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ABSTRACT Machinery fault diagnosis tasks have been well addressed when sufficient and abundant data
are available. However, the data imbalance problem widely exists in real-world scenarios, which leads to the
performance deterioration of fault diagnosis markedly. To solve this problem, we present a novel imbalanced
fault diagnosis method based on the enhanced generative adversarial networks (GAN). By artificially
generating fake samples, the proposed method can mitigate the loss caused by the lack of real fault data.
Specifically, in order to improve the quality of generated samples, a new discriminator is designed using
spectrum normalization (SN) strategy and a two time-scale update rule (TTUR) method is used to stabilize
the training process of GAN. Then, an enhanced Wasserstein GAN with gradient penalty is developed to
generate high-quality synthetic samples for the fault samples set. Finally, a deep convolutional classifier is
constructed to carry out fault classification. The performance and effectiveness of the proposed method are
validated on the Case Western Reserve University bearing dataset and rolling bearing dataset acquired from
our laboratory. The simulation results show that the proposed method has a superior performance than other
methods for imbalanced fault diagnosis tasks.

INDEX TERMS Fault diagnosis, rolling bearing, generative adversarial networks, imbalanced data, convo-

lutional neural networks.

I. INTRODUCTION
As one of the most important components for rotating
machinery, rolling bearing is widely used in manufacturing
system, electric system, and other mechanical equipment.
Unfortunately, rolling bearing is subject to unexpected fail-
ures under complex operating conditions, which causes huge
economic loss and casualties in engineering practice [1], [2].
Therefore, it is of great significance to study rolling bearing
fault diagnosis to ensure the safety and reliability of facilities.
Traditional fault diagnosis algorithms can extract fault
features from raw vibrational signal to recognize fault
types. Feature extraction methods in the time and fre-
quency domains, such as wavelet transform [3], variational
mode decomposition [4], permutation entropy [5], have been
widely used to improve fault diagnosis performance in exist-
ing research. Besides, intelligent fault diagnosis methods
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have been successfully developed in recent years. Especially,
data-driven fault diagnosis approaches, such as deep learning
(DL) [6], have shown its superiority in the task of fault classi-
fication since the prior knowledge of automatic system is not
required. For DL-based methods, abundant balanced data are
the primary requirement to fully train deep neural networks.
However, in most time of industrial processes, rolling bearing
usually works in normal state and the fault data are hard to
collect. The amount of data acquired in normal state is far
more than that in faulty state. Therefore, there is an imbalance
between normal samples and fault samples, which leads to the
performance deterioration of fault diagnosis markedly.
Existing works on the data imbalance problem can be clas-
sified into two classes. The first class focuses on utilizing data
preprocessing techniques, such as over-sampling and under-
sampling, to balance the data distribution. The Synthetic
Minority Oversampling Technique (SMOTE) [7] is one of
the well-established methods to address the data imbalance
problem. Elreedy and Atiya [8] conducted a comprehensive
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analysis of SMOTE from both theory and experiment aspects.
The experiment results demonstrated that SMOTE was an
effective method to generate extra samples for the fault sam-
ples set. Douzas et al. [9] combined SMOTE with K-means
algorithm to avoid the generation of noise and overcome the
imbalance between and within classes. Maldonado et al. [10]
proposed an improved SMOTE over-sampling approach to
deal with the class-imbalanced problem for high-dimensional
datasets. Zhang et al. [11] proposed a novel synthetic over-
sampling approach called weighted minority over-sampling
(WMO) and set up a three-stage fault diagnosis model, which
achieved better results than that of SMOTE-based data learn-
ing methods. The second class focuses on improving the
traditional diagnosis algorithm structure or designing new
algorithms by means of the distribution characteristics of fault
data. Mao et al. [12] presented an online sequential prediction
method based on extreme learning machine, in which the
principal curve and granular division strategy were intro-
duced to conduct over-sampling and under-sampling pro-
cesses. A new support vector classifier integrating support
vector data description was proposed by Duan et al. [13]
to deal with fault classification problems for imbalanced
datasets. Jia et al. [14] addressed the imbalanced fault diag-
nosis problem from data distribution perspective. A deep
normalized convolutional neural network and a neuron acti-
vation maximization algorithm were used. Although these
methods have made improvements on the imbalanced fault
classification tasks, one of their drawbacks is hard to generate
high-quality data samples.

As a prospective deep learning tool, GAN was firstly intro-
duced by Good-fellow et al. [15] in 2014, which is composed
of two models: generator and discriminator, and has been
successfully applied in the fields of speech recognition [16],
image generation [17], sentiment analysis [18], etc. Since
GAN is able to learn the potential distribution of original sam-
ples, and then generate new samples which are different from
original samples but have similar distribution, it has attracted
attention of many scholars on fault diagnosis field in recent
years. Based on deep generative neural networks, Li ez al. [19]
proposed a cross-domain fault diagnosis method. When the
testing data under machine fault conditions were not available
for training, the proposed method can provide effective diag-
nosis results. Mao et al. [20] presented an imbalanced fault
diagnosis method based on GAN and Stacking Denoising
Auto Encoder (SDAE), in which GAN was used to generate
the synthetic minority samples and SDAE was regarded as
a classifier to diagnose fault types. By using Wasserstein
distance to construct Wasserstein generative adversarial net-
works (WGAN), Wang et al. [21] presented a deep learning
model to study the imbalanced fault diagnosis for rotating
machinery.

In order to enhance model stability and improve the
quality of generated samples, Gao et al. [22] proposed a
data augmentation approach based on Wasserstein genera-
tive adversarial network with gradient penalty (WGAN-GP),
which redesigned the loss function of WGAN [23].
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Shao et al. [24] employed one-dimensional convolutional
neural network (1D-CNN) to construct an auxiliary classifier
GAN (ACGAN) for data augmentation, where additional
label information was conducive to generating the corre-
sponding fault samples. Zhou et al. [25] designed a new
generator and discriminator using global optimization mech-
anism to generate discriminant fault samples. Li et al. [26]
utilized an adaptive training ratio strategy to enhance the
convergence and stability of GAN.

Through literature review, it can be found that the fault
diagnosis performance with imbalanced data can be improved
by utilizing GAN architecture to generate synthetic sam-
ples. However, due to the existing of model collapse and
vanishing gradient problem, GAN tends to generate some
meaningless samples in the training process, which leads to
the performance deterioration of fault diagnosis dramatically.
Thus, the quality of generated samples is the key factor
to improve the performance of imbalanced fault diagnosis.
Although the aforementioned works enhance the quality of
generated samples to some extent, the performance control
of GAN model is still a persisting challenge. To enhance
the stability of GAN model and obtain high-quality synthetic
samples, this paper proposes a novel fault diagnosis method
based on WGAN-GP method to address the data imbalance
problem. Utilizing GAN architecture, the proposed method
can learn the potential distribution of each health condition
and generate new synthetic samples to expand and balance
the fault samples set. Especially, with the goal of learning
the high-dimensional manifold of real distribution accurately,
anew discriminator is designed using spectrum normalization
strategy. Meanwhile, in order to make GAN have a better
convergence, a two time-scale update rule (TTUR) method
is used to stabilize the training process of WGAN-GP. Fur-
thermore, based on the intrinsic characteristics of time series,
the deep 1D-CNN classifier is constructed to extract hierar-
chical features and carry out fault classification. The main
contributions of this paper are summarized as follows.

1) Based on the intrinsic characteristics of time series, this
paper redesigns the structure of discriminator using spectrum
normalization strategy. The new discriminator has excel-
lent learning ability for multimodal data structure since the
spectrum normalization layer imposes a mild constraint on
network parameters. Moreover, compared with other normal-
ization layers, spectral normalization layers are computation-
ally light and easy to incorporate into WGAN-GP.

2) To make the generator have low-rank perturbations
during the training process, this paper takes advantage of a
two time-scale update rule to enhance the training stability
of WGAN-GP. Compared with the equal time-scale rule,
TTUR can prevent the discriminator from overtraining on
the current generator. Meanwhile, WGAN-GP trained with
TTUR converges to a locally stationary Nash equilibrium.

3) The proposed method can learn the data manifold of
fault samples set with more stable process and generate sam-
ples with higher quality. The high-quality generated samples
can be used to train fault classifier together with original
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samples to improve the generalization ability of the diagnos-
tic model. This will promote the practical application of our
method in intelligent fault diagnosis under small sample size
conditions.

The rest of paper is organized as follows. Theoretical
background about convolutional neural networks, generative
adversarial networks, and Wasserstein GAN with gradient
penalty is introduced in Section II. Section III illustrates
the proposed fault diagnosis method in detail. Experimental
results and analysis are given in Section I'V. The final section
concludes this paper with some discussions on the future
work.

Il. THEORETICAL BACKGROUND

A. CONVOLUTIONAL NEURAL NETWORKS

Based on hierarchical network structure, the CNN can extract
discriminative features from a great deal of redundant infor-
mation. In general, the CNN is composed of three main basic
units: convolutional layer, pooling layer and fully-connected
layer.

The input signal of CNN is denoted as X =[x, x2,
..., xr], where L denotes the length of raw vibrational signal.
When it is fed into the convolutional layer, the corresponding
convolutional operation can be conducted as follows:
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In order to reduce the size of convolution features and filter
redundant information, the output features in convolution
layer will be transferred to the pooling layer to conduct a pool
operation. The max pooling function is used to extract the
maximum value of the input features. Specifically, the max
pool process is described as:

O] )
pj - = max {ijW:(i+1)><W} @

After convolution and pooling operations, the input fea-
tures extracted by the previous layers are mapped into one-
dimensional vector through the fully-connected layer without
information loss. Finally, the health conditions of machines
can be recognized.

B. GENERATIVE ADVERSARIAL NETWORKS

Inspired by binomial zero-sum game theory, GAN consists
of two parts: the generator G and the discriminator D, which
are trained in opposition to each other. The generator aims to
generate realistic synthetic samples to fool the discriminator,
while the discriminator is used to distinguish real samples
from fake samples produced by the generator. The training
process can be briefly described as follows. Firstly, the gen-
erator G takes a random noise vector z as input and produces
synthetic samples Xg = G(z), then synthetic samples G(z)
and real samples X are mixed as the input of discriminator D,
which is trained to identify fake samples and real data by
outputting the true or false probability. During the training
process of GAN, the generator G and the discriminator D
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are trained alternately until reaching the Nash equilibrium.
Concretely, the objective function of GAN model is expressed
as:

mén mDax L(D, G)
= Ex~p,[logD(x)] + E;~p,[log(l — D(G(z)))]  (3)

By the adversarial training mechanism, GAN shows a pow-
erful ability to generate synthetic samples which are different
from original samples but with similar distribution. Under
ideal conditions, the process of zero-sum game can achieve
a global optimum at P, = P,, i.e., the data distributions of
generated samples and real samples are coincident.

C. WASSERSTEIN GAN WITH GRADIENT PENALTY
In practice, the training process of GAN is always
unstable or even difficult to train, mainly because the
Jensen-Shannon (JS) divergence is discontinuous, which
tends to cause the discriminator saturates and gradients vanish
in the training process. In order to solve the above-mentioned
problems effectively, Wasserstein GAN (WGAN) [23] is pro-
posed, which uses Wasserstein distance W(Pg,Pr) to mea-
sure the difference between generated distribution and real
distribution. Specifically, the Wasserstein distance W(Pg, Pr)
represents the minimum cost of mass to move the generative
distribution Pg to real distribution Pr. The objective function
of WGAN is expressed as:

min max Ex~p, [D(x)] — E-~pg[D(2)] “)

G DeRI

where R1 denotes the set of 1-Lipschitz functions.

The discriminator of WGAN essentially becomes a critic
of distance measurement rather than merely the classifier of
real and fake samples. Meanwhile, as the Wasserstein dis-
tance is continuous, WGAN has some inherent advantages,
i.e., the training process is more stable and the quality of
generated samples is higher.

To make the critic satisfy the Lipschitz constraint, WGAN
clips the weights in each layer of critic into the range [-c, c].
Unfortunately, this strategy not only restricts the ability of
the critic to fit complex data distribution, but may cause
the vanishing gradient problem. To improve the perfor-
mance of WGAN, Wasserstein GAN with gradient penalty
(WGAN-GP) was proposed [27], which used an alternative
method named gradient penalty to improve the value function
of WGAN. The objective function of WGAN-GP is repre-
sented as follows:

E~pg[D(@)] — Ex~p, [D(X)]+ x Ex~p: [(IVsD®)|l, — 1)°]
&)

Compared with the objective function of WGAN,
WGAN-GP adds a new gradient penalty term, in which
A is the penalty coefficient, and X represents the random
sampling along the straight lines between real distribution Pr
and generative distribution Pg. It is noticed that the gradient
penalty term makes all gradient norms of the critic be close
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FIGURE 1. The flow diagram of enhanced model.

to 1 rather than restrict network weights to a compact space.
In this way, the critic will get a more stable gradient and
a faster convergence process. As a result, WGAN-GP can
generate data samples with higher quality.

Ill. IMBALANCED FAULT DIAGNOSIS BASED ON THE

ENHANCED WGAN-GP
As described in II-C, WGAN-GP can effectively mine the

intrinsic distribution of a dataset using only a few samples.
Its generator is able to generate samples from random noise
of latent space, and its discriminator determines whether the
input samples come from the real data distribution or not.
Because the CNN is capable of fitting complex data distribu-
tion and approximating the density ratio of real distribution,
it can be used to build the generator and discriminator. The
training procedures of WGAN-GP are briefly presented as
follows.

1) The generator produces synthetic samples from random
noise of latent space.

2) Generated samples and real data samples are mixed
together and fed into the discriminator. Based on the equa-
tion (5), the discriminator is trained and its parameters are
updated.

3) After training the discriminator, the parameters of it are
frozen. During this step, only the parameters in generator
need to be updated, and the generator is trained to produce
more realistic synthetic samples.

4) Repeating the processes above until reaching the Nash
equilibrium.
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Based on WGAN-GP method, this paper proposes a novel
fault diagnosis method to solve the data imbalance problem.
The framework of the proposed method is shown in Fig. 1,
and the whole framework consists of three components:
sample preprocessing, the enhanced WGAN-GP method and
deep convolutional classifier. Each component is described in
detail as follows.

Sample Preprocessing: As rolling bearing generally oper-
ates under complex conditions, the vibration signal sampled
from transducer often contains complex and strong noise,
which greatly influences the extraction of signal feature.
To eliminate the interference of noise signal, this paper uses
fast Fourier transform to obtain the frequency spectrum of
raw vibration signal. Compared with the feature extracted
from original vibration signal, the frequency spectrum sam-
ples contain more significant features while eliminating noise
interference. Therefore, this paper selects frequency spectrum
samples as the inputs of GAN to generate synthetic samples.

Enhanced WGAN-GP: After sample preprocessing,
an enhanced model based on WGAN-GP method is pre-
sented to generate the spectrum synthetic samples whose
distribution is similar to original samples. In order to make
the training process much more stable and generate high-
quality samples, this paper applies two crucial strategies to
improve WGAN-GP method, i.e., a two time-scale update
rule (TTUR) [28] and spectral normalization [29]. The
enhanced model is described in III-A in detail. When the
enhanced model reaches the Nash equilibrium after fully
training, the generator is capable of generating realistic

185953



IEEE Access

H. Zhang et al.: Imbalanced Fault Diagnosis of Rolling Bearing Using Enhanced GAN

synthetic samples for the fault samples set, and the high-
quality generated samples are mixed with real samples to
expand and balance the training dataset.

Deep Convolutional Classifier: In the fault diagnosis stage,
the generated samples along with real samples are mixed
together and fed into fault classifier to build its diagnostic
ability. Then, the test dataset is inputted to fault classifier to
obtain diagnostic results. The detailed information about deep
convolutional classifier is described in III-C.

A. THE ENHANCED WGAN-GP METHOD

Although WGAN-GP employs gradient penalty mechanism
to avoid the occurrence of vanishing gradient problem, its
training process may suffer from some unexpected situations.
For instance, when the discriminator is saturated enough in
the initial training stages, the generator generates some mean-
ingless samples, which leads to the performance deterioration
of fault diagnosis. To further improve the quality of generated
samples and achieve better fault diagnosis performance, this
paper applies two crucial strategies to enhance the training
stability of WGAN-GP, including spectral normalization and
TTUR strategy.

For mechanical vibration signals, their data distribute in
a high-dimensional space, and the density ratio estimation
of discriminator is often inaccurate and unstable during the
training process. Once the discriminator cannot perfectly
distinguish the real distribution from generated distribution,
the generator will fail to learn the multimodal structure of
the real distribution. Even worse, when the derivative of the
discriminator with respect to the input turns out to be 0, the
training of the generator comes to complete stop. To avoid
the above-mentioned problems, many training tricks have
been developed to enhance the training stability of discrim-
inator, including batch normalization (BN), layer normal-
ization (LN), and so on. Ref. [29] has proved that spectral
normalization is a better weight normalization technique than
other regularization terms. Spectral normalization controls
the Lipschitz constant of discriminator function f by literally
constraining the spectrum norm of each layer, which makes
the discriminator not require intensive tuning while Lipschitz
constant is the only hyper-parameter. By contrast, other nor-
malization terms impose stronger constraint on weight matrix
W than intended, which restricts the ability of discriminator
to identify generated distribution and real distribution. There-
fore, this paper redesigns the network structure of discrimi-
nator using spectral normalization strategy.

Typically, the slow update rule corresponds to the generator
and the fast update rule is equivalent to the discriminator
during the adversarial training process. Once the generator
changes slowly enough, the discriminator will go into steady
region without capturing the discriminant features of original
samples. To ensure the generator has low-rank perturbations,
this paper applies TTUR strategy to adjust the training pro-
cess of WGAN-GP so that the generator does not affect
discriminator learning in an undesired way. With regard to
TTUR strategy, it uses different learning rates a(n) and b(n) to
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TABLE 1. The network structure of enhanced WGAN-GP method.

Layer Type Channel Kernal Stride
Upsample 1 -
Convolution 1 128
Upsample 2 -
Convolution 2 128
Upsample 3 -
Convolution 3 1
Fully- 1200
connected
Convolution 1 32 16
SN 1
Convolution 2
SN 2
Convolution 3
SN 3
Fully-
connected

Generator

o 1 0 1 00
—_— = =

—

Discriminator

._.
(@)}
[ I SR Y

R 00
—
(@)}

conduct adversarial training process. As shown in Ref. [28],
TTUR improves learning performance of WGAN-GP, mak-
ing it converge to the locally stationary Nash equilibrium.
Detailed network architecture about enhanced WGAN-GP
method is shown in Table 1.

B. ADVERSARIAL TRAINING FOR THE ENHANCED
WGAN-GP METHOD

The enhanced WGAN-GP method contains three main parts:
the generating process of generator, the training process
of discriminator and adversarial training mechanism. The
detailed process is described as follows.

Step I: the random noise {z?}” sampled from Gaus-
sian distribution Pg is input into the generator, where m
denotes the size of a mini-batch. Then, the synthetic samples
G(z(i)):”: | with the same size of real samples are generated.
Specifically, there are three upsampling layers and three
layers of 1D-convolution operation followed by a batch of
normalization respectively in generator.

Step 2: After synthetic samples generation, the real batch
samples {x(i)};”= | sampled from the real distribution along
with the synthetic samples are fed into the enhanced dis-
criminator for authenticity discrimination, which obtains the
predicted values dyeq and dfyge. In detail, the enhanced dis-
criminator consists of three 1D-CNN layers followed by
a spectral normalization layer respectively, three dropout
layers, a flatten layer and a fully-connected layer. Based on
the gradient penalty term, the discriminator is trained by max-
imizing the loss function, as shown in Eq. (5). Furthermore,
the updated values of the parameters of D are obtained by
implementing an Adam optimization method.

Step 3: After the discriminator is trained, the synthetic
samples G(z(i));.” | are input into the discriminator for authen-
ticity discrimination. It is noticed that the generator is opti-
mized by means of discriminator. The corresponding loss
function is denoted as:

1 « ,
Lg=——3 D(GE") (6)

i=1
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Similarly, the updated values of the parameters of G are
obtained by implementing an Adam optimization method,
while keeping the parameters in D constant.

Step 4: During the training process, the discriminator and
the generator are optimized alternatively until reaching the
Nash equilibrium. At the end of adversarial training process,
the generator is capable of generating synthetic samples that
are similar to real samples, and the discriminator cannot
distinguish the fake samples from the real samples any more.

C. IMPLEMENTATION OF FAULT DIAGNOSIS MODEL
Considering the intrinsic characteristics of time series and
the advantages of 1D-CNN in analyzing sensor signal, this
paper constructs the fault classifier based on deep 1D-CNN,
as shown in Fig. 1. Firstly, the enhanced WGAN-GP method
is used to generate the fault samples set, and the real samples
{xi,yi}ﬁ\’: | and the generated samples {G(z(i))}?i | are mixed
together to expand and balance the training set. Then, they
are fed together into 1D-CNN network to extract hierarchical
representations. Finally, a SoftMax classifier is utilized to
carry out fault classification and outputs specific labels.

IV. EXPERIMENTS VERIFICATION AND ANALYSIS

To verify the performance and effectiveness of the proposed
method, we first testify it on rolling bearing benchmark
dataset from Case Western Reserve University (CWRU) [30],
and then further validate it by using HVC bearing fault dataset
obtained from a fault simulation testbed of our laboratory.

A. COMPARISON METHODS AND EVALUATION METRICS
We first use the CNN model trained with the imbalanced
datasets as baseline comparison model, which determines the
lower bound of diagnosis accuracy. Then, SMOTE [7] and its
evolution ADASYN [31], well-established methods address-
ing the data imbalance problem, are compared with our
method. SMOTE creates new samples for each health condi-
tion by nearest neighbor algorithm. ADASYN improves the
performance of SMOTE by adding noise to the new samples,
which avoids linear correlation with the parent instances. The
new samples and the original samples are mixed together to
expand and balance the training dataset. After the training
dataset is expanded, the same classifier with CNN is built to
conduct fault classification tasks. Furthermore, we compare
two other generative models with our approach to evaluate the
incidence of GAN model, including WGAN and WGAN-GP.

To quantitatively analyze fault diagnosis performance of
the proposed method, we introduce several performance met-
rics tools: accuracy, recall and F1 score, which are widely
used in classification problems. As to our fault diagnosis
model, accuracy, recall, and F1 score can be calculated as
follows:

TP + TN

= — 7
accuracy N (7)
P
recall = —— (®)
TP + FN
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TABLE 2. Confusion matrix.

. . True label
Confusion matrix — -
Positive Negative
Predicted | Positive TP FP
label Negative FN N

FIGURE 2. The CWRU bearing testbed.

2 x precision x recall
Fl1=

precision + recall ©)
where N denotes the total number of samples, TP is the
number of the current fault sample S correctly classified as
S, FP is the number of other categories samples incorrectly
predicted to be sample S, and FN is the number of the current
fault sample S incorrectly classified as other categories. The
above three values can be obtained from the confusion matrix,
shown in Table 2.

B. CASE STUDY ON CWRU BEARING DATASET

1) DATA DESCRIPTION AND PREPROCESSING

As shown in Fig. 2, the test stand consists of a two-hp
motor, a torque transducer/encoder, a dynamometer, and con-
trol electronics. The test bearings support the motor shaft.
Subjected to electro-sparking, four different fault types are
introduced, including normal condition (NC), inner-race fault
(IF), outer-race fault (OF) and ball fault (BF). The vibration
signal is sampled by accelerometers attached to the housing
with magnetic bases. Besides, the vibration signal is collected
from the drive end of motor under 3 different loads (1 hp, 2 hp,
3 hp) with a sampling frequency of 48 kHz. By using electro-
discharge machining with fault diameters of 0.007 inches,
0.014 inches, 0.021 inches and 0.028 inches, the vibration
signal is processed.

Raw vibration signal is collected with a 48 kHz sampling
frequency for 10 seconds, containing 480000 data points.
A sample with 2400 points is successively selected from raw
vibration signal. Then, FFT is implemented on each signal
and the 2400 Fourier coefficients are obtained. Since the
coefficients are symmetric, the first 1200 coefficients are
used in each sample. The working conditions vary along with
three motor loads, corresponding to three datasets A/B/C.
Each dataset consists of ten classes, including nine kinds
of faults and a normal condition, and each class contains
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TABLE 3. Description of the datasets.

Dataset Working load (hp)  Numbers of samples Fault types Fault diameter (inches) Label
200/200/200 NC - 1
200/200/200 BF 0.007 2
200/200/200 IF 0.007 3
200/200/200 OF 0.007 4
200/200/200 BF 0.014 5
ABIC 1723 200/200/200 IF 0.014 6
200/200/200 OF 0.014 7
200/200/200 BF 0.021 8
200/200/200 IF 0.021 9
200/200/200 OF 0.021 10
TABLE 4. Parameters for enhanced WGAN-GP method. TABLE 5. The various imbalance ratios on the training set.
Notation Description Value Imbalance ratio NC BF IF OF
. iﬁ?ﬁﬁ)ﬁcﬁ"r dimension P 21 200 100 100 100
a(n) The learning rate of generator 5x10* 5:1 200 40 40 40
b(n) The learning rate of discriminator 10 10:1 200 20 20 20
R The ratio of training times of D and G 2 20:1 200 10 10 10
Ni Maximum adversarial training epoch 1000 50:1 200 4 4 4
A Gradient penalty coefficient 1
IR Initial learning rate 102
N> Maximum diagnosis epoch 50

200 samples. The detailed information of the datasets is
presented in Table 3.

Datasets A/B/C are processed according to the size of
imbalance ratio, which is defined as the ratio of the number of
normal samples to that of samples of each fault type. Taking
the imbalance ratio 5:1 as an example, each normal condition
contains 200 samples, so the number of samples of each fault
type is 40. Then, each class are further divided into a training
set and a testing set at a ratio of 9:1. Therefore, there are
180 normal samples that can be used to train the diagnostic
model. Similarly, the number of samples of each fault type in
the training set is 36, and the total number of fault samples
of nine fault classes in the training set is 324. The rest of all
samples are used for testing. As a result, 504 samples in each
dataset are used for training and the diagnosis performance is
testified on 1496 samples.

2) IMPLEMENTATION DETAILS

In order to achieve the optimal fault diagnosis performance
of the proposed method, we conduct appropriate fine-tuning
for the parameters of model, and report the best parameter
settings, which are listed in Table 4. As for the parameter
settings of GAN model, the Gaussian distribution is used
as the prior noise distribution and the random noise vector
dimension r is set as 100. The size of a mini-batch s is 64,
the learning rate of the generator a(n) and the discriminator
b(n) is 5 x 10~% and 1074, respectively. The ratio R of the
training times of D and G in one adversarial training epoch
is 2. The maximum adversarial training epoch N; is 1000.
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The gradient penalty coefficient A is 1. We implement our
approach by using PyTorch framework, and an Adam opti-
mization method is used to update the weight sets of all neural
networks with momentums g; = 0.5 and > = 0.9. The
detailed network parameter settings of our approach can be
found in Table 1.

In the fault diagnosis stage, we adjust the learning rate
with a decay rate 0.1, i.e., for each 10 epochs of training,
the learning rate decreases to one tenth of the current value,
and initial learning rate IR is 10~2. Similarly, the size of mini-
batch is 64 and an Adam optimization method is utilized. The
training epoch N, is 50. In addition, in order to evaluate the
efficiency of our model under various imbalance degrees, five
comparison experiments are carried out by setting imbalance
ratio as 2:1, 5:1, 10:1, 20:1 and 50:1 respectively, shown
in Table 5. The larger the imbalance ratio, the smaller the
number of fault samples in training sets is. All above exper-
iments are repeated 10 times in each case and the average
value is taken as the final fault diagnosis result.

3) EXPERIMENT RESULTS

As shown in Table 6, the diagnosis results for the testing
sets of datasets A, B and C are obtained under the above-
mentioned parameter settings. It is observed that the CNN
model can only achieve lower accuracy of testing with imbal-
anced data, meaning that the CNN model is not able to
distinguish each health conditions effectively. Whereas, our
approach obtains the higher accuracy of testing with a lower
standard deviation, and the scores of recalls and F1 are also
higher. The testing accuracy of our approach for each dataset
is greater than 99%, which suggests that the proposed method
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TABLE 6. Diagnosis accuracy using the CNN and enhanced model for datasets A/B/C.

Accuracy Dataset A Dataset B Dataset C
Label CNN Enhanced CNN Enhanced CNN Enhanced

1 100.0 100.0 100.0 100.0 100.0 100.0

2 83.51 100.0 78.19 98.40 84.57 99.47

3 97.34 100.0 95.74 100.0 100.0 100.0

4 100.0 100.0 98.45 100.0 94.68 100.0

5 71.81 99.47 89.89 100.0 96.27 97.87

6 99.47 99.47 93.62 100.0 84.04 97.87

7 94.14 100.0 92.55 97.87 93.65 99.47

8 76.59 100.0 75.53 100.0 54.79 99.47

9 77.13 100.0 93.62 100.0 90.42 99.47

10 94.14 100.0 88.29 96.28 97.87 100.0

Average 89.41 99.31 90.59 99.26 89.63 99.36

Recall 88.72 99.23 89.53 98.94 88.06 99.30

F1 89.15 99.23 90.34 98.94 88.21 99.30

Std 1.06 0.13 0.27 0.99 0.16
100 in Table 7. It can be seen that as the imbalance ratio increases,
the diagnosis results of the CNN model gradually become
os | worse, which means that the diagnosis results based on
‘ CNN model depend on the training sample size. Although
SMOTE and ADASYN algorithms improve the fault diag-
% nosis performance to some extent, the diagnosis accuracy
under extremely imbalanced data conditions is poor. When
. the imbalance ratio is 50:1, the testing accuracy of SMOTE
Dataset A Dataset B Dataset C corresponding to dataset A/B/C is only 53.24%, 52.71%

CNN ©ESMOTE WNADASYN EWGAN EWGAN-GP HEEnhanced

FIGURE 3. The increments of diagnosis accuracy on three datasets under
imbalance ratio 5:1.

can significantly improve the performance of fault diag-
nosis with imbalanced data. The standard deviations under
ten independent trials are below 0.3%, indicating that our
approach has stable diagnostic ability.

In order to show the diagnosis result obtained from each
dataset clearly, Fig. 3 is given to show the increment of the
diagnosis accuracy of our approach relative to other com-
parison methods when the imbalance ratio is 5:1. It can be
seen that SMOTE and ADASYN can improve fault diagnosis
performance with imbalanced data, and the testing accuracy
of SMOTE and ADASYN is 92.68% and 94.67%, respec-
tively. Compared with SMOTE and ADASYN, WGAN and
WGAN-GP achieve relatively higher accuracy of testing.
The average testing accuracy is 96.32% and 98.02%, respec-
tively, which illustrates the synthetic samples generated by
GAN model can contribute to fault diagnosis. Remarkably,
it is clearly seen from Fig. 3 that the enhanced method can
obtain the highest accuracy of testing. Concretely, the average
testing accuracy of our approach reaches 99.31%, 99.26%
and 99.36%, respectively, which shows that the quality of
generated samples is significantly improved, thus facilitating
the final fault classification.

To further validate the performance of our approach,
the comparisons of diagnostic results under different imbal-
ance ratios corresponding to datasets A, B and C, are listed
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and 45.97%. Under the same conditions, the accuracy of
WGAN and WGAN-GP rises about 16%. It is obvious that
the diagnosis results of our approach reach 73.61%, 77.64%
and 63.22%, which is superior to other comparison meth-
ods. It is noticed that under different imbalance ratios, our
approach maintains a significant superiority. Especially under
extremely imbalanced data conditions, the diagnostic results
of our approach have obvious advantages.

4) ANALYSIS AND DISCUSSION

In order to explain why our approach can achieve excellent
performance on rolling bearing fault diagnosis with imbal-
anced data, we provide a visual insight for the training process
of enhanced WGAN-GP method, including the similarity
between generated samples and real samples, and the high-
level representations extracted by the discriminator.

The purpose of using GAN architecture is to generate
realistic synthetic samples. Therefore, it is of significance to
evaluate the similarity between generated samples and real
samples. For image generation tasks, there are several critical
evaluation metrics for quantitative analysis, such as inception
score (IS) [32] and the Fréchet inception distance (FID) [28].
However, for mechanical vibration signals, it is unreasonable
to calculate the scores of the above metrics directly. As the
frequency spectrum can reflect inherent characteristics of
raw vibration signal, we utilize the frequency spectrum of
generated samples and real samples to visualize the adver-
sarial training process of the enhanced model. Taking the
imbalance ratio 5:1 as an example, the frequency spectrum
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TABLE 7. Diagnosis accuracy for the dataset A/B/C under different imbalance ratios.

Dataset Imbalance ratio ~ CNN SMOTE (CNN)  ADASYN(CNN)  WGAN (CNN)  WGAN-GP (CNN)  Enhanced
2:1 93.50 94.89 95.21 98.56 99.23 100.0
5:1 89.41 92.43 93.68 96.32 98.02 99.31
A 10:1 80.01 86.54 88.26 90.04 91.20 95.58
20:1 68.15 75.12 78.23 83.31 85.45 93.87
50:1 45.33 53.24 56.36 61.52 63.08 73.61
2:1 93.65 95.04 96.18 98.24 99.12 100.0
5:1 90.59 92.68 94.57 95.34 96.64 99.26
B 10:1 81.75 84.81 87.36 90.41 92.25 97.60
20:1 68.88 73.45 76.17 80.05 83.06 89.24
50:1 43.35 52.71 56.69 62.24 65.32 77.64
2:1 92.90 94.43 95.36 98.15 98.56 100.0
5:1 89.63 9221 94.38 96.37 97.02 99.36
C 10:1 80.12 85.02 87.96 91.25 93.54 96.06
20:1 64.75 72.84 75.54 79.23 81.05 87.40
50:1 40.31 45.97 47.07 52.64 54.16 63.22
of generated samples and the corresponding real samples for TABLE 8. The detailed description about experiment data.
dataset A is presented in Fig. 4. It can be seen from this i
figure that the generated samples have the same trend with Dataset Load (KN)  Fault type Faultsize [
the real samples, which means that the generator is able to NC (mm) 1
learn the potential distribution of the real samples. In partic- BF 0_2 )
ular, the generator has captured the inherent characteristics IF 0'2 3
of frequency spectrum samples, which greatly facilitate the A/B 0/2 IF 0' 4 4
final fault classification. Thus, our approach obtains a higher OF 0'2 5
diagnosis accuracy. OF 03 6

To demonstrate how the discriminator distinguishes the
samples in each condition, we visualize the features extracted
from the fully-connected layer before the output layer.
t-Distributed Stochastic Neighbor Embedding (t-SNE) is
a technique for dimensionality reduction, which is widely
used to visualize deep neural networks. In this paper,
we take advantage of t-SNE to visualize the high-
dimensional data representation by mapping the samples
from the original feature space into a 3-dimensional space
map.

When the imbalance ratio is 5:1, the visualization results
for the datasets A, B and C are displayed in Fig. 5. For
convenience, EGAN_A denotes the visualization result of our
approach corresponding to dataset A. The others follow the
similar meanings. It can be observed that the sample points
with the same label cluster together, but different types of
fault samples cannot be separated completely in the CNN
model. When the training set is expanded by the proposed
method, it is clearly noticed that the same label samples
cluster well, and meanwhile all the data samples of differ-
ent health conditions are completely separated. That is the
basis for accurate fault diagnosis. Furthermore, the prefer-
able divisibility for different health conditions indicates that
the generated samples are able to provide extra discrimi-
nant information for the final fault classification. Although
the enhanced WGAN-GP method is trained by means of
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unsupervised learning, the quality of generated samples is
prominent. That is why our approach outperforms compar-
ison methods with imbalanced data.

C. CASE STUDY ON HVC BEARING DATASET

1) DATA DESCRIPTION AND PREPROCESSING

To testify the generalization ability of the proposed method,
we use it to study the measured signal of the rolling bearing
simulation fault testbed. As presented in Fig. 6, the testbed is
composed of a control equipment, a load motor, a test bearing,
torque sensors, an idler and three accelerometer sensors,
in which sensor 1 is used to collect the radial vibration signal,
the horizontal vibration signal are sampled by sensor 2, and
sensor 3 is utilized to acquire the axial vibration signal. The
used test bearings are 6206-2RS deep groove ball bearings
and the electrical discharge matching technology is used to
set the single point failure to rolling bearings. The faulty loca-
tions are produced in the inner race, the outer race and rolling
ball element with different sizes (0.2mm, 0.3mm, 0.4mm).
The faulty types corresponding to four fault modes can be
seen in Fig. 7. The vibration signal is collected under different
motor loads (0 KN, 2 KN) with the sampling frequency
51200 Hz. The detailed description about the experimental
data is shown in Table 8.
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FIGURE 4. The generated samples and the corresponding real samples of
the dataset A.
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FIGURE 5. Scatters diagrams of the high-level representations extracted
by the discriminator for (a) CNN_A, (b) CNN_B, (c) CNN_C, (d) EGAN_A, (e)
EGAN_B, (f) EGAN_C.

FIGURE 6. The testbed of our laboratory.

In this paper, datasets A and B collected from different
working loads (0 KN, 2 KN) are respectively used. For each
dataset, the vibration signal is sampled at a sampling fre-
quency of 51200 Hz for 10 seconds, so there are 512000 data
points for each health condition. Similarly, the vibration
signal with length 1200 is successively selected from the
raw vibration signal, and each health condition contains 200
subsamples. Then, FFT is used to obtain 2400 Fourier coeffi-
cients and the first 1200 coefficients are used in each sample.
In addition, there are six classes under each dataset, including
five kinds of faults and one normal state. Therefore, each
dataset contains 1200 samples of six classes collected from
corresponding working condition.

2) IMPLEMENTATION DETAILS

Based on the experimental setup in IV-B, the network param-
eters of the enhanced generative model are fine-tuned to
achieve optimal fault diagnosis performance. As for the
parameter settings of GAN model, we adjust the kernel size
of each convolutional layer in discriminator to 8 and the
number of channels for each layer is set as 128, 64, and
4, respectively. Meanwhile, the number of convolution layer
of discriminator and the parameter settings of generator are
unchanged. In addition, the penalty coefficient x is set as 3,
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FIGURE 7. The bearings corresponding to the four fault modes: (a)
normal state, (b) ball fault, (c) inner race fault, (d) outer race fault.

TABLE 9. Diagnosis accuracy using the CNN and enhanced model of
datasets A/B.

Accuracy Dataset A Dataset B

Label CNN Enhanced CNN Enhanced

1 100.0 100.0 100.0 100.0

2 85.11 100.0 62.23 95.74

3 87.77 100.0 90.42 100.0

4 90.42 100.0 95.74 100.0

5 100.0 100.0 97.87 100.0

6 100.0 100.0 87.77 96.27

Average 93.88 100.0 89.01 98.69

Recall 92.64 100.0 88.20 98.02

F1 93.02 100.0 88.75 98.40

Std 0.70 0 1.46 0.18

and the ratio R of training times of D and G in one adversarial
training epoch is set as 3:1. The learning rates of the generator
a(n) and the discriminator b(n) is setas 5x 10~* and 2x 10~4,
respectively. The maximum adversarial training epoch N is
set as 500. All neural networks are trained using an Adam
optimization method with momentums g1 = 0.5 and 8, =
0.9 to update weight sets.

In the fault diagnosis stage, each dataset is divided into
training sets and testing sets according to the ratio of 9:1. The
number of training sets and testing sets depends on the size
of imbalance ratio. When the imbalance ratio is 5:1, there are
360 samples for training and 840 samples for testing. To elim-
inate the effect of randomness, ten independent experiments
are conducted for each dataset and the average value is taken
as the final fault diagnosis result.

3) EXPERIMENT RESULTS

Table 9 displays the accuracy, recalls and F1 scores of
each dataset under different fault conditions. We take the
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FIGURE 8. The increments of diagnosis accuracy on two datasets under
imbalance ratio 5:1.

imbalance ratio 5:1 as representative. The average testing
accuracy of CNN model are close to 90% for the two dif-
ferent datasets. By contrast, the accuracy of our approach
reaches 99%, which suggests that the proposed method
can improve the fault diagnosis performance significantly
with imbalanced data in actual scenario. In particular, the
proposed method obtains a completely diagnosis result for
dataset A. The detailed experimental results are shown in
Table 9.

Comparative experiments are conducted for each dataset
under various imbalance ratios. Fig. 8 shows the increments
of diagnosis accuracy our approach relative to other compar-
ison methods when the imbalance ratio is 5:1. It can be seen
from this figure clearly that the proposed method can achieve
better diagnosis results compared with other methods. In par-
ticular, the testing accuracy of our approach for datasets A/B
reaches 100% and 98.69%, respectively, which indicates that
the proposed method is able to distinguish each health condi-
tion effectively. In addition, comparing enhanced WGAN-GP
with WGAN-GP, it can be seen that the performance of
enhanced WGAN-GP model is superior to WGAN-GP for
each dataset, meaning that the quality of generated sample
can be further improved using spectrum normalization and
TTUR strategies.

Table 10 shows the fault diagnosis results of several com-
parison methods which were tested under different imbal-
ance ratios corresponding to datasets A and B. It can be
seen from Table 10 that although SMOTE and ADASYN
algorithms improve the fault diagnosis performance in actual
scenario, the diagnosis accuracy are still poor. Compared
with the CNN model, the testing accuracy of SMOTE and
ADASYN rises up about 19% when the imbalance ratio is
20:1. Under the same conditions, the accuracy of WGAN
and WGAN-GP rises up about 31%. Strikingly, the accuracy
of our approach rises about 38%, and the testing accuracy
reaches 94.04%.

4) ANALYSIS AND DISCUSSION

In order to explain why our approach can outperform
other comparison methods with imbalanced data, the gen-
erated samples acquired by the generator of the enhanced
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TABLE 10. Diagnosis accuracy for the dataset A/B under different imbalance ratios.

Dataset Imbalance ratio CNN SMOTE (CNN) ADASYN (CNN)  WGAN (CNN) WGAN-GP (CNN)  Enhanced
2:1 95.34 96.01 96.45 98.51 99.26 100.0
5:1 93.88 94.02 95.87 98.12 98.93 100.0
A 10:1 90.16 92.78 94.02 96.04 97.23 99.47
20:1 85.05 88.32 88.25 92.26 95.48 98.62
50:1 80.32 84.04 86.28 88.03 91.20 95.87
2:1 95.06 96.42 97.53 98.24 99.06 100.0
5:1 89.01 92.13 93.41 95.24 96.04 98.69
B 10:1 88.28 90.56 91.29 94.46 96.01 97.72
20:1 67.36 80.20 82.27 86.12 90.36 94.04
50:1 46.80 74.84 78.52 82.16 85.21 90.54
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FIGURE 9. The generated samples and the corresponding real samples of
rolling bearing.

WGAN-GP and the high-level representations extracted by
the discriminator are visualized. Taking the imbalance ratio
5:1 as an example, the frequency spectrum of the generated
samples and the corresponding real samples of dataset A
are presented in Fig. 9. It can be seen clearly from this
figure that the frequency spectrum of generated samples has
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result of our approach corresponding to dataset A. The
others follow the similar meanings. It can be observed that
the CNN model cannot identify each type of fault samples
completely. When the dataset is expanded by the proposed
method, it is noticed clearly that the feature points of the
same label cluster well, and all the data samples of different
health conditions are completely separated, which reflects the
enhanced WGAN-GP can generate data samples with higher
quality.
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V. CONCLUSION

GAN have been successfully introduced into the field of
imbalanced fault diagnosis. Based on the WGAN-GP, this
paper proposes a novel fault diagnosis method to address
the data imbalance problem which often encounters in the
real scenario. The proposed method has strong generalization
ability and provides an effective way to solve the intelligent
fault diagnosis problem under small sample size conditions.
In order to improve the quality of the generated samples,
a new discriminator is designed using spectrum normaliza-
tion strategy. Meanwhile, TTUR strategy is applied to make
WGAN-GP converge a locally stationary Nash equilibrium.
In this way, the generator is capable of learning the data man-
ifold in real sense with more stable process. During the adver-
sarial training process, the enhanced WGAN-GP can generate
new samples that have similar distribution with the original
samples to expand the fault samples set. Generated samples of
high quality can be used to train fault classifier together with
original samples, which improves the generalization ability of
diagnostic model. To evaluate the performance and effective-
ness of the proposed method, two bearing datasets, including
CWRU and HVC, are investigated in the testing experiments.
The classification results show that the diagnosis accuracy
of the proposed method can reach above 99% for both two
bearing datasets. In particular, when we only use 5% of all
fault samples to train GAN model, the diagnosis accuracy
of the proposed method can still achieve about 90%, which
indicates that the proposed method maintains a competitive
superiority performance under extremely imbalanced data
conditions. Therefore, when the fault data are difficult to
obtain in practice, the proposed method has large poten-
tial value for industrial application. Furthermore, because
the implementation of the proposed method requires less
prior knowledge and experience in fault diagnosis fields, this
method can be further applied to diagnosis tasks involving
other objects.

Although the proposed method can promote the practical
application of intelligent fault diagnosis under small sample
size conditions, it is assumed that the training and testing data
are drawn from the same distribution. However, due to the
variation of operating condition, data distribution discrepancy
may exist between the training and testing data. Therefore,
the next challenge is to validate the effectiveness of our
proposed method across domains. Besides, since the training
process of GAN requires a lot of parameters adjustment,
we will attempt to train GAN by adaptive adjustment mech-
anism in the future work.
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