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ABSTRACT Mining activities are the leading cause of deforestation, land-use changes, and pollution. Land
use/covermapping in Vietnam every five years is not useful tomonitor land covers inmining areas, especially
in the Central Highland region. It is necessary to equip managers with a better tool to monitor and map land
cover using high-resolution images. Therefore, the authors proposed using the U-Net convolutional network
for land-cover classification based on multispectral Unmanned aerial vehicle (UAV) image in a mining area
of Daknong province, Vietnam. An area of 0.5kmx0.8km was used for training and testing seven U-Net
models using seven optimizer function types. The final U-Net model can interpret six land cover types:
(1) open-case mining lands, (2) old permanent croplands, (3) young permanent croplands, (4) grasslands,
(5) bare soils, (6) water bodies. As a result, two models using Nadam and Adadelta optimizer function can
be used to classify six land cover types with accuracy higher than 83%, especially in open-case mining lands
and polluted streams flowed out from the mining areas. The trained U-Net models can potentially update
new land cover types in other mining areas towards monitoring land cover changes in real-time in the future.

INDEX TERMS U-Net convolutional network, unmanned aerial vehicle, deep learning, Daknong, segmen-
tation, permanent cropland, open-cast mining, loss function, optimization.

I. INTRODUCTION
The Central Highlands of Vietnam has more than 450,000
hectares (ha) of perennial crops, accounting for nearly 90%
of the coffee area and 26% of the rubber area [1]. More
than 15,792 ha of natural forests in 1990s were destroyed
for the construction and mining projects, of which 5,755
ha of forest land has been converted into hydroelectricity
till 2015 [2]–[4]. Kissinger et al. [5] and Thuy et al. [6]
emphasized that mining and land cover conversion are two of
the six leading causes of deforestation and forest degradation.
Although environmental impact assessments have become
a mandatory requirement since 1993, illegal mining activ-
ities have not been thoughtfully managed [2]. A real-time
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land use/cover monitoring machine is needed, replacing
the national manual monitoring activities every five years,
to quickly assess the environmental quality [7]–[10]. Accord-
ingly, it ensures legal mineral activities in mineral exploita-
tion areas of the Central Highlands.

Deep learning is a branch of artificial intelligence in
which computers generate rules based on the raw input
data [11], [12]. Based on deep learning, models can
improve their performance based on past results or new
data sources [13]. Deep learning provides many advantages
for humans for predicting natural hazards [14], [15], and
helping to make intelligent decisions in real-time without
humans intervention [16]. In addition to their applications
in social technology, deep learning has been used in various
remote sensing analyses, such as detecting ships, turtles,
or houses [17]–[19]. Primarily, most of the studies commonly
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used satellite images with low to medium resolution images
such asMODIS, Landsat, and Sentinel-2 [20]–[22]. However,
the application of deep learning to detect land cover from
high-resolution UAV images is rare, especially in mining
areas.

Recently, the artificial neural network (ANN) has become
a useful tool to deal with complex non-linear regression
between input data that has not yet been optimized for
ancient remote sensing processing techniques such as unsu-
pervised learning, Random Forest, pixel-based and Support
Vector Machine [23]–[25]. For example, Pu et al. [26] and
Dang et al. [27] used Convolutional Neural Network (CNN)
to classify (1) water quality of inland lakes based on
Landsat-8 images; and (2) coastal types in Vietnam based on
Sentinel-2 images. Ge et al. [28] used ANN models for litho-
logical classification based on various moderate-resolution
satellite images. Instead of analyzing satellite images based
on pixel-based approaches, the ANN models consider land
uses/covers as objects to distinguish their pixels, scale, spa-
tial relations and texture information for generating homo-
geneous objects [29]. Therefore, developers can optimize
the performance and accuracy of land cover classification
models in real-time and space from big dataset, reducing
the computational costs of traditional physical-based models.
In addition, the models can learn or upgrade from previous
computation if the developers provide new input data from
the real time [30].

The U-Net concept suggested by Ronneberger et al. [31] is
an updated Fully Convolutional Network model with a sym-
metrical U-shaped design including a symmetrical contract-
ing and expanding paths. While the contracting path acquires
the context, the expanding path predict accurate localization
of segmented objects. TheU-Net integrates low-level features
with comprehensive spatial information (in the contracting
path) with high-level features with sematic information (in
the expanding path) to boost segmentation precision [32].
Accordingly, successive convolution layers are trained to
create a more reliable output based on this knowledge. Based
on semantic segmentation approaches, the U-Net models
can learn effectively spatial relations between land-cover
classes [33]. Therefore, they can better classify objects in
whole images, especially in the case of labeled data scarcity,
compared to the pixel-based models. Additionally, once the
predicted latter are discontinuities due to noises in the mark
data and these models implicitly run a regularization process
as a post-processing smoothing step [34].

Although the first U-Net models were introduced in 2015,
the first models for land-cover classification have been pub-
lished since 2019, such as land covers in urban [35]–[37],
forest [38], coastal areas [39] and sea surface. Most of studies
developed the original U-Net with the use of secondary satel-
lite images [40]. For example, Stoian et al. [41] have started
to use 10m-resolution Sentinel-2 satellite images for land
use/cover mapping in many polygons in France. Their input
image data is commonly dependent on the satellites, leading
to difficulties to monitor land covers in a particular mining

region. An active image-recorder machine such as Unmanned
aerial vehicle (UAV) will be an alternative option to classify
mining land covers in the real time, especially if this machine
can integrate with a deep learning model. In this research, the
authors use the U-Net framework to train a mining land cover
prediction model based on the multi-spectral UAV image in
a particular area of Daknong province, Vietnam. This study
will prove the potential of the U-Net model and UAV data in
monitoring mining land covers.

The following research questions - relevant to land cover
classification – will make this study clearer:

• What are the advantages of integration between deep
learning and high-resolution images for monitoringmin-
ing areas?

• How are U-Net models for land cover classification on
UAV images more effective than benchmark models?

• How do land cover types distribute in a mining area of
Daknong province, Vietnam?

In this study, 4-band UAV images were used as input
variables for land-cover classification. An area of (0.5× 0.8)
km2 was used to develop a U-Net model for land cover clas-
sification. Afterward, the trained model was used to interpret
another area of (2 × 2) km2 in a mining area of Daknong
province, Vietnam. Before explaining data collection and
model development (from section II.D to II.E), the authors
presented a description of land cover classification systems
in the research area (section II.A). Notably, all processes
to prepare UAV image, preprocess and training models will
be explained in detail in section II.B. The trained U-Net
models were compared with two benchmark models using
Random Forest (RF) and Support Vector Machine (SVM)
– presented in section II.G - to check the improvement.
Results concerning the classification of mining land cover
and model development will be compared with recent studies
in section III.

II. MATERIAL AND METHODS
A. RESEARCH AREA
To evaluate the ability to monitor minerals exploitation
when using the remote sensing technology UAV, the authors
selected Tan An quarry in Dak R’moan commune, Gia Nghia
City, Dak Lak province as the main research field. The exper-
imental mine is an open-pit mine in operation, and witnessed
significant changes in topography due to mining activities.
It has an area of 50 ha adjacent to the banks of Dak Tí
Hydropower lake and Dak R’Moan inter-commune road. The
size of the mining area meets the requirements for close-
frequency flight by UAV technology with ideal conditions
such as lying on a mountain peak with wide viewing angles
and covering the entire field.

Additionally, the hard ground of the mine can ensure that
ground control points are immobile during the process of
flight control and measurement. There was little dust in the
mining object, which provided clear images for building
graph and digital model of surface with high resolution. The
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flight was conducted on June 28, 2019. On that day, dry
weather, moderate wind and little dust mining subjects all
contributed to the development of clear aerial photos with
optimal image quality. These photos were used to build a
digital surface model of high quality later on. To assess
the overall process of changes in the status of soil cover in
the quarry and surrounding areas, the scope of experimental
study expanded to an area of 400 ha, taking the quarry as the
center. The mine is an area with the coordinates of 11◦59′55′′

- 12◦00′14′′ North latitude, 104◦06′11′′ - 104◦06′41′′ East
longitude.

Tan An quarry area is covered with basalt soil with the
thickness of 2-5m. Before the exploitation, most of the quarry
areawas unused hilly land and perennial industrial crops land.
During the exploitation process, the quarry area has been
gradually expanded and some areas of perennial crop land
have also been exploited. Moreover, activities such as dump-
ing and unloading of surface soil, making space for process-
ing and gathering of finished stone products are responsible
for changes in other soil types. In 2006, the quarry was just an
open-pit exploitation area with a small area of less than 1 ha.
The stone is mined into the cliff area. At that time, there was
no sign of expansion mining. By 2012, a part of the rock was
exploited in the direction of mine expansion, a road leading
to the quarry was also formed.

Some of the mine’s western perennial industrial land has
been converted and removed stones. However, the mining
area was not yet put into industrial exploitation. By 2014,
after only two years, Tan An quarry has been expanded,
with all the corresponding processing and storage areas.
From 2016 to 2018, a large area of perennial industrial land
was converted to serve the purpose of mine expansion. The
extraction process becomes stable. The six types of soil in
Tan An quarry can be visually observed through UAV images
shown in Figure 1. A part of the quarry area has also been
accreted by new layers of soil.

B. PRE-PROCESSING OF UAV IMAGE AND SAMPLE
COLLECTION
UAV technological advancement is most beneficial when
applied to monitoring mining area. Due to the fact that mines
are densely located over small areas, it is very efficient to
collect data for UAV processing. For the purpose of monitor-
ing the mining progress, the experimental mine must be an
open-pit one which is still under operation and experiences
topography changes caused by exploitation. In this study,
image data is taken from UAV database from senseFly of
Tan An quarry in Dak Nong province, Vietnam. The data
is collected by a Phantom 4 RTK and underwent a 6-step
process of OrthoEngine Tool in PCI Geomatica Banff Service
Pack 1 (Fully Functional Trial). There are 768 JPEG images
used for input data. The critical steps in the pre-processing of
UAV data will be introduced briefly as follows:
• Step 1 (Set camera calibration): This step helps to
identify and correct the distortions of the image which
occurred due to curvature of the lens, the focal length,

and the perspective effects. In this step, parameters
(Focal length; Principal-point offset; Chip Width and
Height; Y-scale factor; Radial-Lens coefficients; Decen-
tering coefficients) are entered manually.

• Step 2 (Collect tie points): Tie point (TPs), a spe-
cific location, can be recognized visually in the over-
lap area among two or more images. By applying
image-correlation technique a total of 23,040 optimal
tie points were found in 768 images. This result has an
important role to play in combining all images together.

• Step 3 (Point refinement): in this step, 23,040 tie points
found in step 2 were refined to eliminate the ones with
high values of Root mean square (RMS: the residual val-
ues of the x and y per point). Tie points with RMS higher
than 0.5 were removed from the calculation model.

• Step 4 (GCPs correction): 12 GCP (Ground Control
Point) from field with an accuracy of ±0.5 pixels were
collected to improve georeferencing of the dataset. They
are clearly recognized in the raw images with identified
ground coordinates. All data were orthorectifiedwith the
WGS84/UTM ZONE-48N.

• Step 5 (Generate orthoimages based on DEM): This step
generated 768 ortho-images by using raw images, epipo-
lar pair images and a Digital Elevation Model (DEM)
of the research area scanned during flying process. This
helps to enhance the performance of the correlation pro-
cess and to reduce the probability of incorrect matches
of the raw images. The spatial resolution of the outcome
DEM is 0.35 m.

• Step 6 (Mosaicking): In this step, 768 ortho-images were
manually edited to form a single and uniform color
balancing image. Because 80% of images overlap, all
errors related to camera and coordinates were elimi-
nated. The mosaicking process was conducted precisely
with the use of Mosaic Tool of the PCI Geomatica Banff
software. After the merged image had been generated,
the Tan An mining area was presented for the U-Net
development that will be explained in section II.D.

C. PROCESSING DATA
Samples of six LULC types were taken in the area of (2× 2)
km2 around the main mining area. The authors measured in
detail the area and the boundary of each LULC in November
2019. Firstly, although the coffee trees in the research area
covered a large area, some coffee areas have been mixed with
some pepper trees. The density of coffee trees is denser than
two other agricultural trees. Therefore, it is challenging to
separate coffee and pepper trees in the UAV image. Authors
combined coffee and mixed croplands into one land-cover
type, so-called permanent croplands. However, they will be
separated into old and young permanent croplands depending
on how large the canopy of the trees covering the land. The
canopy of the old coffee trees covers a larger area than the
young one. Therefore, the second land cover type that was
separated is the ‘‘young permanent croplands’’. Grassland
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FIGURE 1. The research area with six samples for six land-cover types in a mining area of Daknong province, Vietnam.

and bare soil respectively, are third and fourth land cover
types were separated (Figure 1).

The grasslands in the research area have been left fal-
low during five years preparing for mining activities in the
future, whereas the bare soil areas have been left fallow after
finishing mining activities [42]. The whole area used for
natural resource mining will be separated into the ‘‘open-cast
mining’’ land cover. It includes all mining areas and houses
used for exploration activities. Like the last land cover, water
bodies were separated and represented small lakes and two
small streams that flow out from themining area to the outside
region.

The boundary of all agricultural croplands will be format-
ted in a polygon file and converted to an integer-8bit raster
file (so-called as ‘‘mask’’). The size of the mask is equal
to the size of the input image. Due to the large image size,
it is not feasible to read the entire image into memory and
then use it for U-Net development. In order to increase the

performance of the training process, the original UAV image
was spitted into 12,000 sub-images and resized to sub-images
of 128 × 128-pixel size. Each sub-image was inputted as
a sample to train the U-Net models. Afterward, they were
separated into two training and testing groups of 80% (or
9,600 sub-images) and 20% (or 2.400 sub-images) for using
for the U-Net model development. The ratio of land cover
types in the training and testing data is equal.

D. BACKGROUND OF MODEL VALIDATION
Once a prediction model is trained, it always needs to
be assessed its performance/quality, especially with the
deep learning models, avoiding overfitting and underfitting
cases [13]. This section will explain all model validation
methods used in this study. The validation process was per-
formed throughout the U-Net, Random Forest, and Support
Vector Machine model development (see from section II-E to
section II-H). Due to the outcomes of all prediction models
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are quantitative values, four evaluation metrics were used in
this study, including (1) intersection over union value (IoU),
(2) class user’s accuracy (UA), (3) overall accuracy (OA),
and (4) Kappa Coefficient. The IoU value was used dur-
ing the U-Net development (see section 2-E), whereas three
evaluation values, including UA, OA, and Kappa, were used
to compare the accuracy between all trained U-Net models
and two benchmark models (see section 2-G). The IoU value
represents the proportion of the combined area of reference
and predicted bounding images (so-called as the intersection
region) per the union region [43]. The IoU value is described
in the following formula:

IoU =
Area of Overlap
Area of Union

(1)

The IoU value has been commonly used in computer vision
and deep-learning studies [43]. During the U-Net develop-
ment process, the IoU value, therefore was calculated con-
tinuously for both training and testing image data in each
epoch. However, in comparing the prediction-power between
the trained U-Net models with two benchmark models, the
UA, OA, and Kappa are an alternative option to check all
trained models’ accuracy at pixel scale. Accordingly, these
values can be calculated based on the following formulas:

UAi =
Pij
Mj

(2)

OA =

∑m
i=1 Pi
N

(3)

Kappa =
N

∑m
i=1;j=1 Pi,j −

∑m
i=1;j=1 RiMj

N 2 −
∑m

i=1;j=1 RiMj
(4)

where Pij is the number of correctly classified samples in the
land-cover class ‘‘i’’ compared with ground truth/input class
‘‘j’’, ‘‘N’’ is the total number of samples, ‘‘m’’ is the number
of classes, Mj is the total number of sample in the class ‘‘j’’
recorded in mask data, and Ri is the total number of sample
in the class ‘‘i’’ recorded in prediction data.

The UA, OA, and Kappa values were only used once
all models that were trained. The UA value was used to
assess the accuracy of each land cover type predicted from
trained models. It explains the positive proportion of the
correct classified samples to the predicted samples [43] in
a particular land-cover type in this study. In addition to
the overall classification accuracy (OA), the Kappa value
accounts for all true and false data of the model validation
process based on a confusion matrix [44]. Therefore, the
use of both OA and Kappa values can make the selection
of the best model for mining land-cover classification more
accurate. The input samples will be explained in detail in
section 2-G.

E. U-NET ARCHITECTURE FOR LAND-COVER DETECTION
The U-Net model was first developed for segmentation on
medical and geological images [45], [46]. It includes a
contracting path (in the left side) and an expansive path

(in the right side). The contracting path can be considered
as a typical extractor like conventional convolution neu-
ral network (CNN) models. The right-hand side performs
up-sampling steps, or convert prediction values back to the
original image size. The U-Net architecture is shown in
Figure 2. Like a Convolutional Neural Network (CNN), the
layers of a U-Net as a sequence of different layers consist
of 3-dimensional neurons: width, length, and depth [41].
An image’s depth is the number of input bands or variables.
For example, the image’s depth parameter in this study is
the number of UAV bands – red, green, blue, and near-
infrared spectral bands. Therefore, three dimensions of input
sub-images are 128× 128× 4 (width, height, depth, respec-
tively). The neurons in a layer were implemented with small
matrices of sub-images, instead of implementing them with
entire sub-images at once [37].

Every layer of the U-Net converts original data to new
states based on a chosen function. Six consequential types
of layers commonly applied to build U-Net architectures
include (1) INPUT Layer, (2) Convolutional Layer (CONV),
(3) Batch Normalization Layer, (4) Pooling Layer (POOL),
and (5) Concatenate Layer, and (6) Dropout Layer. These
six-layer types were integrated to form a full U-Net archi-
tecture as following:
• INPUT layer is used to insert the raw pixel values of all
sub-images (128 × 128 × 4) to the training model; in
this case, the sub-images dimension has 128-pixel wide,
128-pixel height, and four spectral bands.

• CONV layers calculate the outcomes of neurons through
a set of filters. Standard CONV layers will calculate new
outcomes with the same size with the input, whereas
a transposed convolution matrix (abbreviated as ‘‘Con-
vTrans’’) will be used to up-sample a smaller matrix
into a larger one. The filter weight and length have to
be smaller than those of the input sub-images. The filter
slid across the sub-images, connects with local regions
of input sub-images.With the input, new pixel values are
determined based on the activation functions selected for
the filters (more detailed in section II.E). In this research,
as suggested by Li et al. [39] and Stoian et al. [41], the
authors chose 19 CONV layers for the U-Net construc-
tion. To minimize the training and validation time, 16,
32, 64, 128, and 256 filters chosen for the 19 CONV
layers. The width and length of each filter are at the scale
of 3× 3, respectively.

• BATCH NORMALIZATION layer is used to normalize
the output from the CONV layer to the same scale,
before coming to a new calculation. This layer can min-
imize the distribution changes of the activation values
during the training process. It has commonly known
as an internal covariate shift problem 47]. Each input
layer is normalized by using the mean (β) and standard
deviation (or variance - γ ) parameter of the values in the
current batch based on the following formula:

yi = γ x̂i + β (5)

VOLUME 8, 2020 186261



T. L. Giang et al.: U-Net Convolutional Networks for Mining Land Cover Classification

FIGURE 2. The architecture of a U-Net network for mining land cover classification.

whereas the β and γ are trainable parameters, x̂i can
be calculated by using mean (µB) and variance (σ 2

B) of
mini-batch B = {x1. . .m} as following formula:

µB ←
1
m

∑m

i=1
xi (6)

σ 2
B =

1
m

∑m

i=1
(xi − µB)2 (7)

x̂i ←
xi − µB√
σ 2
B + ε

(8)

In total, the batch normalization includes four parame-
ters that will be trained after all CONV layers.

• POOL layer downscale operation to 2× 2 spatial matri-
ces, like width and height, respectively. This layer also
uses specific downscaling process activation functions,
which will be explained in section II.E.

• CONCATENATE layer is used to concatenate image
information from contracting path to expansive path.
Due to the simplification of the original data to new
data during the contracting process, the U-Net models
combine the data from the previous layers to achieve a
more accurate forecast.

• DROPOUT layer is used to randomly deactivates the
neurons at each training step, rather than training the
data on the initial network. During the iterative pro-
cess, unnecessary neurons can be deactivated to reduce
overfitting and generalization errors. A dropout value is
commonly used as a probability of 0.5 to keep the output
of every node in a hidden layer. In contrast, a value close
to 1.0 is commonly used to keep inputs from the visible
layers [48].

The blocks in blue color shown in Figure 2 are the input
and output of each calculation layer, whereas the processing
layers are presented in arrows. Excepting the last convo-
lutional layer, the other 18 CONV layers are always pro-
cessed before the batch normalization layers (combined and
shown in 18 blue arrows). In the contracting path, the POOL
layers run before the Dropout layers to downscale data.
Meanwhile, the transposed convolution matrixes integrated
with the Dropout layers are used for the upscaling process
in the expansive layers. They are represented in four green
arrows. Lastly, the concatenate layers are represented in
brown arrows.

Table 1 shows the U-Net architecture image processing
procedure, with 76 layers. The output of the other layer is the
input data of the following layer. The first 32 layers perform
the contracting path, whereas the last 36 layers perform the
expansive path. The number of filters in the following layer
in the U-Net development is double the preceding layer in
the contracting path and one half of the preceding layer in
the expansive path (Figure 2), compared to CNN models.
In contrast, the width and height of the preceding layer is one
half of the preceding layer in the contracting path and double
of the preceding layer in the expansive one.

The number of parameters of the first Conv2D layer is
calculated as following:

NConv2D = (H ∗W ∗ D+ 1) ∗ NFilter (9)

where ‘H’ is height, ‘W’ is width, ‘D’ is depth and ‘N Filter’
is number of filters. Each filter has one extra parameter to
store the bias value. For example, the first Conv2D-1 layer
has (3× 3× 4+ 1)∗16 = 592 parameters.

186262 VOLUME 8, 2020



T. L. Giang et al.: U-Net Convolutional Networks for Mining Land Cover Classification

TABLE 1. Mathematical structure of the developed U-Net for land cover
classification.

TABLE 1. (Continued.) Mathematical structure of the developed U-Net for
land cover classification.

Due to the batch normalization generate four parameters
for each CONV layer, the number of parameters in the batch
normalization layer is calculated as following:

Nparameter = 4 ∗ Ni (10)

where Ni is the depth in the input CONV layer. For
example, the BatchNormalization_18 has 4 ∗ 16 = 64
parameter. The final Conv2D layer’s output is a vector
with six values, corresponding to 6 land cover types.
Based on 76 layers (1xINPUT, 19xCONV, 4xConv2DTrans,
4xPOOL, 18xBatch-Normalization, 4xConcatenate, 18x
Activation, and 8x Dropout layers), the trained U-Net trans-
formed the initial pixel values in 12,000 UAV sub-images to
the land cover classes. 23 CONV and 18 Batch Normalization
layers contain parameters that can be optimized to improve
U-Net model’s performance and accuracy. The parameters in
the CONV and Batch Normalization layers will be changed
with alternative choices of activation and optimizer functions.
It will be explained in detail in section II.E.

The accuracy of both training and testing data was checked
during U-Net development to avoid overfitting and under-
fitting issues. The best U-Net will be chosen if it is land
cover prediction is compatible with the labels assigned in
the input image from the training and testing data. Therefore,
the intersection over union value (IoU) was used to assess the
accuracy of all trained models. During the training process,
the min and max IoU values of training and testing data
were recorded to observe the fluctuation of this value in
100 epochs. The IoU value using the training data will be
definitely optimized in the trained models, therefore the IoU
value using the testing data will be observed to check the
accuracy of outcome models. In combination with the IoU,
to choose the best model for classifying mining ecosystem
types, the trained model need to have the lowest values of all
loss functions. The modification of the loss functions will be
explained in section 2-F.

The U-Net model is developed based on Keras in Python
language, as an API designed for easy manipulation with
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Tensorflow developed by Google [38], [49]. The parameters
observed during the training process include accuracy and
loss of testing and validation data. The U-Net training process
is limited to 100 loops (epoch), but the process can be stopped
if the coefficient on the set of testing data converges. In other
words, all values do not improve after ten epochs.

F. ALTERNATIVE OPTIONS TO DEVELOP THE U-NET
According to the architecture of the U-Net for the land-cover
classification, to develop the U-Net, three types of func-
tions, namely activation function, loss function, and optimizer
method can be selected. These functions serve as optimal
parameters for filters contained in hidden layers. Which func-
tion and method to be used depends on the kind of input data
and output labels, and the accuracy/ loss of trained models.
These will be discussed in the following section.

1) ACTIVATION FUNCTIONS
To optimize the convergence speed of the U-Net in the CONV
layer, an activation function should be chosen. Binary Step
or Linear Activation Functions were not selected because of
the differences in the appearance of six land-cover types in
four UAV spectral bands. Therefore, one in five non-linear
activations, which are TanH/Hyperbolic Tangent, ReLU (or
Rectified Linear Unit), leaky ReLU, Parametric ReLU, and
Swish types will be chosen as the most suitable for opti-
mizing U-Net models [50], [51]. The ReLU function pos-
sesses certain advantages over the others. Using max (0, x)
- thresholding at zero, the ReLU function – can keep the
considerable size of the images (128×128×4) and speed-up
the convergence process of U-Net models. The other func-
tions fail to achieve such optimal advantages. Furthermore,
this function also enables backpropagation in the training
process to happen [52]. Besides, the reliability of results from
the U-Net applying ReLU function is also better than which
of the other functions. For these above reasons, the ReLU
function was selected for four U-Net layers.

Two activation functions namely Sigmoid/Logistic and
Softmax can be applied for the POOL layer [53]. However,
the latter function was chosen rather than the former. Because
Softmax function is commonly used to normalize the outputs
to classes between 0 and 1 and provides prediction prob-
ability in a specific type [54]; while the Sigmoid/Logistic
function generates uncertainties related to vanishing gradient
problems if the maximum and minimum values of input data
are too high. In this study, all POOL layers, therefore, used
Softmax function as the best option.

2) LOSS FUNCTIONS
To narrow the gap between the predicted and actual outputs
for the trained U-Net, a minimized Cost function (C), or Loss
function is needed as convex functions based on choosing
optimized values for weights [55]. Due to the dependence
of the loss function on weights, input images, and output
labels, the weights of the trained networks can help to min-
imize the loss function, which then contributes to a better

prediction for new input data. This optimization process was
explained in detail by Redmon et al. [56]. The average loss
values were computed using entire training sub-image data
and represented by the following function:

J =
1
n

∑n

x=1
L(x) (11)

with ‘n’ is the size of the training data set, and L(x) is the
loss value of a single training sub-image during the training
process.

Which loss function (e.g., regression, binary classification,
and Multi-Class Classification Loss Functions) to be chosen
depends on the type of training U-Net [57]. In this study,
to classify six land-cover types, authors chose one in three
types ofMulti-Class Classification Loss Functions whichwill
be introduced as below:
• Multi-Class Cross-Entropy Loss: is the standard method
to quantify the loss function values in the case of the tar-
get values formatted in the set [0, 1, 2, . . . , n] [17], [58].
In this study, each land-cover type is illustrated by
a different integer value. Mathematically, this method
uses the framework of maximum likelihood to calcu-
late the loss. A score representing the average prob-
ability gaps between the actual and predicted outputs
is calculated for all land-cover types. The last score
has to be minimized to 0 as the perfect cross-entropy
value. This method is demonstrated in the Keras coded
in python with a ‘‘categorical_crossentropy’’ function
when compiling the model [59]. The effectiveness of the
Multi-Class Cross-Entropy Loss’s performance seems to
be reduced, particularly in the encoding process of the
network with a large number of labels and a significant
memory.

• Sparse Multi-class Cross-Entropy Loss: has been
designed to enhance the performance of Multi-class
Cross-Entropy Loss function in categorizing a con-
siderable number of labels during the training pro-
cess. Both Sparse Multi-class Cross-Entropy Loss
and Multi-Class Cross-Entropy Loss functions can
perform the cross-entropy calculation of error; how-
ever, there is no need for the encoded target vari-
ables during the training process in the former one.
This method was developed in the Keras by using
‘‘sparse_categorical_crossentropy’’ functionwhen com-
piling the model [59].

• Kullback Leibler Divergence Loss: has been built to
measure the differences between the probability dis-
tribution of the outcomes and a baseline distribution.
The distributions are fitted when the difference value
is 0. This method seems to be very similar to the
cross-entropy methods; however, it can calculate the
amount of lost information when the predicted probabil-
ity and desired target probability distribution are approx-
imately equal. Ahuja [60] and Galas et al. [61] proposed
the Kullback Leibler Divergence Loss function is more
suitable for complex tasks than simple multi-class
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classification. This method has been built in Keras,
Python, by the use of the ‘‘kullback_leibler_divergence’’
function when compiling the model [59].

3) OPTIMIZER FUNCTIONS
Optimization methods to develop neural networks based on a
stochastic gradient descent algorithm is commonly employed
to eliminate the cost functions. Updating weights in the neg-
ative gradient direction, this method increases the accuracy
of trained neural networks and minimizes the loss. During
the optimization process, the errors of the trained models (or
the loss function) must be calculated repeatedly. A cycle of
passing data forward and backward via the U-Net model is
one epoch [62]. After each epoch, it is necessary to update
weights of filters based on optimizer functions. The new
parameters will learn the gradient descent of the previous
parameters and the weight of filters to find out the optimal
location for new ones. Accordingly, the new weight of filters
will be calculated respectively with the new parameters. The
new filters using updated weights can separate nearly-similar
objects on satellite images to reduce the loss value for the
next evaluation. During the U-Net development process, the
parameters and the weight of filters affect directly to the
19 CONV layers. Seven optimization algorithms sequen-
tially changed comprise traditional SGD (Stochastic Gradient
Descent algorithm), Adagrad (Adaptive Gradient Algorithm),
Adadelta, Adamax, RMSProp (Root Mean Square Propa-
gation), Adam (Adaptive Moment Estimation) and Nadam
(Nesterov-accelerated Adaptive Moment Estimation). The
description of these optimization algorithms was provided in
Table 2. All in all, the best optimizer method should generate
the highest accuracy and lowest loss function values.

G. EXPERIMENTAL SETUP
In this section, the authors compared the performance of
other traditional classifiers with the trained U-Net models.
Two classifiers, including random forests (RF) and support
vector machines (SVM), were chosen. After completing min-
ing land-cover maps in the research area based on the RF,
SVM and seven U-Net models, the prediction results will
be compared with the mask. Due to the models using the
RandomForest and SVMmethodswere not trained in epochs,
the training process of these twomodels provide one accuracy
value of each model. The cross-validation process used 1000
random points in the testing group (in 20% of the testing data)
in the U-Net development to compare with the mask. Three
evaluation metrics that were chosen for this step include the
UA, OA, and Kappa coefficient. The optimal model will
achieve higher OA and Kappa values. The results of this step
will be presented in section III.C. The development of these
classifiers can be explained as follows:

1) RANDOM FOREST (RF)
RFwas developed in 2001 by Breiman [66] and becamemore
and more popular used deep learning ensembles, especially
remote sensing. A set of decision trees as a forest is trained

TABLE 2. The seven optimization algorithms to train parameters of the
U-Net model in land cover classification, adapted from [59], [62]–[65].

randomly from training data. Then, the forest, which contains
many decision trees, is developed as a composite classifier
model [23]. Once the forest is created, users can use the
RF model to predict across each tree with new input data.
Three parameters can be modified to optimize a RF model
including the number of trees in the forests, the number of
features (calculated as the square root of the reflectance bands
in remote sensing imagery, corresponding to 4 UAV bands
in this study) and the number of samples taken at each leaf
(was set at ‘‘1’’) [67]. In this study, the number of trees was
tested with 10, 100, 500, and 1000, and finally with 100 trees
the results obtained a relatively higher accuracy compared to
three other numbers.

2) SUPPORT VECTOR MACHINE (SVM)
SVM has known as a supervised learning model to analyze
and classify image data, especially with small datasets [29].
In two-dimensional data, a hyperplane was identified based
on the SVM model to separate effect the data into two cat-
egories. In multi-dimensional data, as in this study, the data
is converted to corresponding dimensional space and a plane
is identified to separate data to categories [68]. Two parame-
ters can be adjusted to optimize the SVM models, including
Kernel coefficient ‘‘gamma’’ and error term ‘‘C’’ values. The
higher gamma value can make the SVM models fitted with
the training dataset. Although the error is reduced, it can
make over-fitting issues. Meanwhile, the higher ‘‘C’’ value
can help the SVMmodels to usemore training datasets for the
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supporting process but it can be less accurate if the selected
training dataset is too large [69]. Therefore, the ‘‘gamma’’ and
‘‘C’’ values were selected based on the OA and Kappa values.
The optimal valueswere found for the ‘‘gamma’’ value at 0.25
and ‘‘C’’ value at 100.

H. APPLICATION OF TRAINED U-NET MODELS FOR NEW
LAND COVER CLASSIFICATION
Once the best U-Net for the land cover classification from
high-resolution images was developed, its most important
function is to interpret new UAV images. In this study,
the authors focused on land cover types in rock mining in
Daknong province, Vietnam. Therefore, a new UAV image
in a mining area of (2 × 2) km2 was taken in 2019. The
image data collection and pre-processing were also done,
as explained in section II.B and II.C. Once the new image
was inputted to the trained U-Net, the model accesses the
trained parameters to transform the new images into specific
spatial matrices, generate intermediate matrixes in 76 layers,
and interpret the final land cover classes for every pixel within
the new image. All these prediction processes do not require
any new training samples.

III. RESULTS
A. U-NET MODEL PERFORMANCE
Figure 3 describes the loss function values of seven models
using seven optimization methods. The indicators used for
comparison are the ‘‘loss value’’ of ‘‘training and validation
data’’ over epochs. In general, validation and training loss val-
ues were optimized after about 10 to 15 epochs in all methods.
The U-Net model’s training process using the Adamax was
stopped after ten epochs, and the best model was found in the
first epoch. It yields IoU results with a min of 81.5, a mean of
82.3, and a max of 82.5. Its standard deviation of 0.3 is better
than other ones (Table 3). After about 30 epochs, the models
using Adam and RMSprop only have an accuracy of about
81%, whereas the models using the Nadam and Adadelta
achieved the higher accuracy values of nearly 84%.

The model using the SGD optimizer has the accuracy value
of 68%, the training and validation loss values are too differ-
ent. The prediction works in detail at the local scale – looks
like the outcome using the pixel-based methods. It can be
easy to observe in the location of young permanent croplands.
The model using the SGD optimizer did not identify spatial
distribution of young crop lands and bare soils among the
croplands. It is different with the large region of the bare soils
in brown color (Figure 4 and 5). The distribution of each land
cover will be explained as following sections.

B. LAND-COVER INTERPRETATION IN THE MINING AREA
OF DAKNONG PROVINCE
Figure 4 shows the land-cover map based on manual image
interpretation and segmentation methods. This map was used
as a mask to train all U-Net models. According to this
result, the area of old permanent croplands (16 hectares) is

TABLE 3. The IoU values of seven models using seven optimizer
algorithms.

four times higher than those of the young permanent crop-
lands. The area of grasslands is about 14 hectares, whereas
the open-case mining areas covered more than 9 hectares.
As shown in Figure 4, the open mine is surrounded by the
permanent croplands with various species of composing trees
such as cashew, coffee and durian. These species are not
separately cultivated in different land parcels but they are
mixed between cashew, durian and coffee tree. The interpos-
ing cultivation makes the image classification confused.

The area of the open rock mine is about 17.7 ha counted
in June 2020, characterized by two discrete areas including a
exploiting core and a taking-off soil region. The exploiting
area has a rocky surface in a gray cover, and the taking
off soil layer is in yellow-red due to the concentration of
volcanicmaterial. In addition, service areas taking parts of the
mine, occupy 4.8 ha for the storage, product processing, and
transport. The service areas are clearly observed on satellite
image with bright gray of concrete surface.

The south and southwest side of the mine is the bank of
the Dak Tik lake which is submerge in a short time during the
rainy season. Thus, the bank is covered by grass most of the
rest of year. Grass cover presents as a smooth, bright green
region, and closed water surface in satellite images.

The diagrams in Figure 5 describe the image interpretation
results based on seven U-Net models using seven differ-
ent optimizer options. In general, all models can effectively
detect the old permanent croplands, open-cast mining areas,
water bodies, bare soils, and grasslands. However, three mod-
els using the Adam, Adagrad, and RMSprop optimizers could
not detect the vast area of the young permanent croplands in
the eastern side of the research area. The prediction process
was done after 120 seconds. In terms of accuracy, the models
using the Nadam and Adadelta optimizers are still the best
ones. Using the Adam optimizer, the U-Net model can detect
the differences between the young permanent croplands with
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FIGURE 3. The loss function values of seven models using seven optimization methods.

FIGURE 4. A land cover classification in the mining area of Daknong province, Vietnam based on manual image interpretation and segmentation method.

the bare soils that distribute among crops.Whereas, themodel
using the Adadelta learn thoroughly from the mask and then

combine the narrow area of bare soils among the young
permanent croplands with the crops into one object.
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TABLE 4. The Cross-validation of nine models for mining land cover classification.

C. ACCURACY COMPARISION AMONG THE TRAINED
MODELS
The accuracy differences between nine trained models
(including seven U-Net models and two benchmark models)
are presented in Table 4. The prediction maps based on the
RF and SVM models can be seen in Figure 5. Due to the
testing samples are a part of validation dataset, the OA values
of seven models are nearly similar to the results shown in
Table 3. As shown in Figure 5, the OA and Kappa values
the model using the SGD optimizer have the lowest values,
compared to other models. The results predicted from the RF
and SVMmodels have the OA andKappa values significantly
lower than most of U-Net models. Compare with the manual
interpretation mask, the model using the Adadelta optimizer
provides the best prediction.

IV. DISCUSSION
A. COMPARISON WITH FORMAL LAND COVER
CLASSIFICATION SYSTEMS
Classification of land cover is closely linked to ecological
conditions on the Earth’s surface and partly represents the
global ecosystem health, quality of the water, and useful for
sustainable land management. Most land-cover classification
studies typically use low/medium-spatial resolution satellite
images as done by Yao et al. [35], Patra et al. [70], Mansaray
et al. [71], and Hadeel et al. [72]. Commonly, they are lack
of spatial information; making difficulties in identifying land
covers in high heterogeneous regions accurately. This study
took full advantage of features of the high-resolution images
taken from UAV images such as rich texture, shape, and spa-
tial distribution information to the train land-use prediction
models. The image segmentation step was done to generate a
sample map or a mask to training models [73]–[75]. To make
a mask for training the U-Net models, in this study, the
authors also used image segmentation. However, the results
from the image segmentation step were ineffective to use
directly as a mask. An object generalization was made as a

mask to train the model (shown in Figure 4). Once the U-Net
models were trained, this step can be eliminated. According
to our results, it can be argued that the modified U-Net
architecture is capable of producing land cover maps that
improve the benchmark classification produced by former
Random Forest and SVM models. The land-cover classifi-
cation models can be attached directly to the UAV vehicle to
detect the land covers quickly without post data analysis.

Importantly, the time to predict land-use types from digital
images based on the trained U-Net models is also improved
significantly, compared to the traditional methods. Com-
monly, scientists have to take various ground control points
as a mask to interpret land-use types from UAV and other
satellite images. Whole interpretation process requires a hard
work both indoor and outdoor. Sometimes, it can take a
month to have a land-use map for a particular time. The
ground control points cannot be used for the new data or
new areas. With the use of deep learning methods applied for
trained U-Net models, now users can generate land-use map,
particularly in the mining areas in a short time (about 120s
in this study). Additionally, the trained models are not only
used for the research area, but it can also be used for different
areas where are monitored by the UAV technology.

Compared to the land-cover classification in urban and
agricultural low-lands using deep learning from former stud-
ies [35], [37], [76]–[78], this study chose a typical mining
area on basalt highland area of Vietnam. Except for the agri-
cultural lands, two land cover types were not trained in former
studies, including the open-cast mining areas and polluted
water bodies. During the rock mining activities, basalt soils
was extracted and left on the top soil surfaces. It leads to the
specific texture and homogeneous spatial distribution of the
open-case mining areas with other land cover types. A stream
in the research area were polluted by the mining activities,
leading to the high reflection of sunlight; whereas the fresh-
water stream will absorb energy from sunlight. Therefore, the
pollution level of stream flowing from the open-case mining
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FIGURE 5. Land cover interpretation based on Random Forest, Support Vector Machine and the seven U-Net models using seven optimizer functions in
the mining area of Daknong province.

areas also can monitor if the UAV images are taken for a long
time.

B. IMPROVEMENT OF LAND COVER CLASSIFICATION
Four trained U-Net models using Adam, Adagrad, RMSprop,
and SGD optimizer functions (Group 1) cannot separate old
and young permanent croplands due to the spectral similar-
ity these two land covers. Whereas, the three models using
Adamax, Nadam and Adadelta (Group 2) can separate these
two agricultural lands based on the differences in their texture
and shape. The differences between the two types of crops are
their canopy. In the same area of croplands, the old permanent
crops have a more massive canopy than the young ones.
Small bare-soil regions that are distributed among the young
permanent croplands can be eliminated by using the models
in Group 1. Meanwhile, the models in Group 2 can detect
both the small bare-soil regions and young permanent crops

as an object that is different from an object covered by full old
permanent crops. It explains why the models in Group 2 have
higher accuracy values than those in Group 1. It is crucial
if developers in the future want to detect agricultural lands
in different growing periods. New samples of agricultural
land cover types can be automatically updated in next UAV
flights to increase the accuracy of the trained U-Net model.
It also can update the sample from high-resolution image
from Google earth data sources. It should be done in further
studies.

The U-Net development for land cover classification
requires a cost and time-consuming dedication of develop-
ers, especially of scientists. To monitor mining land cov-
ers in real-time, the managers have to be equipped with a
high-performance machine to (1) transmit data directly from
the UAV machine to server with a high-speed connection,
(2) pre-process UAV images, and (3) interpret the land cov-
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ers based on the trained deep-learning model. In this study,
the authors used a CPU Intel(R) Core TMi7-9750H CPU @
2.60GHz CPU with 16GB RAM and GPU NVIDIA GeForce
RTX 2060. The average time per epoch is more than 45 sec-
onds. It needs to be improved with a supercomputer, espe-
cially in the case of the rapid land-cover classification based
on the UAV data. Additionally, the trained model has to be
updated from the new data. Instead of using seven optimizers
to improve the U-Net models, various optimization tech-
niques such as evolutionary or swarm intelligence algorithm
can also be used in future work. It would be a potential
method to train new knowledge for the trained U-Net models
from newUAVdata. Therefore, the proposedmethod does not
only require a high-performed machine, but it also requires
the development of 5G technology in the future.

V. CONCLUSION
Based on the use of a U-Net model to classify land covers in
a mining area of Daknong province, Vietnam, the individual
research questions mentioned in the introduction section can
be answered as follows:
• What are the advantages of integration between deep
learning and high-resolution images for monitoring
mining areas? The integration can reduce the time and
cost to take samples when users want to interpret land
cover types from a new UAV image. Once a U-Net
model is trained, it can update new samples and be used
to interpret quickly new data.

• How are U-Net models for land cover classification
on UAV images more effective than benchmark mod-
els? The trained U-Net model in this study with the
accuracy of 83% was used successfully to interpret six
land cover types fromUAV image taken in a mining area
of Vietnam. The final model using Adadelta provided
the more accurate results than two benchmark models
(RF and SVM). This model can become a useful tool
for managers in mining land cover management in the
future.

• How do land cover types distribute in a mining area
of Daknong province, Vietnam? Six land cover types
were identified in the research area. Although the perma-
nent croplands take 40%, open-cast mining take account
for nearly 20%. Only one stream flowing out from
the mining area has been affected by mining activities.
Therefore, its high potential to monitor the land cover
changes of this mining area based on the use of the
trained U-Net models in the future.

However, the classification of land covers in mining areas
requires a faster process to better support decision-makers
during the monitoring activities. Although this research
explained in detail scientific meaning and steps to train a
model for mining land covers, it is challenging to complete
all proposed processes on the field; apply it to the real-time
monitoring. Further studies can use the trained models to
set up on a digital chip to record and process UAV images
directly.
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