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ABSTRACT The sheer growth of electricity demand and the rising number of electricity-hungry devices have
highlighted and elevated the need of addressing the demand response management problem in residential
smart grid systems. In this article, a novel contract-theoretic demand response management (DRM) frame-
work in residential smart grid systems is introduced based on the principles of labor economics. The resi-
dential households produce and consume electricity, acting as dynamic prosumers. Initially, the prosumers’
personal electricity generation and consumption characteristics are captured by introducing the concept of
prosumers’ types. Then, the prosumers’ and the electricity market’s profit is depicted in representative utility
functions. Based on the labor economics principles, Contract Theory is adopted to design the interactions
among the electricity market, which offers personalized rewards to the prosumers in order to buy electricity at
an announced price, and the prosumers, who offer their ‘‘effort’’ by paying for the purchased electricity. The
contract-theoretic DRM problem is formulated as a maximization problem of the electricity market’s utility,
while jointly guaranteeing the optimal satisfaction of the prosumers, under the scenarios of complete and
incomplete information from the electricity market’s perspective regarding knowing or not the prosumers’
types, respectively. The corresponding optimization problems are solved following a convex optimization
approach and the optimal contracts, i.e., rewards and efforts, are determined. Detailed numerical results
obtained via modeling and simulation, highlight the key operation features and superiority of the proposed
framework.

INDEX TERMS Smart grid systems, contract theory, demand response management, labor economics,
prosumers, electricity market.

I. INTRODUCTION
Smart grid systems have been introduced as an efficient
solution to the global energy crisis given their inherent char-
acteristics of communication, control, and optimization that
can conclude to the real-time balance among the power
supply and demand [1]. The Demand Response (DR) has
become a vital and critical component of the smart grid
systems, enabling the consumers to directly interact with the
electricity market by dynamically adapting their electricity
consumption based on the announced price and the supply
availability [2]. Two main types of demand response have
been proposed in the literature; (a) direct or price-based DR,
where the consumers directly adapt their electricity consump-
tion to the announced price and the utility company has
direct control on their consumption [3], and (b) indirect or
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incentive-based DR, where a dynamic pricing is offered to the
consumers as an incentive to voluntarily adapt their electricity
consumption [4].

With the evolution of the smart grid systems and towards
meeting the electricity demands, the utility companies exploit
the renewable energy resources as an alternative solution, due
to the lack of availability of fossil fuels [5]. Also, the con-
sumers are encouraged to install small wind turbine power
generation systems or rooftop solar photovoltaics to cover
partially or completely their electricity needs. Furthermore,
the electricity generation surplus from the residential power
generation systems is stored in rechargeable batteries (e.g.,
lithium-ion batteries and liquid electrolyte ‘‘flow batteries’’)
or in the electric vehicles (EVs). Both electricity storage
alternatives can charge at night when the price is low and the
supply is high, while sell back to the smart grid when the elec-
tricity demand is high [6]. Thus, the traditional consumers are
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transformed to prosumers, becoming a critical component in
the smart grid systems’ smooth operation.

A. RELATED WORK & MOTIVATION
The problem of Demand Response Management (DRM)
has been thoroughly studied in the literature by introduc-
ing distributed or centralized solutions and accounting or
not for the prosumers’ behavioral characteristics and pat-
terns of electricity consumption. In [7], a distributed Stack-
elberg game-theoretic approach is introduced among one
utility company and multiple consumers, where the first one
announces the electricity price and the latter ones adjust their
electricity consumption. This problem is extended in [8],
where a multiple utility companies and multiple consumers
smart grid system is considered. The consumers select the
utility company wherefrom they will purchase the electricity
by following a reinforcement learning approach and, then,
a two-stage game-theoretic framework is proposed to deter-
mine the optimal electricity price and consumption. In [9],
[10], the authors analyze the impact of the communication
unreliability among the electricity market (i.e., utility com-
panies) and the prosumers on the DRM performance and the
electricity price. Specifically, the authors formulate a joint
maximization problem of the DRM performance with respect
to the electricity consumption and price, and solve it by
leveraging the dual decomposition method.

The profit maximization problem of the utility compa-
nies is studied in [11] by formulating it as a finite-horizon
continuous-state Markov Decision Process (MDR) problem.
The provided solution is also shown that it alleviates the
supply-demand imbalance in the smart grid and decreases
the prosumers’ electricity bills. Towards tackling the high
computational complexity of the aforementioned problem,
the authors have extended the previous research work in [12].
Specifically, they propose a dual approximate approach that
transforms the MDP problem into a linear programming
problem that can be solved in a real-time manner. An intel-
ligent residential energy management system is introduced
in [13] aiming at the reduction of the prosumers’ electricity
bills, while guaranteeing the satisfaction of the electricity
demand constraints under various examined cases of the
household loads and renewable energy resources supply.
A smart load estimator based on a neural networks’ approach
is developed in [14] considering the ambient temperature,
the time of the day, the time of use price, and the peak demand
constraints imposed by the smart grid operator. Furthermore,
an auction-based approach is introduced in [15] among the
electric vehicles (EVs) that store electricity and the smart grid
electricity aggregator that buys the EVs’ electricity surplus.
The solution of the auction-based DRM problem determines
the optimal amount of electricity sold by each EV, as well
as the corresponding price.

Focusing on the prosumer-centric DRM solutions, a pri-
vacy preserving DRM framework is discussed in [16], where
a reinforcement learning approach is adopted to explore
the prosumers’ privacy protection behaviors and learn their

electricity consumption patterns. In [17], highly resolved
electricity consumption models are designed to estimate the
residential demand by quantifying the prosumers’ electricity
use behavior. Thus, the optimal schedule of the prosumers’
appliances is determined considering the time-varying elec-
tricity prices. Moreover, the prosumers’ behavior in terms
of consuming electricity has been further studied in [18]
towards introducing a pricing-based demand response model
for smart homes that consists of various types of house-
hold devices. In this research work, the DRM problem is
examined under different requirements regarding the user
satisfaction levels, which impose different constraints in
the corresponding formulated optimization problem. The
problem of improving the prosumers’ confidentiality, while
scheduling the electricity consumption of their personal
appliances, is studied in [19], where a mathematical frame-
work is introduced in order to simplify the operation of the
advanced metering infrastructure in terms of communication
requirements during the DRM process.

More recently, a blockchain-based decentralized DRM
framework is introduced in [20] in order to store and process
the data generated from the prosumers’ smart meters, and
exploit the blockchain environment to validate the requests
of electricity consumption, dynamic pricing, and electricity
transaction executions. Another prosumer-centric DRM solu-
tion is proposed in [21] by considering a multi-periodic smart
grid DRM problem characterized by shifted demand. The
authors consider two major types of players, i.e., prosumers
and electricity providers, and they analytically determine the
Nash Equilibria towardsmaintaining the viability of the smart
grid infrastructure over the examined time period. Moreover,
the authors in [22] have focused their study on the DRM
problem related to managing the energy consumption of the
lighting and air-conditioner systems, while jointly minimiz-
ing the users’ discomfort levels. The authors jointly consider
the various uncertain environmental factors, as well as the
prosumers’ uncertain psycho-economic factors and introduce
a kernel-based learning approach to determine the optimal
price and energy consumption.

Additionally, in [23], a distributed system-wide framework
is designed in order to dynamically adapt the system load
profile towards minimizing the prosumer’s payments, while
guaranteeing their comfort and privacy constraints. In [24],
a distributed prosumers’ utility maximization framework is
proposed, where the optimal prices and the demand schedules
are determined in order for each prosumer to maximize its
net benefit subject to various consumption and power flow
constraints. Amixed integer non-linear optimization problem
is formulated in [25] towards determining the scheduling of
the prosumers’ appliances, while considering the electricity
price and the penalty associated to peaks of electricity con-
sumption, and at the same time guaranteeing the prosumers’
comfort constraints. A non-cooperative game of incomplete
information among the prosumers is formulated in [26] and
a Bayesian Nash equilibrium solution is derived in order
to minimize the peak-to-average ratio within the smart grid
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system. In [27], a prosumers’ classification framework is
proposed to categorize the prosumers in two main types
based on their electricity consumption behavior, i.e., non-
green comfort seeking behavior and green incentive seeking
behavior.

B. CONTRIBUTIONS
Despite the efforts made in the previous works, in regards to
the demand response management problem, how to incorpo-
rate the prosumer’s personalized electricity consumption and
generation dynamic behavior within the smart grid systems
still remains to be an open issue. Moreover, to facilitate
the smooth interaction among the electricity market and the
prosumers, how to capture their economics-based relation-
ships towards both parties of competing interests concluding
to mutually acceptable decisions that jointly maximize their
profit is even challenging.

In this work, we strive to tackle these issues. In detail,
the design goal is to capture the prosumers’ personalized
characteristics via modeling their unique personalized types
within the smart grid system, depending on their electric-
ity generation capabilities, as well as their electricity con-
sumption needs, and represent their profit in appropriately
designed utility functions. Towards dealing with the demand
response management, a contract-theoretic approach is intro-
duced based on the principles of labor economics to study the
interactions of the electricity market and the prosumers. The
proposed contract-theoretic demand response management
approach jointly targets at the profit maximization both of
the prosumers and the electricity market. The latter novelty
is fundamental in the field of DRM problems dealing with
prosumers, as the existing research works mainly consider
the profit maximization of the electricity market. Contract
Theory provides the novelty of treating the prosumers in a
personalized manner in terms of their electricity generation
and consumption characteristics, and the corresponding price
that they are willing to pay in order to be incentivized to
participate in the demand response management process. The
main contributions of this research work that differentiate it
from the rest of the literature, are summarized below.

1) A contract-theoretic demand response management
approach is introduced that considers the unique elec-
tricity generation and consumption characteristics of
the prosumers in order to determine the optimal elec-
tricity consumption. Following the principles of labor
economics of Contract Theory, the electricity market
acts as an ‘‘employer’’, offering personalized rewards,
i.e., amount of electricity at a corresponding price,
to the prosumers. The prosumers act as ‘‘employees’’
offering as ‘‘effort’’ to the electricity market, the corre-
sponding amount of electricity at the announced price
that they arewilling to buy. By treating the prosumers in
a personalized manner, the electricity market can opti-
mize its profit by exploiting the prosumers’ purchasing
capacity in an optimal manner, while the prosumers

can also jointly optimize their profit by determining
the optimal amount of purchased electricity at the
announced price.

2) The contract-theoretic DRM problem is studied under
complete information, i.e., the electricity market is
aware of the prosumers personalized characteristics,
and incomplete information. The solution of the
contract-theoretic DRM optimization problem con-
cludes to the optimal contracts that consist of the elec-
tricity market’s offered optimal rewards to incentivize
the prosumers to buy electricity at an announced price
and the prosumers’ optimal amount of purchased elec-
tricity to optimize their profit considering their electric-
ity consumption and generation constraints.

3) A series of experiments are performed to evaluate the
performance of the overall contract-theoretic DRM
framework both in the cases of complete and incom-
plete information from the electricity market’s side,
in terms of electricity consumption, electricity mar-
ket’s and prosumers’ profit, and social welfare. The
results reveal that the contract-theoretic DRM frame-
work achieves only 36.3% reduction of the overall
smard grid system’s social welfare under the worst case
scenario of incomplete information compared to the
benchmarking use case of complete information. Also,
the impact of considering the prosumers’ personalized
characteristics in the DRM performance is studied via
a thorough comparative evaluation by examining dif-
ferent pricing policies from the electricity market’s
perspective. Furthermore, a detailed comparative eval-
uation with alternative DRM approaches demonstrates
our proposed framework’s superiority and benefits. The
results conclude that an average increase of the pro-
sumers’ profit by 42% is achieved due to their per-
sonalized treatment by the electricity market, while at
the same time the latter one increases its profit due to
the optimal exploitation of the prosumers’ purchasing
power.

C. OUTLINE
The rest of the paper is organized as follows. Section II-
A explains the system model, while the prosumers’ and
the electricity market’s profits within the demand response
management are captured through holistically designed util-
ity functions in Sections II-B and II-C, respectively. The
contract-theoretic DRM problem is studied under complete
information in Section III, and incomplete information in
Section IV. Simulation results are presented in Section V.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL
A. RESIDENTIAL SMART GRID SYSTEM OPERATION &
NOTATION
A residential smart grid system is considered consisting of
the electricity market, the advanced metering infrastructure,
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the load controller, the scheduling manager, the renewable
energy system, the storage system, and the number of appli-
ances, as presented in Fig. 1. The renewable energy system
can consist of rooftop solar photovoltaics or small wind
turbine power generation systems. The produced electricity
at the residential level is consumed to cover the prosumers’
needs, while the surplus is stored at the storage system. The
latter consists of rechargeable batteries, such as lithium-ion
batteries.

FIGURE 1. Residential Smart Grid System.

The residential smart grid system consists of N =

{1, . . . , n, . . . , |N |} prosumers and the time is divided into
equal time slots t, t ∈ T , where T = {1, . . . , t, . . . , |T |}.
Each prosumer n has a set of appliances An =

{1, 2, . . . , an, . . . , |An|}, where part of them have shiftable
electricity demands, e.g., washer, dryer, and some of them
essential demands, such as refrigerator, alarm system. The
operation schedule of each appliance an is denoted by San =
{s1an , s

2
an , . . . , s

t
an , . . . , s

|T |
an }, where s

t
an = 1, if the appliance

an operates at time slot t , and stan = 0, otherwise. Considering
that the appliance an consumes EONan when it operates during
the time slot t , then, the electricity consumption of the
prosumer n is derived as l tn =

∑
an∈An s

t
an · E

ON
an . Therefore,

the electricity demand vector of all the prosumers in time slot
t is given as follows.

L = [l t1, l
t
2, . . . , l

t
n, . . . , l

t
|N |], t ∈ T (1)

It is noted that lminn ≤ l tn ≤ lMaxn , where lminn represents
the prosumer’s total essential electricity demands, and lMaxn
captures the total electricity demand of the prosumer.

Furthermore, each prosumer can generate electricity
through its personal renewable energy resources. The renew-
able generation output of all the prosumers in time slot t is
denoted as follows.

G = [gt1, g
t
2, . . . , g

t
n, . . . , g

t
|N |], t ∈ T (2)

In the following analysis, the prosumer’s n overall elec-
tricity demand l tn and renewable generation output gtn are
considered to follow uniform distributions, and numerical
details are provided in Section V. Given the prosumer’s elec-
tricity demand and generation, the following two cases are
examined.
Case A: If gtn ≥ l tn that means that the prosumer generates

more electricity compared to its actual demand during time

slot t . Therefore, the prosumer can cover its own electricity
needs without entering the electricity market to buy electric-
ity. In the special sub-case that gtn > l tn, then the electricity
generation surplus of the prosumer, i.e., (gtn− l

t
n), is stored at

its residential storage system for future use. Thus, in the next
time slot, the available stored electricity is bt+1n = btn+ (gtn−
l tn), where b

t
n denotes the available electricity in the storage

system of the prosumer n in time slot t .
Case B: If gtn + bt−1n < l tn, then the prosumer needs

to purchase l tn − gtn − bt−1n amount of electricity from the
electricity market, as its generated and stored electricity are
not sufficient to cover its demand. In this case, the prosumer
enters the electricity market demanding l tn−g

t
n−b

t−1
n amount

of electricity and paying a corresponding price.
Let us normalize the electricity bought by each prosumer

n from the electricity market as follows.

d tn =
l tn − g

t
n − b

t−1
n

max
∀n∈N t

buy

{l tn − gtn − b
t−1
n }
∈ (0, 1], n ∈ N t

buy (3)

where N t
buy = {n ∈ N : gtn + bt−1n < l tn} ⊆ N is the set

of prosumers buying electricity from the electricity market in
time slot t .

Given the normalized electricity that is bought from the
prosumers that enter the electricity market, we define the type
of each prosumer n, n ∈ N t

buy, as follows.

τ tn =
d tn

|N t
buy|∑

n=1
d tn

∈ (0, 1], n ∈ N t
buy (4)

The physical meaning of the prosumer’s type is that it rep-
resents the normalized need of the prosumer to buy electricity
from the electricity market compared to the rest of the pro-
sumers that compete for the same resource (i.e., electricity)
during each time slot t . It is noted that the prosumers’ types
dynamically change per time slot considering their electricity
demands and generation characteristics and characterize each
prosumer in a unique and personalized manner. It is obvi-
ous that a prosumer who can support its personal electricity
demand without entering the electricity market (Case A) dur-
ing a time slot t has no type, and it does not compete with the
rest of the prosumers for the valuable resource of electricity.
In the rest of the analysis, we consider themost heterogeneous
and challenging scenario, where each prosumer has its own
personal type τ tn, thus, |N

t
buy| types of prosumers exist during

time slot t . Also, for notation convenience in the presentation,
we consider that a prosumer of higher type, i.e., τ t1 < τ t2 <

· · · < τ tn < · · · < τ t
|N t
buy|

, has a higher normalized request for

buying electricity from the electricity market, i.e., d t1 < d t2 <
· · · < d tn < · · · < d t

|N t
buy|

, as it is derived from Eq. 4.

B. PROSUMERS CONTRACT-THEORETIC UTILITY
FUNCTION
In the following sections, the principles of labor economics
are adopted following the corresponding Contract Theory to

VOLUME 8, 2020 184979



N. Irtija et al.: Contract-Theoretic DRM in Smart Grid Systems

drive the examined residential smart grid system to stable and
efficient operation points [28]. Specifically, Contract Theory
builds labor economics-based relationships among the actors
involved in the residential smart grid system, i.e., the electric-
itymarket and the prosumers, and incentivizes them to behave
in a beneficial manner for the overall system, by providing
appropriately designed contracts for both actors [29]. Based
on the contract-theoretic model, an employer offers person-
alized rewards to the employees towards incentivizing them
to demonstrate a beneficial behavior for the overall system,
while the employees offer their effort to the employer as an
exchange. The tuple of {reward, effort} creates a personalized
contract among the employer and each employee. If both par-
ties follow the optimal contracts, the overall system concludes
to a stable and efficient mode of operation. Contract Theory
has already been applied in several fields, such as vehicular
networks [30], optimal charging schemes of electric vehicles
in smart grid systems [31], federated learning in mobile net-
works [32], public safety systems [29], and cognitive radio
networks [33].

The rationale behind applying the principles of Con-
tract Theory, as well as the novelty of the proposed
contract-theoretic demand response management approach,
lies in the observation that treating the prosumers in a per-
sonalized manner can jointly improve the profit of the elec-
tricity market, as well as the prosumers’ profit. Specifically,
the contract-theoretic DRM approach enables the electricity
market to incentivize the prosumers to purchase an optimal
personalized amount of electricity at the announced price,
while exploiting their personal electricity generation and con-
sumption characteristics.

Within the examined residential smart grid system, the pro-
sumers act as ‘‘employees’’ offering their ‘‘effort’’ to the
electricity market. The latter acts as an ‘‘employer’’ offering
a personalized reward r tn = τ tn · q

t
n to the prosumer. The

physical meaning of this formulation is that the prosumer
by purchasing qtn normalized amount of electricity from the
electricity market, it will pay an amount of pt · qtn to the
electricity market, where pt ∈ (0, 1] is the unitless price
of the electricity unit. Thus, the electricity market will gain
profit from the prosumers’ purchase. On the other hand,
the electricity market should incentivize the prosumers to
buy electricity at the announced price pt during time slot
t . Thus, it offers a personalized reward r tn proportional to
their purchased electricity, while accounting for their type τ tn
within the smart grid system.

Following the above analysis, the personalized contract
that is established among the electricity market and each
prosumer is the tuple {r tn(q

t
n), q

t
n}. By receiving the reward

r tn(q
t
n), each prosumer evaluates it in a different manner given

the electricity demand (i.e., shiftable or essential) that it cov-
ers towards its personalized satisfaction. Thus, we define the
prosumer’s evaluation function etn(r

t
n) as a strictly increasing,

concave function with respect to the prosumer’s effort qtn ∈
(0, d tn] ⊆ (0, 1], with etn(r

t
n = 0) = 0. For demonstration

purposes and without loss of generality, in the following anal-

ysis we consider etn(r
t
n) =

√
r tn. It is noted that the adoption

of any other form of the evaluation function that respects the
aforementioned properties would not change the theoretical
analysis presented below, but the intermediate derivations.

The contract-theoretic utility of each prosumer represents
the prosumer’s pure personalized perceived satisfaction from
the obtained reward (first term of Eq. 5), while considering its
personalized cost by investing its effort via buying electricity
from the electricity market (second term of Eq. 5). The phys-
ical meaning of the first term of Eq. 5 is that each prosumer
interprets the received reward r tn(q

t
n) in a personalizedmanner

based on its type τ tn in order to determine its pure perceived
satisfaction. Thus, the greater the type of the prosumers
is, which means that the prosumer has greater electricity
demand (Eq. 4), the more satisfaction it perceives, as it is
enabled to cover more electricity needs. Thus, the prosumer’s
contract-theoretic utility function is defined as follows.

U t
n(q

t
n) = τ

t
ne
t
n(q

t
n)− p

tqtn (5)

It is noted that the prosumer’s utility function is unitless
to keep the holistic applicability of the proposed framework.
In a real-life application of the proposed theoretical frame-
work, the prosumers’ effort can be mapped to KWh and the
electricity market’s reward to monetary units (e.g., discount,
coupons).

C. ELECTRICITY MARKET UTILITY
The electricity market has partial or even no available infor-
mation regarding the prosumers’ types. Thus, by offering
appropriately designed rewards r tn,∀n ∈ N

t
buy to incentivize

the prosumers to buy electricity at the announced price pt ,
it aims to implicitly reveal their types and consequently
their electricity consumption and generation characteristics.
Therefore, the electricity market estimates the prosumers’

types with probability Pr tn, where
|N t
buy|∑

n=1
Pr tn = 1. Thus,

the electricity market’s utility accounting for the prosumers
that buy electricity is defined as follows.

U t
EM (qt) =

|N t
buy|∑

n=1

[Pr tn(p
t
· qtn − r

t
n(q

t
n))] (6)

where qt = (qt1, q
t
2, . . . , q

t
n, . . . q

t
|N t
buy|

) is the normalized

purchased electricity vector of the |N t
buy| prosumers that buy

electricity in time slot t . The physical meaning of Eq. 6
is that the first term denotes the electricity market’s rev-
enue, while the second term expresses its cost to provide the
rewards to the prosumers. Thus, Eq. 6 captures the electricity
market’s profit.

Furthermore, the overall social welfare of the examined
residential smart grid system is defined as follows.

SW t (qt) = U t
EM (qt)+

|N t
buy|∑

n=1

U t
n(q

t
n) (7)
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In the following two sections, the contract-theoretic
demand response management problem is examined under
the cases of complete and incomplete information of the
electricity market regarding the prosumers’ types. In both
cases, our goal is to determine the optimal contracts that will
jointly optimize the electricity market’s and the prosumers’
utilities and conclude to a stable and efficient operation point
of the residential smart grid system.

III. PROSUMERS’ CONTRACTS UNDER COMPLETE
INFORMATION
In this section, the ideal case where the electricity mar-
ket knows the prosumers types τ tn,∀n ∈ N t

buy is exam-
ined, mainly for benchmarking purposes. Given the avail-
able complete information of the prosumers’ types to the
electricity market, the latter knows the potential amount
of electricity that the prosumers are willing to buy, thus,
it can fully exploit the prosumers’ purchasing power. The
electricity market aims to maximize its utility, while guar-
anteeing that it will offer personalized rewards to the pro-
sumers, which will satisfy their individual rationality (IR)
and finally accept to purchase an amount of electricity that
will satisfy their demands. Therefore, the contract-theoretic
DRM problem under complete information among the elec-
tricity market and each prosumer can be formulated as
follows.

max
{r tn,qtn}∀n∈Ntbuy

[U t
EM (qtn) = pt · qtn − r

t
n(q

t
n)] (8a)

s.t. U t
n(q

t
n) = τ

t
ne
t
n(q

t
n)− p

tqtn ≥ 0 (IR) (8b)

The electricity market aims to maximize its profit, while
guaranteeing the minimum acceptable satisfaction for the
prosumers in order to purchase electricity. Thus, the pro-
sumers’ IR constraint in Eq. 8b can be reduced to an
equality.
Theorem 1: The optimal contract among the electricity

market and each prosumer n, n ∈ N t
buy under the complete

information scenario is {( τ
t
n
2 )

2,
τ tn

2

2pt }.
Proof: Based on the reduced IR constraint in Eq. 8b,

we have r tn(q
t
n) = ( p

t
·qtn
τ tn

)2. By substituting the r tn(q
t
n) =

( p
t
·qtn
τ tn

)2 in Eq. 8a, differentiating with respect to qtn, and

equating the outcome to zero, we have qtn =
τ tn

2

2pt , thus,

r tn = ( τ
t
n
2 )

2.
The physical meaning of the optimal contract {r tn, q

t
n} =

{( τ
t
n
2 )

2,
τ tn

2

2pt } is that the prosumers purchase electricity propor-
tionally to their demands and inverse proportionally to the
announced price by the electricity market. Also, the elec-
tricity market offers rewards aligned with each prosumer’s
personal needs to purchase electricity towards eventually
incentivizing it to perform the purchase at the announced
price pt .

IV. CONTRACT-THEORETIC DEMAND RESPONSE
MANAGEMENT UNDER INCOMPLETE INFORMATION
In this section, the general case of incomplete information
regarding the electricity market not knowing the prosumers’
types, thus, being unaware of the potential amount of electric-
ity that they are interested to buy, is examined. This scenario
is the most realistic one in a residential smart grid system,
where the electricity market aims at incentivizing the pro-
sumers to buy electricity at an announced price. Our goal is to
determine the optimal contract {r tn, q

t
n} among the electricity

market and each prosumer towardsmaximizing the electricity
market’s profit, while guaranteeing the optimal satisfaction
of the prosumers’ electricity demands. Each prosumer should
at least receive a positive utility, while purchasing electricity
from the electricity market, in order to be incentivized to
perform the purchase. This constraint captures the individual
rationality (IR) of each prosumer. Furthermore, each pro-
sumer aims at achieving the optimal utility that better captures
its own personal electricity consumption and generation char-
acteristics, by receiving a reward from the electricity market
to perform its purchase. This constraint captures the incentive
compatibility (IC) of each prosumer. The prosumers’ IR and
IC constraints are formally defined as follows.
Definition 1 (Individual Rationality (IR)): An optimal con-

tract {r tn, q
t
n} should guarantee a non-negative utility U t

n(q
t
n)

for each prosumer, i.e., U t
n(q

t
n) = τ

t
ne
t
n(q

t
n)− p

tqtn ≥ 0,∀n ∈
N t
buy.
Definition 2 (Incentive Compatibility (IC)): An optimal

contract {r tn, q
t
n} should be designed in a personalized man-

ner for each prosumer considering its personal electricity
consumption and generation characteristics captured via its
type τ tn, i.e., τ

t
ne
t
n(q

t
n) − ptqtn ≥ τ tne

t
n′ (q

t
n′ ) − ptqtn′ ,∀n, n

′
∈

N t
buy, n 6= n′.
Except for the IR and IC constraints that should hold true

in order to conclude to the optimal contracts, some additional
properties and conditions should be satisfied. The latter ones
are described in Propositions 1-3, as follows.
Proposition 1 (Fairness): An optimal contract {r tn, q

t
n}

should provide higher (or equal) reward to the prosumers
of higher (or the same) type, i.e., r tn > r tn′ ⇔ τ tn > τ tn′
(r tn = r tn′ ⇔ τ tn = τ

t
n′ ).

Proof: Both the sufficiency, i.e., τ tn > τ tn′ ⇒ r tn > r tn′ ,
and the necessity, i.e., r tn > r tn′ ⇒ τ tn > τ tn′ of the fair-
ness condition are shown. Towards proving the sufficiency,
we exploit the IC constraint. Thus, ∀n, n′ ∈ N t

buy, n 6= n′,
we have:

τ tne
t
n(r

t
n)− p

tqtn ≥ τ
t
ne
t
n′ (r

t
n′ )− p

tqtn′ (9)

τ tn′e
t
n′ (r

t
n′ )− p

tqtn′ ≥ τ
t
n′e

t
n(r

t
n)− p

tqtn (10)

We add Eq. 9 and Eq. 10, and we derive the the following
expression.

τ tne
t
n(r

t
n)+ τ

t
n′e

t
n′ (r

t
n′ ) ≥ τ

t
ne
t
n′ (r

t
n′ )+ τ

t
n′e

t
n(r

t
n) (11)

Thus, we have (τ tn−τ
t
n′ ) ·e

t
n(r

t
n) ≥ (τ tn−τ

t
n′ ) ·e

t
n′ (r

t
n′ ). Given

that τ tn > τ tn′ , we conclude that etn(r
t
n) > etn′ (r

t
n′ ). The pro-

sumers’ evaluation function is strictly increasing with respect
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to r tn and by having the same form for all the prosumers (i.e.,
etn = etn′ = e), we conclude that r tn > r tn′ .
Towards showing the necessity of the fairness condition,

we know that r tn > r tn′ , and the evaluation function is strictly
increasing, i.e., etn(r

t
n) − etn′ (r

t
n′ ) > 0. By exploiting Eq. 11,

we have the following expression: τ tn[e
t
n(r

t
n) − etn′ (r

t
n′ )] ≥

τ tn′ [e
t
n(r

t
n)− e

t
n′ (r

t
n′ )], thus, τ

t
n > τ tn′ . Finally, towards examin-

ing the special case of r tn = r tn′ ⇔ τ tn = τ
t
n′ , a similar analysis

can be followed.
The physical meaning of Proposition 1 is that a prosumer

of higher type, i.e., willing to buy more electricity from the
electricity market, should be rewarded with a higher reward
for fairness purposes.
Proposition 2 (Monotonicity): A prosumer will receive a

higher reward, i.e., r t1 < r t2 < · · · < r tn < · · · < r t
|N t
buy|

, if it

is characterized by higher type, i.e., τ t1 < τ t2 < · · · < τ tn <

· · · < τ t
|N t
buy|

, as it will purchase more electricity, i.e., qt1 <

qt2 < · · · < qtn < · · · < qt
|N t
buy|

.

Proof: The first statement, i.e., r t1 < r t2 < · · · < r tn <
· · · < r t

|N t
buy|
⇔ τ t1 < τ t2 < · · · < τ tn < · · · < τ t

|N t
buy|

, can

be derived from the proof of Proposition 1. Then, we have,
r t1 < r t2 < · · · < r tn < · · · < r t

|N t
buy|
⇔ τ t1q

t
1 < τ t2q

t
2 < · · · <

τ tnq
t
n < · · · < τ t

|N t
buy|
qt
|N t
buy|

and given that τ t1 < τ t2 < · · · <

τ tn < · · · < τ t
|N t
buy|

, we conclude that qt1 < qt2 < · · · < qtn <

· · · < qt
|N t
buy|

.

The physical meaning of Proposition 2 is that a prosumer of
higher type, receives a greater reward in order the electricity
market to exploit its full potential (i.e., purchasing power) to
purchase a greater amount of electricity.
Proposition 3 (Rationality): A prosumer of higher type,

i.e., τ t1 < τ t2 < · · · < τ tn < · · · < τ t
|N t
buy|

, will receive a

greater utility, i.e., U t
1 < U t

2 < · · · < U t
n < · · · < U t

|N t
buy|

.

Proof: Considering two indicative prosumers n, n′ ∈
N t
buy, n 6= n′, with τ tn > τ tn′ and based on the IC constraint,

we have τ tne
t
n(q

t
n)− p

tqtn ≥ τ
t
ne
t
n′ (q

t
n′ )− p

tqtn′
τ tn>τ

t
n′

⇐⇒U t
n(q

t
n) =

τ tne
t
n(q

t
n) − ptqtn > τ tn′e

t
n′ (q

t
n′ ) − ptqtn′ = U t

n′ (q
t
n′ ). Thus,

by generalizing this analysis for all the prosumers that pur-
chase electricity during the time slot t , we have τ t1 < τ t2 <

· · · < τ tn < · · · < τ t
|N t
buy|
⇔ U t

1 < U t
2 < · · · < U t

n < · · · <

U t
|N t
buy|

.

The physical meaning of Proposition 3 is that a prosumer
of higher type, who will eventually purchase more electricity
(Proposition 2), it will experience greater utility, i.e., satisfac-
tion, as it will cover more electricity needs.

The conditions and constraints of individual rationality,
incentive compatibility, fairness, monotonicity, and ratio-
nality should all hold true in order the prosumers to be
incentivized to participate in the demand response manage-
ment process, while strategically deciding the amount of
purchased electricity at the announced price by the electric-
ity market [28]. Thus, the contract-theoretic DRM problem

is formulated as a maximization problem of the electricity
market’s utility (Eq. 12a), while guaranteeing the prosumers’
constraints (Eq. 12b - Eq. 12d), as follows.

max
{r tn,qtn}∀n∈Ntbuy

U t
EM (qt) =

|N t
buy|∑

n=1

[Pr tn(p
t
· qtn − r

t
n(q

t
n))] (12a)

s.t. τ tne
t
n(q

t
n)− p

tqtn ≥ 0 (IR) (12b)

τ tne
t
n(q

t
n)− p

tqtn ≥ τ
t
ne
t
n′ (q

t
n′ )− p

tqtn′ ,

∀n 6= n′ ∈ N t
buy(IC) (12c)

0 ≤ r t1 < r t2 < · · · < r tn < · · · < r t
|N t
buy|

(12d)

In the following analysis, our goal is to reduce the con-
straints of the non-convex optimization problem (12a) -(12d),
in order to solve it in a tractable manner. Initially, we examine
the reduction of the IR constraint (12b). By considering the
findings of Proposition 2 and given the IC constraint, we have
τ tne

t
n(q

t
n) − ptqtn ≥ τ tne

t
n′ (q

t
n′ ) − ptqtn′ ≥ τ tne

t
1(q

t
1) − ptqt1.

However, we know that τ tn > τ t1, thus, we derive that
τ tne

t
n(q

t
n) − ptqtn ≥ τ tne

t
1(q

t
1) − ptqt1 ≥ τ t1e

t
1(q

t
1) − ptqt1.

Therefore, we observe that if τ t1e
t
1(q

t
1) − ptqt1 ≥ 0 holds

true, then the IR constraint will hold true for every prosumer
n ∈ N t

buy. Thus, the IR constraint in Eq. 12b can be reduced
to the constraint τ t1e

t
1(q

t
1) − ptqt1 = 0, considering that the

electricity market will try to exploit the maximum benefit
from the prosumers’ purchasing power.

Then, our goal is to reduce the IC constraints, as presented
in Eq. 12c. In the following, we use the terminology of
downward and upward IC constraints among the prosumers,
as follows: (1) n, n′, n′ ∈ {1, . . . , n − 1}: downward IC
constraints, (2) n, n′, n′ ∈ {n + 1, . . . , |N t

buy|}: upward IC
constraints, (3) n, n+1, n ∈ N t

buy: local upward IC constraint,
(4) n, n− 1, n ∈ N t

buy: local downward IC constraint.
Theorem 2: The local downward IC constraint equiva-

lently captures all the downward IC constraints.
Proof: The local downward IC constraints for three

prosumers, i.e., τ tn−1 < τ tn < τ tn+1, are written as follows.

τ tn+1e
t
n+1(r

t
n+1)− p

tqtn+1 ≥ τ
t
n+1e

t
n(r

t
n)− p

tqtn (13)

τ tne
t
n(r

t
n)− p

tqtn ≥ τ
t
ne
t
n−1(r

t
n−1)− p

tqtn−1 (14)

Furthermore, given that etn−1 = etn = etn+1 = e and the
evaluation function is strictly increasing, we have for r tn >
r tn−1 ⇔ etn(r

t
n) > etn−1(r

t
n−1) ⇔ etn(r

t
n) − etn−1(r

t
n−1) > 0.

Therefore, for τ tn+1 > τ tn ⇔ τ tn+1[e
t
n(r

t
n) − etn−1(r

t
n−1)] >

τ tn[e
t
n(r

t
n)− e

t
n−1(r

t
n−1)]≥

Eq. 14pt (qtn− q
t
n−1). Thus, by recur-

sively applying the previous outcome, we conclude that
τ tn+1e

t
n+1(r

t
n+1) − ptqtn+1 ≥ τ tn+1e

t
n−1(r

t
n−1) − ptqtn−1 ≥

τ tn+1e
t
n−2(r

t
n−2) − ptqtn−2 ≥ · · · ≥ τ tn+1e

t
1(r

t
1) − ptqt1.

Therefore, we derive the following equivalent constraint,

τ tne
t
n(r

t
n)− p

tqtn ≥ τ
t
ne
t
n−1(r

t
n−1)− p

tqtn−1 (15)

which means that the local downward IC constraint equiva-
lently captures all the downward IC constraints.
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Theorem 3: The local downward IC constraint equiva-
lently captures all the upward IC constraints.

Proof: Considering again three prosumers, i.e., τ tn−1 <
τ tn < τ tn+1, we write the IC constraints, as follows.

τ tn−1e
t
n−1(r

t
n−1)− p

tqtn−1 ≥ τ
t
n−1e

t
n(r

t
n)− p

tqtn (16)

τ tne
t
n(r

t
n)− p

tqtn ≥ τ
t
ne
t
n+1(r

t
n+1)− p

tqtn+1 (17)

Based on the fairness property, we have r tn > r tn′ ⇔
τ tn > τ tn′ . Therefore, by Eq. 17, we can derive the following
expression.

pt (qtn+1 − q
t
n) ≥ τ

t
n[e

t
n+1(r

t
n+1)− e

t
n(r

t
n)] ≥

τ tn>τ
t
n−1

τ tn−1[e
t
n+1(r

t
n+1)− e

t
n(r

t
n)] (18)

By Eq. 16 and Eq. 18, we have τ tn−1e
t
n−1(r

t
n−1) −

ptqtn−1 ≥ τ tn−1e
t
n(r

t
n) − ptqtn ≥ τ tn−1e

t
n+1(r

t
n+1) − ptqtn+1.

Therefore, we conclude that τ tn−1e
t
n−1(r

t
n−1) − ptqtn−1 ≥

τ tn−1e
t
n+1(r

t
n+1) − ptqtn+1, which means that if the IC con-

straint is satisfied for the prosumer with type τ tn−1, then,
all the upward IC constraints also hold true. By recur-
sively applying this outcome, we have τ tn−1e

t
n−1(r

t
n−1) −

ptqtn−1 ≥ τ tn−1e
t
n+1(r

t
n+1) − ptqtn+1 ≥ · · · ≥

τ tn−1e
t
|N t
buy|

(r t
|N t
buy|

) − ptqt
|N t
buy|

. Thus, we conclude that the

local downward IC constraint can capture all the upward IC
constraints.
By considering the above analysis and the outcomes of

Theorem 2 and 3, the contract-theoretic DRM problem under
incomplete information can be written as follows.

max
{r tn,qtn}∀n∈Ntbuy

U t
EM (qt) =

|N t
buy|∑

n=1

[Pr tn(p
t
· qtn − r

t
n(q

t
n))] (19a)

s.t. τ t1e
t
1(q

t
1)− p

tqt1 = 0 (19b)

τ tne
t
n(q

t
n)− p

tqtn = τ
t
ne
t
n−1(q

t
n−1)− p

tqtn−1 (19c)

0 ≤ r t1 < r t2 < · · · < r tn < · · · < r t
|N t
buy|

(19d)

The above optimization problem is a convex one, as both
the objective function and the constraints are convex. Thus,
it can be easily solved by using standard convex opti-
mization methods, in order to derive the optimal contracts
{r tn, q

t
n}∀n∈N t

buy
.

V. NUMERICAL RESULTS
In this section, a detailed numerical evaluation is presented to
study the performance and inherent attributes of the proposed
contract-theoretic demand response management framework
in smart grid systems. Initially, the pure framework’s oper-
ation under the complete and incomplete information sce-
narios is presented in Section V-A, while in Section V-B
the performance of the proposed framework under differ-
ent pricing policies, i.e., low, medium, high, is illustrated.
Section V-C demonstrates a thorough comparative evaluation
between the proposed contract-theoretic DRM framework
and a prosumers’ type-agnostic DRM approach, as well as the
benefits of our framework compared to various prosumers’

electricity purchasing strategies in the examined residential
smart grid system.

We consider an indicative residential smart grid system
consisting of |N | = 10 prosumers, who generate gtn KWh
amount of electricity per time slot t , uniformly distributed in
the interval [0, 16] KWh and their electricity consumption is
also uniformly distributed in the interval l tn ∈ [5, 25] KWh.
The initial storage capacity is bt=0n = 0 KWh,∀n ∈ N ,
the announced price is pt = 0.23 (unless otherwise stated)
and the probability of the prosumers’ types Pr tn follows a
uniform distribution. The proposed framework’s evaluation
was conducted in an ASUS laptop with AMD Ryzen 5,
2.1GHz Processor and 8Gb available RAM.

A. PURE FRAMEWORK OPERATION EVALUATION
In the following, we present the operational characteristics
and the performance of the proposed contract-theoretic DRM
framework under the scenarios of complete and incomplete
information. Fig. 2a presents the prosumers’ types τ t1 <

· · · < τ tn < · · · < τ|N t
buy|

in time slot t , where 10 prosumers
needed to purchase electricity from the electricity market,
and their corresponding normalized electricity demand d tn is
presented in Fig. 2b. The prosumers’ purchased normalized
electricity qtn and the prosumers’ personalized rewards r tn for
the complete and incomplete information scenarios, as they
have been determined by the optimal contacts solutions of the
optimization problems Eq. 8a-8b and Eq. 19a-19d, respec-
tively, are illustrated in Fig. 2c and Fig. 2d, respectively.
The results reveal that the prosumer of higher type receives
a higher reward (Fig. 2d), following the fairness property
(Proposition 1), and purchases more electricity (Fig. 2c),
following the monotonicity property (Proposition 2), thus,
achieving greater utility (Fig. 2e), based on the rationality
property (Proposition 3). Also, it is observed that in the case
that the electricity market knows the prosumers’ electric-
ity consumption and generation characteristics, i.e., types,
under the complete information scenario, it can fully exploit
their purchasing power. Thus, the prosumers are incentivized
with greater rewards (Fig. 2d) to purchase more electric-
ity (Fig. 2c). Furthermore, given that the electricity mar-
ket knows the prosumers’ types, it offers them the mini-
mum possible rewards based on their purchased electricity in
order to marginally satisfy their rationality constraints, thus,
U t
n = 0,∀n ∈ N t

buy (Fig. 2e).
Additionally, Fig. 2f illustrates that a prosumer of higher

type enjoys greater utility, as well as the contract that is
explicitly designed for its type concludes to the best achieved
utility. Furthermore, the electricity market’s cumulative util-
ity and the overall residential smart grid system’s cumu-
lative social welfare are presented in Fig. 2g and Fig. 2h,
respectively. The results reveal that better performance is
achieved under the complete information scenario, however,
the overall system’s social welfare is on average reduced by
36.3% under the incomplete information scenario, while this
value becomes even smaller for larger populations. The latter
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FIGURE 2. Pure operation evaluation of the contract-theoretic demand response management framework under complete and incomplete
information.

FIGURE 3. Users’ types and normalized electricity consumption for three
representative types of prosumers.

observation indicates that the proposed framework behaves
in an acceptable manner for realistic implementations with
complete lack of information regarding the prosumers’ char-
acteristics.

Following the previous analysis, we study the prosumers’
behavior over a period of |T | = 10 time slots. Three indica-
tive types of prosumers are selected: (a) Type A: the prosumer
generates a lot of electricity and has a low electricity demand;
(b) Type B: the prosumer has both medium electricity gen-
eration capability and electricity demand; and (c) Type C:
the prosumer generates a small amount of electricity, but its
electricity demand is high. Fig. 3a and Fig. 3b present the
types τ tn of the three examined prosumers, as well as the cor-
responding normalized purchased electricity qtn over the time.
The results reveal that the prosumers of Type A can cover

their own electricity demands by their generated electricity
without entering the electricity market, thus τ tn = 0 and
qtn = 0. Also, the prosumers of Type C have a greater
type compared to the prosumers of Type B (Fig. 3a), as they
have a greater electricity demand d tn given their electricity
consumption and generation characteristics, as they have
been described above, thus, they finally purchase more elec-
tricity from the electricity market (Fig. 3b) to cover their
needs.

B. PRICING POLICIES & DEMAND RESPONSE
MANAGEMENT
In this section, we examine the behavior and performance of
the proposed contract-theoretic DRM framework under the
incomplete information scenario considering three different
pricing policies: (a) Low-cost: the electricity market applies
a mild personalized pricing policy, i.e., ptn =

√
τ tn to each

prosumer; (b) Medium-cost: a personalized pricing policy is
announced, i.e., ptn = (τ tn)

1/3 which is more costly compared
to the low-cost policy; and (c) High-cost: a constant high price
is announced to all the prosumers, i.e., pt = 0.6. Fig. 4a-4c
present the prosumers’ utility, the electricity market’s utility,
and the overall residential smart grid system’s social welfare
as a function of the prosumer’s index for all the three exam-
ined pricing policies. The results reveal that the higher-cost
the pricing policy is, the less are the prosumers incentivized
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FIGURE 4. Pricing policies and demand response management.

FIGURE 5. Type dependent vs. type-agnostic demand response
management.

to buy electricity from the electricity market to cover their
electricity demands. The latter phenomenon results in low
values of achieved utility by the prosumers (Fig. 4a). Thus,
the electricity market makes less profit resulting in decreased
values of electricity market’s utility, as shown in Fig. 4b.
Therefore, for high-cost pricing policies, the social welfare
of the overall residential smart grid system remains low
(Fig. 4c), given that both the prosumers (Fig. 4a) and the
electricity market (Fig. 4b) become less satisfied.

C. COMPARATIVE EVALUATION
In this section, a detailed comparative evaluation is pre-
sented to reveal the drawbacks and benefits of the proposed
contract-theoretic DRM framework under the incomplete
information scenario. Initially, the benefits of treating the
prosumers in a personalized manner are presented. Thus,
we compare our framework, where the electricity market
offers personalized rewards r tn(q

t
n) = τ

t
n · q

t
n to the prosumers

based on their types, to a type-agnostic approach that offers a
reward proportional to their normalized purchased electricity,

i.e., r tn(q
t
n) =

|Ntbuy|∑
n=1

τ tn

|N t
buy|
· qtn.

Fig. 5a and Fig. 5b illustrate the prosumers’ and the elec-
tricity market’s utilities, respectively, as a function of the
prosumers’ index for the two examined comparative scenar-
ios. The results show that the prosumers benefit regarding
their achieved utility under our proposed contract-theoretic
framework by approximately 42% on average compared to
the type-agnostic framework due to the fact that the elec-
tricity market offers them personalized rewards to better

incentivize them to purchase electricity at the announced
price. On the other hand, the electricity market achieves
lower utility compared to the type-agnostic framework, as the
latter one tends to over-reward the prosumers without consid-
ering their personal electricity consumption and generation
characteristics.

An additional thorough comparative evaluation is per-
formed considering the different prosumers’ decision-making
regarding the purchased electricity. Specifically, we compare
our proposed contract-theoretic DRM framework to four dif-
ferent scenarios: (1)Minimum effort: the prosumers purchase
a minimum amount of normalized electricity, i.e., qtn =
min{qtn}∀n ·0.5; (2) Maximum effort: the prosumers purchase
a maximum amount of normalized electricity, i.e., qtn =
max{qtn}∀n ·1.5; (3) Random effort: the prosumers purchase a
random amount of normalized electricity, i.e., qtn ∈ (0, 1],
and (4) Guided effort: the prosumers purchase electricity
following the function 10−3 · exp(0.4 · qtn).
Fig. 6a - 6c illustrate the prosumers’ utility, the electric-

ity market’s cumulative utility, and the smart grid system’s
cumulative social welfare, respectively. The results reveal that
the proposed contract-theoretic framework explicitly benefits
the prosumers (Fig. 6a) given the personalized treatment
and incentivization that they experience, while the electricity
market’s profit is limited (Fig. 6b). Additionally, by focusing
on the system’s social welfare, we observe that the pro-
posed framework outperforms concluding to a stable and
efficient operation point for the overall examined smart grid
system.

Regarding themaximum andminimum electricity purchas-
ing scenarios, we observe that they demonstrate the worst
and the second best utility for the prosumers, respectively,
showing that the electricity cost becomes dominant in the
prosumers’ satisfaction. The exact opposite holds true for
the electricity market’s utility as it collects high and low
profit, respectively. Following this discussion, the prosumers’
great dissatisfaction in the case of purchasing their maxi-
mum needed amount of electricity concludes to the lowest
social welfare compared to all other scenarios. Furthermore,
the random and guided effort scenarios present an interme-
diate behavior compared to the other extreme scenarios by
adopting the principles of Contract Theory and behavioral
economics.
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FIGURE 6. Pricing policies and demand response management.

VI. CONCLUSION & FUTURE WORK
In this article, a contract-theoretic demand response man-
agement framework is introduced based on the principles of
labor economics to support the stable and efficient operation
of smart grid systems. The prosumers electricity consump-
tion and generation characteristics are captured to define
the prosumers’ types. The electricity market’s and the pro-
sumers’ utilities were designed to represent their profit from
participating in the DRM problem. The contract-theoretic
DRM problem is formulated as a maximization problem of
the electricity market’s profit, while jointly guaranteeing the
prosumers’ profit optimization accounting for their types.
The problem is solved under the cases of complete and incom-
plete information from the electricity market’s perspective
regarding knowing or not the prosumers’ types, respectively,
and the optimal contracts among both parties with compet-
ing interests are determined. The optimal contracts consist
of the amounts of electricity bought by the prosumers and
the corresponding rewards offered by the electricity mar-
ket to incentivize them. Detailed numerical results of the
pure proposed framework, as well as comparative ones, are
presented to show the drawbacks and benefits of the intro-
duced contract-theoretic DRM framework. Our current and
future work focuses on extending the proposed framework
to accommodate the prosumers behavioral characteristics.
Specifically, our goal is to study the prosumers risk-aware
decision-making in purchasing electricity under various price
fluctuations.
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