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ABSTRACT Currently, deep-learning-based methods have been the most popular super-resolution tech-
niques owing to the improvement of super-resolution performance. However, they are still lack perceptual
fine details and thus result in unsatisfying visual quality. This article proposes a novel method for high-
quality perceptual super-resolution imaging, named SRLRGAN-SN. It aims to recovery visually plausible
images with perceptual texture details by using the least squares relativistic generative adversarial network
(GAN). The method applies the spectral normalization on the network with the target of enhancing the
performance of GAN for super-resolution task. The least squares relativistic discriminator is designed to
drive reconstruction images approximating high-quality perceptual manifold. Besides, a novel perceptual
loss assembly is proposed to preserve structural texture details as much as possible. Results of experiment
show that our method can not only recoverymore visually realistic details, but also outperforms other popular
methods regarding to quantitative metrics and perceptual evaluations.

INDEX TERMS Generative adversarial network, super-resolution imaging, relativistic discriminator, per-
ceptual quality, spectral normalization.

LIST OF ACRONYMS
GAN Generative Adversarial Network
CNN Convolutional Neural Network
PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity Index Measure
ReLU Rectified Linear Unit
PReLU Parametric Rectified Linear Unit
FID Frechet Inception Distance
MSE Mean Square Error
PI Perceptual Index
SN Spectral Normalization
JS Jensen-Shannon
LR Low-Resolution
HR High-Resolution
SR Super-Resolution
SRCNN SR CNN

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea F. Abate .

VDSR Very Deep SR network
EDSR Enhanced Deep SR network
DRRN Deep Recursive Residual Network
CARN Cascading Residual Network
SRGAN SR GAN
ESRGAN Enhanced SRGAN
PESRGAN Perception-Enhanced SRGAN
NatSRGAN Natural SRGAN
WGAN Wasserstein GAN
WGAN-GP Wasserstein GAN-Gradient Penalty
LSGAN Least Squares GAN
RaGAN Relativistic Average GAN

I. INTRODUCTION
As a typical ill-posed issue during restoration [1], [2],
super-resolution for imaging reconstruction aims to improve
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spatial resolution by digital signal processing without chang-
ing the existing hardware. Due to the strong fitting ability
of deep learning, super-resolution methods for imaging task
realize a great leap of improvement. The applications are
extensive from surveillance imaging enhancement, remote
sensing system, object target recognition and other com-
puter vision scenarios [3], [4]. Recently, super-resolution
techniques for imaging with convolutional neural network
(CNN) have shown better performance than traditional meth-
ods [5], [6]. Most of CNN-based super-resolution methods
use pixel loss for training to seek improvements of typi-
cally quantitative metrics in terms of peak signal-to-noise
ratio (PSNR). While pixel loss can be easily optimized,
it usually fails to provide pleasant realistic details in accor-
dance with perceptual vision, which trends toward distortion
especially for large scale factors. Due to the dramatic devel-
opment of generative adversarial network [7], [8] in gener-
ating photo-realistic images, it provides a new approach for
perceptual super-resolution imaging. For the benefit of per-
ceptual loss and adversarial loss employed in loss minimiza-
tion, GAN-based super-resolution methods achieve greatly
improvements of abundant visual perception compared with
CNN-based methods. However, owing to the drawbacks of
training GAN problems such as vanishing gradient, diffi-
cult optimization, mode collapse, among others, GAN-based
methods suffers from limitations as following issues [9], [10].
GANs are quite difficult to train and tend quickly to collapse
because the overfitting of one of the networks it comprises.
The discriminator should be trained suitably, neither too well
nor too bad. If the discriminator trained too well, the gradient
will disappear easily. If the discriminator trained too bad,
it is difficult to distinguish between the real true sample and
the generated fake distribution. The most ideal state is the
discriminator trained to be just right, but it is difficult to grasp
the state during the training process. Firstly, original GAN
for super-resolution imaging excruciatingly difficult to train
for its fickle and unstable inherent property. Secondly, When
training the generator, the real high-resolution samples are not
involved, so the discriminator must remember all attributes
about real samples, resulting in the performance bottleneck
of guiding the generator to further produce more realistic
images. Thirdly, for the lack of texture guided optimization in
the loss function, it can’t fully maintain structural information
of geometric textures. Besides, common metrics including
PSNR and SSIM exist some disadvantages that they are
not suitable for measuring perceptual similarity that human
visions can received.

In this article, to cope with these issues indicated above,
the least squares relativistic generative adversarial network
is proposed for single image super-resolution. It aims to
generate visually plausible images with perceptual tex-
ture details. Major contributions of this study are outlined
below:

1) The spectral normalization is applied on the network
with the target of enhancing the performance of GAN
for super-resolution task.

2) The least squares relativistic discriminator is designed
to drive reconstruction images approximating high-
quality perceptual manifold.

3) A novel perceptual loss assembly is proposed to
enhance realistic texture details as much as possible
with the weighting sum of the content loss, feature loss,
texture loss, and least squares relativistic adversarial
loss.

II. RELATED WORK
A. SUPER-RESOLUTION FOR IMAGING
The goal of the super-resolution task is to recover details and
enhance resolution of images. There are various techniques
for super-resolution tasks [11]. Early classical solutions are
interpolation-based methods like bilinear and bicubic meth-
ods and so on [12], which are easy to realize but trend to
recover blurry images. More sophisticated approaches are
learning-based methods such as neighborhood embedding
algorithms, example-based algorithms and so on [13], which
are basically follow the framework of sparse coding but
the produced reconstruction results are not ideal. Currently,
deep-learning-based methods have been the most popular
techniques owing to greatly improve the performance of
super-resolution tasks. There are two main approaches to
deep-learning-based methods. The first approach is CNN-
based methods, which employ various convolutional neural
networks along with skip connections [14]. One of the first
literature put forward by Dong et al. [15] is the prominent
model named as SRCNN. Kim et al. [16] put forward the
VDSR model to gain superior super-resolution performance
by training a deeper super-resolution network. Lim et al. [17]
propose the EDSR method to obtain higher accuracy by
using an enhanced deep residual network. The research of
reference [18] provides a novel approach for super-resolution
imaging to significantly improve the training process of net-
work, which uses visual attention component within a deep
residual network. Tai et al. [19] propose the DRRN method,
which the depth of convolutional network up to 52 layers
with the global and local residual learning. Ahn et al. [20]
propose the CARN method, which connects all the layers
densely to achieve lightweight super-resolution with cas-
cading residual network. CNN-based methods always try to
minimize the pixel loss to achieve high quantitative value in
terms of PSNR and SSIM [21]. However, they are still lack
fine details and thus result in unsatisfying perceptual quality.
To overcome these issues, the second approach is GAN-
based methods, aiming to provide novel solutions for gener-
ating plausible images with photo-realistic perceptual qual-
ity. GAN is first introduced in the super-resolution field by
Ledig et al. [22], also known as SRGAN, which outperforms
previous super-resolution techniques in perceptual vision.
Recent progress in GAN-based methods sparks various new
solutions. Sajjadi et al. [23] propose the EnhanceNet method
using feed-forward fully network, with the benefits of com-
bining feature-space loss and texture-matching loss for better
image quality at high magnification scales. Wang et al. [24]
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further extend the SRGAN architecture and propose the
ESRGAN method, which employs residual-scaling dense
network and relativistic discriminator to improve the realism
of images. Vu et al. [25] employ the relativistic discriminator
and put forward the PESRGAN model coupling with focal
loss and total variance loss. Soh et al. [26] put forward the
NatSRGAN model through the use of the natural manifold
discriminator. In addition to the typical reconstruction loss,
naturalness loss and relativistic adversarial loss are added in
the NatSRGAN to further encourage images towards more
natural manifold. Haut et al. [27] propose a new generative
network for unsupervised super-resolution task by using con-
volutional generatormodel, and apply the proposed technique
to super-resolve remote sensing imagery.

B. SPECTRAL NORMALIZATION FOR GAN
The instability is the well-known issue of GAN’s training.
Arjovsky et al. [28] analyze the reason that the objective
function of GAN is based on the Jensen-Shannon (JS) diver-
gence. To deal with the issue, Arjovsky et al. put forward the
solution ofWasserstein GAN (WGAN) [28] and its improved
approach WGAN-GP [29], which replace JS divergence with
Wasserstein distance to stabilize the training of the discrimi-
nator. However, there are also some problems in the training
of WGAN and WGAN-GP, such as slow convergence, high
computational complexity and weight clipping resulting gra-
dient explosion. Recently,Miyato et al. [30] propose SNGAN
by restricting the spectral normalization of each layer to
ensure the discriminator consistent with the Lipschitz conti-
nuity, where the spectral normalization is the largest singular
value of the weight matrix. The integration of the spectral
normalization technique enables the the discriminator net-
work to be trained stablely. It has been showed by various
studies that spectral normalization for GAN is more effec-
tive and efficient than previous approaches to enhance the
optimization process. Moreover, Odena et al. [31] prove that
the well-conditioned generator can help to enhance GAN’s
performance. In view of this conclusion, Zhang et al. [32]
propose SAGAN by employing spectral normalization in
both the generator and the discriminator network for stabi-
lizing training, which not only owns low computational cost
of optimization, but also increases the stability of training
process. Hence, following from these studies, spectral nor-
malization is applied on both networks of SRLRGAN-SN for
more stable and efficient training.

C. PERCEPTUAL QUALITY ASSESSMENT
Traditionally, quantitative metrics such as PSNR and SSIM
are extensively used to evaluate image quality. However, none
of them can consistently correlate very well with human
perception [33]. Thus, these metrics alone are not suitable
for differentiating and evaluating image perceptual quality.
To precisely assess perceptual quality of super-resolution
methods, a perception-driven metric referred as perceptual
index (PI) [33] is proposed for perceptual super-resolution
tasks. As shown in [33], the PI indicator is more fit to assess

GAN-based approaches, and the less the value acquired,
the higher the quality exhibited. PI is calculated as follows:

PI (I) =
1
2
((10−Ma(I))+ NIQE(I)) (1)

where I is the image, Ma(.) and NIQE(.) represent the non-
reference quality assessments proposed in [34] and [35],
respectively. There is a high correlation between PI and
human perception. In order to ensure that the resolved image
is similar to the real sample in pix-wise content, this study
explores the metric PI couple with PSNR to measure the
reconstructed performance.

III. SRLRGAN-SN METHOD
The overall model architecture of SRLRGAN-SN method
extends from SRGAN. Compared with SRGAN, the
spectral normalization is applied on both the generative
and discriminative network with the target of enhancing the
performance of GAN for super-resolution task. In addition,
there is a least squares relativistic discriminator used to
differ between the generated super-resolution images and
original high-resolution samples. It identifies the relative
boundary difference instead of the dichotomy difference
between generated images and real samples. Furthermore,
a novel perceptual loss assembly is employed to further drive
images towards more realistic manifold. SRLRGAN-SN is
involved two adversarial networks comprised of generator
and discriminator depicted in Figure 1. Network topology
for generator and discriminator are described in Table 1 and
Table 2, respectively. Layers with the same type are signed in
the same color, where k , n, s represent the size of convolution
kernel, the number of feature maps and the size of convo-
lution stride, respectively. The generator network is mainly
composed of 5 residual blocks for producing high-quality
images. Each residual block consists of two convolution
layers, two spectral normalization layers and one activation
layer with PReLU function in contact with skip connection
in ResNet [36]. In front of residual blocks, a convolution
layer and an activation layer are employed for feature extrac-
tion. Two sub-pixel convolution layers in the tail are used
for up-sampling. The network of discriminator is in charge
of distinguishing produced images from true samples. The
discriminator is increased from 64 to 512 feature maps with
the networkmainly consisting of 8 convolutional layers. Each
convolutional layer is followed by one spectral normalization
layer and activated with Leaky ReLU function [22]. The
network of discriminator ends with two dense layers to return
the probability that the true high-resolution sample is more
plausible than the fake produced image.

It is well known that designing an effective loss function
is very key for outputting pleasant results. The multiple
perceptual loss combination for optimizing is integrated to
the SRLRGAN-SN framework. Apart from the least squares
relativistic adversarial loss in providing better overall visual
quality for super-resolution, the error of the generator is
also calculated through the content loss, feature loss as well
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FIGURE 1. SRLRGAN-SN overall model architecture. (a) Network of generator; (b) Network of discriminator.

TABLE 1. Network topology for generator.

as texture loss to recover finer texture details. In this case,
each loss function in the combination provides an unique
perspective on GAN-based perceptual super-resolution tasks.

A. CONTENT LOSS
Conventional content loss generally employs mean-square-
error(MSE) loss to measure the pixel-based content simi-
larity. It is prone to causing overly smooth results. In this
study, we introduce the Charbonnier loss [37] as content
loss to maintain edge details. As shown in [37], it pro-
vides pixel-space regularization for loss optimization and
contributes to the qualitative improvement. The content loss

TABLE 2. Network topology for discriminator.

is calculated as follows:

Lcon =
1
T

T∑
t=1

√(
GθG

(
ILRt
)
− IHRt

)2
+ ε2 (2)

Lcon represents the content loss. Where GθG
(
ILRt
)
is the

produced image and IHRt , t = 1, . . . ,T is the true original
sample corresponding with low-resolution sample ILRt , t =
1, . . . ,T . θ represents network parameters of the generator.
ε is a minute constant term near to 0, which denotes the
influence of the Charbonnier penalty.

B. FEATURE LOSS
Conventional feature loss for measuring the semantic percep-
tion is following in [38]. It employs feature maps extracted
after activation in perceptual loss. However, Wang et al. [24]
have demonstrated that employing feature maps before
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activation can producing more accurate texture details. Thus,
following [24], we use the pre-trained vgg-19 model to
extract the feature representation of images generated by
SRLRGAN-SN and the true original samples. The feature
loss is defined as follows:

Lfea =
∥∥∥φ (IHR)− φ (GθG (ILR))∥∥∥22 (3)

Lfea represents the feature loss. Where GθG
(
ILR
)
and IHR

are the produced image and the true original sample, respec-
tively. φ denotes the feature mapping from the vgg-19 model.

C. TEXTURE LOSS
Texture loss is the metric measuring the structural style sim-
ilarity. It is presented by Gatys et al. [39] to enable tex-
ture details to look convincingly in their style and context.
By adding this loss, it is motivated to to further push images
towards realistic textures and visually much closer style as
much as possible. The texture loss is defined as the correlation
between feature maps described as follows:

Ltex =
∥∥∥Gram (φ (GθG (ILR)))− Gram (φ (IHR))∥∥∥22

(4)

Ltex represents the texture loss. Where GθG
(
ILR
)
and IHR

are the produced image and the true original sample, respec-
tively. φ denotes the feature mapping from the vgg-19 model.
Gram(F) = FFT represents the GramMatrix of feature layer
F multiplied on transposed self.

D. LEAST SQUARES RELATIVISTIC ADVERSARIAL LOSS
In the original GAN for super-resolution tasks, the discrimi-
nator maximizes its capability to only distinguish real or fake
images. Recently, the relativistic discriminator is proposed
by Jolicoeur-Martineau [40], which can not only generate
more higher-quality images than original GAN but also stand
out the impressive stabilization for super-resolution tasks
in [24], [25]. Unlike original GAN, relativistic GAN esti-
mates the probability that the real sample is more realistic
than the generated image, which not only real samples but
also generated images are involved in the adversarial learning
process. The relativistic average GAN (RaGAN) presented
in [40] for adversarial training is calculated as follows:

LRaGAND = −Exr∼P
[
log

(
D̃ (xr )

)]
−Exf∼Q

[
log

(
1− D̃

(
xf
))]

(5)

LRaGANG = −Exf∼Q
[
log

(
D̃
(
xf
))]

−Exr∼P
[
log

(
1− D̃ (xr )

)]
(6)

D̃ (xr ) = σ
(
C (xr )− Exf∼QC

(
xf
))

(7)

D̃
(
xf
)
= σ

(
C
(
xf
)
− Exr∼PC (xr )

)
(8)

where xr ∼ P and xf ∼ Q represent the distribution of real
samples and generated images in [40], respectively. C (.) sig-
nifies the output of non-transformed discriminator. σ refers
to the sigmoid function.

To further improve the ability of the relativistic discrim-
inator for super-resolution imaging, the least squares rela-
tivistic discriminator is employed to drive produced images
highly approximating the quality of real high-resolution
samples. The Least Squares GAN (LSGAN) proposed by
Mao et al. [41] is an extension to the original GAN, which
penalizes generated samples according their distance from
the decision boundary to encourage higher-quality genera-
tion. Inspired by the idea of LSGAN devising the boundary
to best separate real samples and generated images, the least
squares relativistic adversarial loss derived from RaGAN is
designed to drive images approximating high-quality percep-
tual manifold, which is defined as follows:

LADVD = E
[(
C
(
IHR

)
− E

[
C
(
GθG

(
ILR
))]
− 1

)2]
+E

[(
C
(
GθG

(
ILR
))
− E

[
C
(
IHR

)]
+ 1

)2]
(9)

LADVG = E
[(
C
(
GθG

(
ILR
))
− E

[
C
(
IHR

)]
− 1

)2]
+E

[(
C
(
IHR

)
− E

[
C
(
GθG

(
ILR
))]
+ 1

)2]
(10)

where GθG
(
ILR
)
and IHR are the produced image and the

true original sample, respectively. C (.) signifies the output
of non-transformed discriminator.

E. TOTAL LOSS
Hence, the cost of total loss is calculated by weighted sum-
ming up four losses indicated above, which is calculated as
follows:

LG = αLcon + βLfea + γLtex + δLADVG (11)

LD = δLADVD (12)

where α, β, γ and δ are the weights given to the content
loss, feature loss, texture loss and least squares relativistic
adversarial loss, respectively, which enable to satisfy aspects
contributed by the combination of multiple loss functions
simultaneously.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. TRAINING DETAILS
The environment is configured as Table 3. TheDIV2Kdataset
is employed to train our SRLRGAN-SN model, which con-
tains 800 images for training and 100 images for validation.
Data augmentation for raising the diversity of training images
with random 90◦, 180◦, 270◦ rotations and horizontal flips.
The Adam [42] optimizer is employed with β1 = 0.9 and
β2 = 0.999. We initialize the learning rate to 10−4 and
halve over every 50000 iterations. The proposed model is
optimized with the total loss in equations (11) and (12), where
α = 10−2, β = 1, γ = 1 and δ = 10−3 are empirically
set to be optimal respectively. The feature mapping from the
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TABLE 3. Configuration of experiment environment.

vgg-19 model before activation is gained from the 4-th layer
in front of the 5-th pooling layer.

B. COMPARISON OF GAN PERFORMANCE
To access the GAN performance of our SRLRGAN-SN
model, the Frechet Inception Distance(FID) proposed by
Martin et al. [43] is used. The FID is a popular metric for
evaluating the performance of GAN, and lower score is better
correlating well with higher generative quality. In addition,
smaller score of the FID indicates more stable training of
the model [43]. The FID score is calculated based on a
pre-trained Inception v3 model ψ(.) [44], which is defined as
follows:

FID(ψ(IHR), ψ(GθG
(
ILR
)
))

=

∥∥∥µIHR − µGθG(ILR)∥∥∥22
+Tr

(
6IHR +6GθG(I

LR) − 2
(
6IHR6GθG(I

LR)

) 1
2
)
(13)

whereGθG
(
ILR
)
and IHR are the produced image and the true

original sample, respectively. µ refers to the mean feature
obtain from image. 6 refers to the covariance matrix for
the feature vector of image. Tr is the trace linear algebra
operation to sums up all the diagonal elements. SRLRGAN-
SN is compared with GAN-based super-resolution methods
including SRGAN [22], ESRGAN [24], PESRGAN [25],
NatSRGAN [26], and SRLRGAN-SN without spectral nor-
malization (SRLRGAN). We use available source codes
and open results of indicated methods above respectively
to compare the performance in experiments. From Table 4,
SRGAN indicates the lowest GAN performance in terms
of FID, which the value is 6.83. SRLRGAN-SN shows the
best GAN performance in terms of FID, which the value is
6.22. The value of our method is 0.61, 0.50, 0.41, 0.36 less
than that of SRGAN, ESRGAN, PESRGAN and NatSR-
GAN separately. It shows that the least squares relativistic
discriminator is effective at improving the model’s perfor-
mance. Besides, the result of SRLRGAN-SN method applied
the spectral normalization is more better than that with-
out spectral normalization. It demonstrates the effectness of
least squares relativistic generative adversarial network with
spectral normalization to enhance the performance of GAN
for super-resolution task from the quantitative evaluation
perspective.

TABLE 4. Comparison of GAN performance.

C. COMPARISON OF OTHER POPULAR METHODS
To validate the performance of our method for super-
resolution imaging, our SRLRGAN-SN method is compared
with other state-of-the-art(SOAT)methods regarding to quan-
titative metric and perceptual quality. All results are achieved
on Set5, Set14, BSD100 and Urban100 dataset [22], respec-
tively. The SOAT methods include VDSR [16], EDSR [17],
SRGAN [22], EnhanceNet [23], ESRGAN [24], PESR-
GAN [25], NatSRGAN [26]. VDSR and EDSR are typ-
ical PSNR-driven CNN-based super-resolution methods,
which are aiming for high PSNR value rather than realistic
visual quality. SRGAN, EnhanceNet, ESRGAN, PESRGAN
and NatSRGAN are popular perception-driven GAN-based
super-resolution methods in recent years. We use available
source codes and open results of indicated methods above
respectively to compare the performance in experiments.

For perceptual super-resolution imaging, good perceptual
quality is crucial from a perspective of human vision. In the
aspect of quantitative metric, we use PI in equations (1)
couple with PSNR to evaluate the objective performance [45],
although the PSNR is not as effective as the PI metric in
terms of perceptual quality. Thus, PSNR is used to offer a
relatively minor point of referential estimation for the loss of
quality between the pixel values, on account of not indicating
perceptual quality well. PI offers a primary point of reference
for evaluating the perceptual reconstruction quality from the
perspective of satisfying the requirements of the perceptual
assessment. Quantitative results compared to SOAT methods
regarding to PSNR and PI are shown in Table 8. Bold values
signified the best performance are highlighted. As shown
in Table 5, at a magnification factor of 4x, EDSR obtains
the highest average value of PSNR, and our method rises
to the top in terms of average PI. As expected, the PSNR
values obtained by PSNR-driven methods are higher than
these of GAN-based methods, but the PI indicators cor-
relating with perceptual quality universally far lag behind
these of GAN-based methods. The SRLRGAN-SN method
wins the first place in SOAT methods regarding to average
PI, where the mean value is 3.14, 2.79, 0.24, 0.36, 0.37,
0.21 and 0.58 lower than that of VDSR [16], EDSR [17],
SRGAN [22], EnhanceNet [23], ESRGAN [24], PESR-
GAN [25] and NatSRGAN [26] separately. Compared with
PSNR-driven methods, Our proposed method also achieves
comparable performance in terms of PSNR. The graphs
about epochs versus considered metrics in terms of average
PSNR and PI are shown in Figure 2. To further compare
the SRLRGAN-SN with more methods considering different
magnification factor, comparison results for 2x upscaling are
depicted in Table 6. Clearly from Table 5 and Table 6, it sig-
nifies that SRLRGAN-SN can effectively obtain competitive
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TABLE 5. Comparison of SOAT methods in terms of PSNR/PI (4x upscaling).

FIGURE 2. The graphs about epochs versus considered metrics for 4x upscaling. (a)average PSNR; (b)average PI.

TABLE 6. Comparison of SOAT methods in terms of PSNR/PI (2x upscaling).

FIGURE 3. Comparison of perceptual quality with SOAT super-resolution methods for image ‘‘126007’’ from BSD100 dataset (4x upscaling).

advantages in terms of quantitative metric compared with
other SOAT methods.

In the aspect of perceptual quality, the comparison of visual
perception is used to rank the perceptual performance. The
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FIGURE 4. Comparison of perceptual quality with SOAT super-resolution methods for image ‘‘baboon’’ from Set14 dataset (4x upscaling).

FIGURE 5. Comparison of perceptual quality with SOAT super-resolution methods for Image ‘‘img_081’’ from Urban dataset (4x upscaling).

comparison results of perceptual quality for 4x upscaling are
illustrated in the Figure 3 to Figure 5. Although EDSR trained
by pixel loss achieves the highest value of PSNR, it obviously
compares unfavourably with other GAN-based methods on
the overall reconstructed perceptual vision. It supports the
point that PSNR-driven methods are always prone to recon-
struct blurry and smooth images. Compared with other SOAT
methods in visual verisimilitude, we can also visually observe
that our SRLRGAN-SN method not only reconstructs tex-
tures sharper and more natural, but also looks less distin-
guishable from the true high-resolution image. For image
‘‘126007’’ from BSD100 dataset, it can be seen that most of
SOATmethods suffer from blurry artifacts and cannot do well
to sharpen up the feature-rich structures and regions between
the building. By comparison, our SRLRGAN-SN method
seems impressive sharpening around detailed structures of
the building and provide natural and realistic textures. For

image ‘‘baboon’’ from Set14 dataset, it can be seen that most
of SOAT methods fail to preserve fine details of whiskers
and background textures. By comparison, the visual effect of
our SRLRGAN-SNmethod synthesising plausible textures is
very noticeable. For image ‘‘img_081’’ from Urban dataset,
it also can be seen that SRLRGAN-SN method generates
visually plausible image with more perceptual texture details.
Impressive results validate that our proposed method indeed
achieve the superior outperformance correlating well with
visual perception.

D. ABLATION ANALYSIS
To prove the effectiveness of each module of SRLRGAN-SN,
the ablation study is performed to compare their impact on
contributions for super-resolution imaging. Results of abla-
tion regarding to PI on BSD100 set are depicted in Table 7.
Bold values signified the best performance are highlighted.
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FIGURE 6. Comparison of perceptual texture details of different modular settings for image ‘‘223061’’ from BSD100 dataset. The
subgroup (a) to (e) are corresponding to the settings (a) to (e) indicated in Table 7, respectively.

FIGURE 7. Comparison of perceptual texture details of different modular settings for image ‘‘285079’’ from BSD100 dataset. The
subgroup (a) to (e) are corresponding to the settings (a) to (e) indicated in Table 7, respectively.

The content loss Lcon, feature loss Lfea, texture loss Ltex ,
proposed adversarial loss LADV , and spectral normalization
operation SN are conducted ablation analysis through dif-
ferent modular settings in Table 7. To validate the perfor-
mance of our proposed adversarial loss derived fromRaGAN,
the adversarial loss LRaGAN based on RaGAN is added by
contrast. The model only trained by Lcon in setting (a) gains
the worst performance. After the Lfea is added in setting (b),
the loss combination provide significant improvements to
3.29 in terms of perceptual index. When the Ltex is added
in setting (c), the perceptual quality is further enhanced to
3.20. Higher perceptual quality can be gained in setting (e)
by adding proposed LADV in contrast with adding LRaGAN in
setting (d). Besides, the performance of setting (f) applied the

spectral normalization on the basis of setting (e) achieves the
best result.

Figure 6 and Figure 7 show the comparison of per-
ceptual texture details of different modular settings on
BSD100 dataset. The subgroup (a) to (e) are corresponding
to settings (a) to (e) indicated in Table 7, respectively. In each
column, the original high-resolution sample is displayed on
the top, and the corresponding super-resolution image is dis-
played on the below. As anticipated, the model only trained
by setting (a) shows the fuzziest vision effect with poor
perceptual quality from a perspective of appealing to a vision
viewer. After the feature loss is added in setting (b), the vision
effect has some improvement, but the texture details are not
obvious. When the texture loss is added in setting (c), the
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TABLE 7. Results of ablation analysis in terms of PI on BSD100 dataset.

TABLE 8. Comparison of model complexity.

texture details have some improvement, but the perceptual
quality is not pleasant. When the RaGAN adversarial loss
is added in setting (d), the perceptual quality is improved
obviously from the vision perspective. Furthermore, When
the RaGAN adversarial loss is replaced by our proposed least
squares relativistic adversarial loss in setting (e), it is more
outstanding in perceptual quality than the setting (d). The
setting (f) employed in this study with spectral normaliza-
tion achieve optimal performance in terms of PI and yields
the most visually realistic details. To sum up, it shows that
all these modules indicated in Table 7 have contributed to
increase the capability for perceptual super-resolution imag-
ing. The least squares relativistic generative adversarial net-
work with spectral normalization to be effective at improving
the model’s performance at generating high-quality percep-
tual images from the vision perspective.

E. COMPLEXITY ANALYSIS
To prove the computational ability of SRLRGAN-SN,
a study about the number of FLOP and the parame-
ters is conducted. It is compared with the VDSR [16],
EDSR [17], SRGAN [22], EnhanceNet [23], ESRGAN [24],
PESRGAN [25], NatSRGAN [26]. Results of complexity
analysis are depicted in Table 8. Obviously from Table 8
that SRLRGAN-SN can achieve competitive performance,
the number of FLOP and the parameters are far less than
models that own excellent performance in terms of PSNR
or PI, such as EDSR, ESRGAN and PESRGAN. While
the number of FLOP and the parameters of SRLRGAN-SN
are not the lowest, it gets a balance between perceptual
quality and model complexity successfully. It verifies that

SRLRGAN-SN is efficient for super-resolution imaging with
lightweight of complexity.

V. CONCLUSION
A novel method named SRLRGAN-SN for super-resolution
imaging is proposed combined with spectral normalization
and least squares relativistic discriminator. On the one hand,
the spectral normalization is applied on the network to
enhance the performance of GAN for super-resolution task.
On the other hand, the least squares relativistic discriminator
is used to drive generated images towards more perceptual
manifold. We also adopt a new combination of multiple loss
functions to produce visually plausible images with realistic
texture details as much as possible. Results of experiment sig-
nify that SRLRGAN-SN can recover more fine texture details
and acquire better performance compared with other SOAT
for super-resolution imaging. In the future work, we will
explore more optimization functions and adopt more network
structures such as dense residual aggregation network to
further increase the capability of GAN for super-resolution
imaging.
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