

185348 VOLUME 8, 2020



J. Tian et al.: Time-Varying Asymmetric BLF-Based Impact Angle Control Guidance Law With FOV Constraint

For this guidance model, the control objective is to design
the guidance law aM to guarantee that Vλ → 0 for the
homing requirement, λ → λd for the impact angle con-
straint, and kb1 < Vλ < kb2 always holds for the FOV
constraint.

B. PRELIMINARY
To handle the time-varying asymmetric limitation on Vλ,
according to [26], an asymmetric smooth saturation function
is introduced as

Tanh(x, k1, k2) =
ex − e−x

−
ex

k1
+

e−x

k2

(18)

where x ∈ R, k1 < 0 and k2 > 0 are two variables. The
graph of Tanh(x, k1, k2) with constant k1 and k2 is shown
in Fig. 2.

FIGURE 2. The graph of Tanh(x, k1, k2).

The function Tanh(x, k1, k2) has the following two proper-
ties, and their proof can be found in [26].
Property 1: The inequality −k2 < Tanh(x, k1, k2) < −k1

for ∀x ∈ R holds.
Property 2: The function x Tanh(x, k1, k2) is a positive

definite function.
Then several important lemmas are presented for the sake

of subsequent guidance law design.
Lemma 2: For any positive constants ka1 and kb1 , letZ1 :={
z1 ∈ R : −ka1 < z1 < kb1

}
⊂ R andN := Rl

×Z1 ⊂ Rl+1

be open sets. Consider the system

η̇ = h(t, η) (19)

where the system state η is split into free states ω and the
constrained state z1, namely η := [ω, z1]T ∈ N and h :=
R+ × N → Rl+1 is piecewise continuous in t and locally
Lipschitz in z, uniformly in t , on R+ × N . Suppose that
there exist functions U : Rl

→ R+ and V1 : Z1 → R+,
continuously differentiable and positive definite in their
respective domains, such that

V1(z1) → ∞ as z1→−ka1 or z1→ kb1 (20)

γ1(‖ω‖) ≤ U (ω) ≤ γ2(‖ω‖) (21)

where γ1 and γ2 are classK∞ functions. LetV (η) := V1(z1)+
U (ω), and z1(0) belongs to the set z1 ∈ (−ka1 , kb1 ). If the

inequality holds:

V̇ =
∂V
∂η

h ≤ 0 (22)

then z1(t) remains in the open set z1 ∈ (−ka1 , kb1 ) for ∀t ∈
[0,∞). The proof can be found in [27].
Remark 2: In Lemma 2, the function V1 that satisfies con-

dition (20) is called BLF, which prevents the constrained
system state from reaching its boundary. According to the
boundary character, a BLF could be symmetric or asymmetric
as shown in Fig. 3.

FIGURE 3. Symmetric (left) and asymmetric (right) BLF.

Lemma 3: For any positive constant k , if s in the interval
of |s| < k , s will satisfy the following inequality

s2

k2
≤ log

k2

k2 − s2
≤

s2

k2 − s2
(23)

where the equal sign holds if and only if s = 0. The proof is
given in Appendix.

III. TABLF-BASED GUIDANCE LAW DESIGN
A. DYNAMIC SURFACE CONTROLLER DESIGN
Noting that the guidance model (17) has a strict feedback
structure, the dynamic surface control technique is then
employed to design the guidance law.

Step 1: Considering the impact angle constraint, define the
sliding surface s1 for the system state λ as

s1 = λ− λd (24)

Define a quadratic Lyapunov function candidate for the
sliding surface s1 as

V1 =
1
2
s21 (25)

Differentiating V1 yields

V̇1 = s1ṡ1 = s1λ̇ = s1
Vλ
R

(26)

To make V̇1 negative definite, it is required that s1ṡ1 < 0.
Regarding Vλ as a virtual control input and considering
the time-varying asymmetric limitation kb1 < Vλ < kb2 ,
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the desired feedback control is designed based on the asym-
metric smooth saturation function as

Vλd = −Tanh(k1s1, ka1 , ka2 ) (27)

where design parameter k1 > 0. ka1 and ka2 denote the
maximum admissible boundaries of Vλd and satisfies

ka1 = kb1 + ε < 0 (28)

ka2 = kb2 − ε > 0 (29)

where ε is a small positive constant.
Remark 3: The introduction of Tanh(k1s1, ka1 , ka2 )

ensures that the time-varying asymmetric limitation kb1 <
Vλ < kb2 always holds according to Property 1, and s1ṡ1 < 0
is also satisfied on the basis of Property 2.
Remark 4: The saturation characteristic of Tanh(k1s1,

ka1 , ka2 ) allows the missile-target relative velocity to
approach the LOS at the maximum allowable turning rate
when the system state λ is far from the sliding surface s1,
thus making sliding surface s1 converge to zero as soon as
possible. Moreover, by choosing a larger design parameter
k1, the time for maintaining Vλ at the maximum allowable
boundary can be further extended to make the best use of
the available FOV of the seeker, which makes the missile
trajectory as curved as possible, thereby achieving a larger
impact angle.

To avoid the problem of ‘‘explosion of the complexity’’,
let Vλd pass through the following first-order filter with time
constant τ1

τ1V̇λc + Vλc = Vλd (30)

Define the tracking error of the first-order filter (30) as

µ1 = Vλc − Vλd (31)

Step 2: To track the virtual control input Vλc , define the
sliding surface s2 for the system state Vλ as

s2 = Vλ − Vλc (32)

Combining (26), (27), (31) and (32), the derivative of
quadratic Lyapunov function V1 (25) can be rewritten as

V̇1 = s1
Vλ
R

= s1
s2 + µ1 + Vλd

R

≤
s1s2
R
+

1
2
s21 +

µ2
1

2Rf
−
s1
R

Tanh(k1s1, ka1 , ka2 ) (33)

where Rf denote the final relative distance at the impact
time.

Differentiating s2 yields

ṡ2 = −
VRVλ
R
− aM cos(θM − λ)+ d − V̇λc (34)

Considering time-varying asymmetric limitation on Vλ,
according to [28], define a time-varying asymmetric BLF
(TABLF) for the sliding surface s2 as

V2 =
1− p
2

log
k2c1

k2c1 − s
2
2

+
p
2
log

k2c2
k2c2 − s

2
2

+
1
2γ

D̃2 (35)

where the time-varying upper and lower boundaries with
respect to s2 is defined as

kc1 = Vλc − kb1 > 0 (36)

kc2 = kb2 − Vλc > 0 (37)

The selecting function p(s2) is defined as

p(s2) =

{
1, 0 < s2 < kc2
0, −kc1 < s2 ≤ 0

(38)

and the adaptive estimation error D̃ is defined as

D̃ = D− D̂ (39)

where D̂ is the estimation of D, the unknown upper bound-
ary of the lumped disturbance d . The design parameter
γ > 0.

Note that for ∀s2 ∈
(
−kc1 , kc2

)
, V2 ≥ 0, and only if s2 = 0,

V2 = 0. Therefore, V2 is positive definite. Meanwhile, V̇2 is
continuous within each of the two intervals s2 ∈

(
−kc1 , 0

)
and s2 ∈

(
0, kc2

)
, respectively. Also, lims2→0+ dV2/ ds2 =

lims2→0− dV2/ ds2. It implies that V2 is continuously
differentiable. Thus, V2 is a valid Lyapunov Function
candidate.

Differentiating V2 yields, (40), as shown at the bottom of
the page.

Let

Θ =
1− p

k2c1 − s
2
2

+
p

k2c2 − s
2
2

> 0 (41)

and substituting (34) into the above equation yields

V̇2 = s2Θ
[
−
VRVλ
R
− aM cos(θM − λ)+ d − V̇λc

−

(
1− p

) k̇c1
kc1

s2 − p
k̇c2
kc2

s2

]
+

1
γ
D̃ ˙̃D (42)

V̇2 = s2
1− p

k2c1 − s
2
2

(
ṡ2 −

k̇c1
kc1

s2

)
+ s2

p

k2c2 − s
2
2

(
ṡ2 −

k̇c2
kc2

s2

)
+

1
γ
D̃ ˙̃D

= s2

(
1− p

k2c1 − s
2
2

+
p

k2c2 − s
2
2

)[
ṡ2 −

(
1− p

) k̇c1
kc1

s2 − p
k̇c2
kc2

s2

]
+

1
γ
D̃ ˙̃D (40)
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Then design the real control input command aMc as

aMc =
−1

cos(θM − λ)

[
VRVλ
R
+ V̇λc

−

(
k2 + k̄2

)
s2 − D̂ sgn(s2)

]
(43)

where the design parameters k2 > 0, l2 > 0, and time-varying
parameter k̄2 is

k̄2 =

√(
1− p

)( k̇c1
kc1

)2

+ p
(
k̇c2
kc2

)2

+ β (44)

where the design parameter β > 0.
The adaptive law is designed as

˙̂D = γΘ |s2| (45)

Substituting (43) into (42) yields

V̇2 = s2Θ
{[
k2 + k̄2 +

(
1− p

) k̇c1
kc1
+ p

k̇c2
kc2

]
s2

−D̂ sgn(s2)+ d
}
+

1
γ
D̃ ˙̃D (46)

Let

K2 = k̄2 +
(
1− p

) k̇c1
kc1

s2 + p
k̇c2
kc2

(47)

because β > 0, K2 > 0 always holds.
Substituting K2 into (46), V̇2 is further rewritten as

V̇2

= s2Θ
[
−

(
k2 + K2

)
s2 − D̂ sgn(s2)+ d

]
+

1
γ
D̃ ˙̃D

= −Θ
(
k2 + K2

)
s22 −Θ

(
D|s2| − ds2

)
+ΘD̃|s2| +

1
γ
D̃ ˙̃D

≤ −Θ
(
k2 + K2

)
s22 −Θ

(
D− |d |

)
|s2| + D̃

(
Θ|s2| +

1
γ

˙̃D
)

≤ −Θ
(
k2 + K2

)
s22 (48)

Note that the unknown derivatives of the time-varying
boundaries kc1 , kc2 are included in the control input com-
mand aMc . Therefore, let kc1 , kc2 pass through the following
first-order filter

τi+1k̇di + kdi = kci , i = 1, 2 (49)

where τ2, τ3 are the time constants of the first-order filters,
and the corresponding tracking error are

µi+1 = kdi − kci , i = 1, 2 (50)

Hereto, the proposed TABLF-based impact angle control
guidance law can be summarized as

s1 = λ− λd
kb1 = Rλ̇+ VM sin(θM − λ)− VM sin κmax
kb2 = Rλ̇+ VM sin(θM − λ)+ VM sin κmax
ka1 = kb1 + ε
ka2 = kb2 − ε
Vλd = −Tanh(k1s1, ka1 , ka2 )

V̇λc = −
Vλc
τ1
+
Vλd
τ1

s2 = Vλ − Vλc
kc1 = Vλc − kb1
kc2 = kb2 − Vλc

k̇di = −
kdi
τi+1
+

kci
τi+1

, i = 1, 2

p =

{
1, 0 < s2 < kc2
0, −kc1 < s2 ≤ 0

k̄2 =

√(
1− p

)( k̇d1
kc1

)2

+ p
(
k̇d2
kc2

)2

+ β

Θ =
1− p

k2c1 − s
2
2

+
p

k2c2 − s
2
2

˙̂D = γΘ|s2|

aMc =
−1

cos(θM − λ)

[
VRVλ
R
+ V̇λc −

(
k2 + k̄2

)
s2

− D̂ sgn(s2)
]

(51)

B. THE GUIDANCE PERFORMANCE ANALYSIS
The tracking error of the first-order filter (30) satisfies

µ̇1 = −
µ1

τ1
− V̇λd (52)

The tracking error of the first-order filter (49) satisfies

µ̇i+1 = −
µi+1

τi+1
− k̇ci , i = 1, 2 (53)

Generally, the derivative of virtual control input is
continuous and bounded [29]. Let

Λ=max

(
sup

t∈[t0,tf ]

∣∣V̇λd (t)∣∣ , sup
t∈[t0,tf ]

∣∣k̇c1 (t)∣∣ , sup
t∈[t0,tf ]

∣∣k̇c2 (t)∣∣
)
(54)

then the tracking error ui of the first-order filters (30) and (49)
further satisfy

µiµ̇i ≤ −
µ2
i

τi
+ |µi|Λ ≤ −

µ2
i

τi
+
µ2
i

2
+
Λ2

2
, i = 1, 2, 3

(55)

Define a quadratic Lyapunov function candidate for the
tracking error µi as

V3 =
1
2

3∑
i=1

µ2
i (56)
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According to (55), the derivative of V3 satisfies

V̇3 =
3∑
i=1

µiµ̇i ≤ −

3∑
i=1

µ2
i

τi
+

3∑
i=1

µ2
i

2
+

3Λ2

2
(57)

Define a Lyapunov function for the closed-loop system as

V = V1 + V2 + V3 (58)

Combining (33), (48) and (57), the derivative of the
closed-loop Lyapunov function satisfies

V̇ ≤ s21 +
s22
2Rf1
−Θ

(
k2 + K2

)
s22

−
s1
R

Tanh
(
k1s1, ka1 , ka2

)
−

(
1
τ1
−

1
2Rf
−

1
2

)
µ2
1

−

(
1
τ2
−

1
2

)
µ2
2 −

(
1
τ3
−

1
2

)
µ2
3 +

3Λ2

2
(59)

According to Property 2, s1 Tanh(k1s1, ka1 , ka2 ) ≥ 0, and
based on Lemma 3, the above equation is rewritten as

V̇ ≤ s21 +
s22
2Rf1
−

(
1
τ1
−

1
2Rf
−

1
2

)
µ2
1

− 2
(
k2 + K2

)(1− p
2

log
k2c1

k2c1 − s
2
2

+
p
2
log

k2c2
k2c2 − s

2
2

)
−

(
1
τ2
−

1
2

)
µ2
2 −

(
1
τ3
−

1
2

)
µ2
3 +

3Λ2

2
(60)

Choose design parameter k2 and the time constant τi to
satisfy the following inequalities

K ≤ 2
(
k2 + K2

)
K
2
≤

1
τ1
−

1
2Rf
−

1
2

K
2
≤

1
τ2
−

1
2

K
2
≤

1
τ3
−

1
2

(61)

where K > 0 is a constant.
Then the derivative of the closed-loop Lyapunov function

(60) is further revised as

V̇ ≤ −
K
2
s21 −

K
2

3∑
i=1

µ2
i

−K
(
1− p
2

log
k2c1

k2c1 − s
2
2

+
p
2
log

k2c2
k2c2 − s

2
2

+
1
2γ

D̃2
)

+

(
1+

K
2

)
s21 +

s22
2Rf
+

K
2γ

D̃2
+

3Λ2

2
(62)

Noting that the sliding surface s1 is defined as the deviation
between the LOS angle λ and the desired impact angle λd , this
deviation would not be greater than 180◦ in practice, namely
|s1| ≤ π , thus

1+ K
2

s21 ≤
1+ K

2
π2 (63)

Let Γ = max
(
kc1 (t), kc2 (t)

)
, according to the definition of

the TABLF V2, for ∀s2 ∈
(
−kc1 , kc2

)
(35), we have

s22
2Rf
≤
Γ 2

2Rf
(64)

According to the definition of the adaptive estimation error
D̃ (39) and the adaptive law (45), it follows that

˙̃D = −γΘ|s2| ≤ 0 (65)

which implies that adaptive estimation error function D̃(t) is
a non-increasing function. Assuming that D̂(t0), the initial
estimation of the unknown upper boundary D is zero, then
the adaptive estimation error D̃ satisfies∣∣∣D̃(t)∣∣∣ ≤ max

(
D̃(t0), D̃(tf )

)
= max

(
D,D− D̂(tf )

)
= 5 (66)

Let (
1+

K
2

)
π2
+
Γ 2

2Rf
+

K
2γ
52
+

3Λ2

2
= c (67)

then according to Lemma 3, equation (62) is finally
rewritten as

V̇ ≤ −KV + c (68)

Hereto, the guidance performance of the proposed TABLF-
based impact angle control guidance law can be guaranteed
based on the following Theorem.
Theorem 1: Supposing that Assumptions 1–2 are satisfied,

the guidance model (17) under the proposed TABLF-based
impact angle control guidance law (51) has the following
properties:

1) Both sliding surfaces s1, s2 are uniform ultimately
bounded and converge into the compact sets

|s1(t)| ≤
√
2 [ρ + V (0)]|s2(t)| ≤

√
2
Θ ′

[ρ + V (0)]

(69)

where ρ =
c
K
, Θ ′ =

1− p
k2c1
+

p
k2c2

.

2) For ∀t ≥ 0, the component of missile-target relative
velocity perpendicular to the LOS Vλ always satis-
fies the time-varying asymmetric limitation kb1 (t) <
Vλ(t) < kb2 (t) and eventually converges to zero.

3) All closed-loop signals are bounded.
Proof:

1) Let ρ =
c
K
, and direct integrating of the differential

inequality (68) yields

0 ≤ V (t) ≤ ρ + [V (0)− ρ] e−Kt ≤ ρ + V (0)

(70)

Let Θ ′ =
1− p
k2c1
+

p
k2c2

, and according to Lemma 3,

it follows that

Θ ′

2
s22 ≤

1− p
2

log
k2c1

k2c1 − s
2
2

+
p
2
log

k2c2
k2c2 − s

2
2

(71)
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Combining (25), (35), (56), (58) and (71) yields

1
2
s21 +

Θ ′

2
s22 +

1
2
µ2
≤ V1 + V2 + V3 = V (72)

then combining (70) and (72) yields

|s1(t)| ≤
√
2 [ρ + V (0)]|s2(t)| ≤

√
2
Θ ′

[ρ + V (0)]

2) It is known from (70) that the closed-loop Lyapunov
function V (t) is bounded. Assuming that there exists
some t = T such that Vλ(T ) = kb1 or Vλ(T ) = kb2 ,
the sliding surface s2 tends to approach its boundary,
namely s2 → −kc1 or s2 → kc2 . According to
(35), when s2 approach its boundary, V (T ) becomes
unbounded, which obviously contradicts the bounded-
ness of V (t). Therefore, the time-varying asymmetric
limitation kb1 (t) < Vλ(t) < kb2 (t) always holds for
∀t ≥ 0.
From (27) and (43), it is known that sliding surfaces
are both designed to converge to zeros. When s1 → 0,
Vλd → 0, and when s2 → 0, Vλ → Vλd , i.e.,
Vλ→ 0.

3) It is known from (70) that all closed-loop signals,
including the sliding surfaces si (i = 1, 2), and tracking
error of the first-order filter µi (i = 1, 2, 3), are all
bounded. �

IV. NUMERICAL SIMULATIONS
The performance of the proposed TABLF-based impact angle
control guidance law (referenced as TABLFGL hereinafter)
is fully testified by numerical simulations and performance
comparison in this section.

A. CONSTANT VELOCITY MISSILE MODEL
In this subsection, it is assumed that the missile has a constant
velocity of 340m/s and attack a ground target 8000m away.
The normal acceleration of the missile is constrained within
20g, where g = 9.8m/s2 is the acceleration of gravity.
For the proposed TABLFGL (51), its parameters used in the
following cases are listed in Table. 1.

TABLE 1. Parameters of the proposed guidance law.

1) CASE 1: ATTACKING A STATIONARY TARGET WITH
DIFFERENT IMPACT ANGLES
Under the constraint of leading angle κmax = 60◦, the missile
with initial flight path angle of 45◦ is assumed in this case
to attack a stationary target with different impact angles of
0◦, −30◦, −60◦, −90◦, −120◦, −150◦, −180◦. Under the
TABLFGL, it is observed from Fig. 4(a)–(c) that the mis-
sile can precisely attack the intended target with prescribed

TABLE 2. Final miss distances and impact angles of Case 1.

impact angles while satisfying the FOV constraint, and the
final missile distance and impact angles of all engagement
scenarios are listed in Table. 2. It is should be noted that
the desired impact angles of scenarios 0◦ and −180◦ is set
as −0.1◦ and −179.9◦, for fear of prematurely terminating
the simulation for the missile height is less than zero. Due
to the TABLF, the relative velocity perpendicular to the LOS
Vλ is prevented from overstepping its boundary kb1 as shown
in Fig. 4(d), which further ensures that the leading angle is
constrained within the given constraint of κmax = 60◦ as
depicted in Fig. 4(c). Moreover, Vλ and the normal accelera-
tion command aM , as shown in Fig. 4(e), are both forced to
eventually approaches zero, thereby guaranteeing a precise
attack and maximizing the warhead effect. Noting that the
intended target is stationary in this case, themissile flight path
angle is equal to the LOS angle at impact time according to
the following equation [23]

λ(tf ) = tan−1
(
VM sin θM (tf )− VT sin θT (tf )
VM cos θM (tf )− VT cos θT (tf )

)
(73)

which is in accord with Fig. 4(f). Fig. 4(g)–(l) show the curves
of the sliding surfaces s1, s2 and the tracking errors of the
first-order filters µ1, µ2, µ3, and the adaptive estimation
value D̂.

TABLE 3. Final miss distances and impact angles of Case 2.

2) CASE 2: ATTACKING A MOVING TARGET
WITH DIFFERENT FOV ANGLES
In this case, the missile with initial flight path angle of 25◦

is assumed to attack a non-maneuvering receding target with
desired impact angle of −90◦ in the presence of maximum
leading angle of 40◦, 50◦, 60◦, 70◦ and 80◦, respectively.
The velocity of moving target is as 30m/s. It is observed
from Fig. 5(a)–(c) that without violating the FOV con-
straint, the missile is also capable of precisely attacking the
intended target with desired impact angle. The final missile
distance and impact angles of all engagement scenarios are
listed in Table. 3. Noting that the intended target is moving,
the boundary of Vλ is not constant but time-varying accord-
ing to the definition kb1 = VT sin(θT − λ) − VM sin κmax.
In such case, Vλ is also restricted to not overstep-
ping this time-varying boundary and eventually forced to
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FIGURE 4. Simulation results of attacking a stationary target with different impact angles.

approach zero as shown in Fig. 5(d), thereby satisfying the
FOV constraint. It is to be noted that, according to

Vλ = VT sin(θT − λ)− VM sin(θM − λ)

= −VT sin λ− VM sin κ (74)

the leading angle is not equal to zero at impact time for the
velocity of the target is not zero, as depicted in Fig. 5(c). For
the same reason, it is observed from Fig. 5(f) that the missile
flight path angle is not equal to the LOS angle at impact time
yet, according to (73).
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FIGURE 5. Simulation results of attacking a moving target with different FOV angles.

B. VARYING VELOCITY MISSILE MODEL
This subsection considers a more realistic missile model,
which is borrowed from [30] as

ẋ = VM cos θM
ẏ = VM sin θM

V̇M =
T − D
m
− g sin θM

θ̇M =
aM − g cos θM

VM

(75)

where x, y denote the missile position with respect to the
inertial coordinate system. The mass m and the thrust T are
modeled as piecewise functions with respect to the time t as

m =


135− 14.53t, 0 ≤ t < 1.5
113.205− 3.31t, 1.5 ≤ t < 8.5
90.035, 8.5 ≤ t

(76)

T =


33000, 0 ≤ t < 1.5
7500, 1.5 ≤ t < 8.5
0, 8.5 ≤ t

(77)

The aerodynamic drag D is modeled as
D = D0 + Di
D0 = Cd0QS

Di =
Cdim

2a2M
QS

(78)

FIGURE 6. The configuration of BPNG.

where D0 and Di denote the zero-lift drag and induced drag,
respectively. Their coefficientsCd0 andCdi are approximately
modeled as piecewise functions with respect to the Mach
number Ma as

Cd0 =


0.02, Ma < 0.93
0.02+ 0.2 (Ma − 0.93) , Ma < 1.03
0.04+ 0.06 (Ma − 1.03) , Ma < 1.10
0.0442− 0.007 (Ma − 1.10) , Ma ≥ 1.10

(79)

Cdi =

{
0.2, Ma < 1.15
0.2+ 0.246 (Ma − 1.15) , Ma ≥ 1.15

(80)

where Q =
1
2
ρV 2

M is the dynamic pressure, S = 1 is the
reference area. The atmosphere density ρ below the height of
20000m is given by

ρ(y) = 1.15579− 1.058× 10−4y

+3.725× 10−9y2 − 6.0× 10−14y3 (81)
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FIGURE 7. The graph of correction function %(t).

FIGURE 8. Comparative simulation results of attacking a maneuvering approaching target.

The normal acceleration command of the proposed guid-
ance law is always saturated at initial phase, but the induced
drag of the realistic missile model (75) is proportional

to the square of normal acceleration. For fear of prema-
turely terminating the simulation caused by T � D
at the begin, the normal acceleration command (43) is
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modified as

a∗Mc
= %(t)aMc (82)

where %(t) is a correction function and its graph is shown
in Fig. 7

%(t) =

 1−
(
Tc − t
Tc

)ς
, t ≤ Tc

1, t > Tc
(83)

where ς is a positive constant.
This subsection compares the TABLFGL with a bias-

shaping proportional navigation guidance law (BPNG) [23],
which is summarized aMc = VM

(
N λ̇+ b

)
, where

b

=


b1 =

Bref
τ

e−
t
τ , for the initial homing phase

b2 = (1− N ) λ̇, if |κ(t)| ≥ κmax

b1=
Bref
τ

e−
t
τ , if |b1(t)|≤|b2(t)| until interception

(84)

where navigation gain N ≥ 2 (1+ VT /VM ) and design
parameter τ > 0. The desired integral value of bias satisfies

Bref = θM (tf )− θM (t0)

−N tan−1
(

VM sin θM (tf )
VM cos θM (tf )− VT cos θT

)
(85)

The configuration of BPNG is depicted in Fig. 6.
Under the proposed and comparative guidance laws,

themissile with initial velocity of 20m/s and initial flight path
angle of 30◦ is assumed to attack a maneuvering approaching
target 8000m away with the desired impact angle of −80◦.
The maximum leading angle of the missile is κmax = 45◦,
and the limit of missile normal acceleration is given by
80m/s2. The acceleration of the moving target with 30m/s
initial velocity is 3m/s2. Under the guidance parameter listed
in Table. 4, the simulation result is shown in Fig. 8.

TABLE 4. Parameters of TABLFGL and BPNG.

It is clear from Fig. 8(a) that both the thrust and mass
of missile model are discontinuous, thus leading to obvious
sharp corners in curves of missile velocity and normal accel-
eration as shown in Fig. 8(b)–(c). Also, it can be observed
from Fig. 8(c) that the normal acceleration commands of
TABLFGL and BPNG are both saturated for the maneuvering
movement of the approaching target. In addition, it is noticed
that the normal acceleration command of TABLFGL can
approach zero at impact time but the one under BPNG cannot,

FIGURE 9. Simulation results of BPNG with Bref calculated off-line.

which would cause the ricochet phenomenon due to nonzero
angle of attack. From Fig. 8(d)–(e), it is observed that both the
two guidance laws can steer the missile to the intended target
with a satisfactory miss distance of less than 0.5m, while sat-
isfying the FOV constraint. It is the flight path angle at impact
time that is defined as the desired impact angle for BPNG.
It is therefore concluded from Fig. 8(g)–(h) that the objective
of impact angle control for the two guidance laws are both
achieve, despite a larger error of the BPNG. It is worth noting
that the precise information required for calculating Bref (85)
is assumed to be available when implementing simulations.
If an average speed of about Mach 0.7 and initial target
velocity, according to Park [23], are used to compute Bref
off-line, there is an unacceptable impact angle error of up to
20◦ as shown in Fig. 9.

V. CONCLUSION
In this article, a novel impact angle control guidance law
against stationary and moving target is proposed to address
the problem of FOV constraint. The FOV constraint imposed
on the BLOS angle is transformed to a time-varying asym-
metric limitation of the relative velocity perpendicular to
the LOS between missile and target. Based on the dynamic
surface control and time-varying asymmetric BLF, this rela-
tive velocity under the proposed guidance law is prevented
from overstepping the time-varying asymmetric limitation
and eventually approach zero, thus satisfying the homing
requirement without violating the FOV constraint. The per-
formance of the proposed guidance law is fully demonstrated
by extensive numerical simulations and performance compar-
ison.

APPENDIX
PROOF OF LEMMA 3

Proof: Letting x =
s
k
, the aforementioned proposition

can be equally transformed to: for ∀ |x| < 1, the following
inequality holds

x2 ≤ log
1

1− x2
≤

x2

1− x2
(86)

where the equal sign holds if and only if x = 0.
Prove the inequality on the right side first.
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Define the function

f (x) = log
1

1− x2
−

x2

1− x2
(87)

Its derivative function is

f ′(x) = (1− x2)
2x

(1− x2)2

−
2x(1− x2)+ x2 · 2x

(1− x2)2
=
−2x3

(1− x2)2
(88)

When −1 < x < 0, f ′(x) > 0, f (x) is a increasing
function, and when 0 < x < 1, f ′(x) < 0, f (x) is a decreasing
function. When x = 0, f ′(x) = 0, f (x) takes the maximum
value in the domain (−1, 1), f (0) = 0. That is, for ∀ |x| < 1,
f (x) ≤ 0, namely

log
1

1− x2
≤

x2

1− x2
(89)

where the equal sign holds if and only if x = 0.
Then prove the inequality on the left side.
Define the function

f (x) = log
1

1− x2
− x2 (90)

Its derivative function is

f ′(x) = (1− x2)
2x

(1− x2)2
− 2x =

2x3

1− x2
(91)

When −1 < x < 0, f ′(x) < 0, f (x) is a decreasing
function, and when 0 < x < 1, f ′(x) > 0, f (x) is a increasing
function. When x = 0, f ′(x) = 0, f (x) takes the minimum
value in the domain (−1, 1), f (0) = 0. That is, for ∀ |x| < 1,
f (x) ≥ 0, namely

log
1

1− x2
≥ x2 (92)

where the equal sign holds if and only if x = 0.
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