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ABSTRACT In this paper, an energy management system (EMS) has been developed based on model
predictive control (MPC) to optimally dispatch the power units and particularly handle the duck curve
fast ramping events. The methodology is specifically developed considering higher penetration of solar
photovoltaic power subjected to realistic physical constraints. Battery energy storage, load shedding and
solar curtailment have been utilized to effectively control the duck curve fast ramping events. The proposed
system has been assessed with the help of a case study using a 24-bus RTS system. Consequently, detailed
flexibility analyses were carried out and it has been proven that the given energy management and control
system is capable of handling fast ramping events of duck curve. Furthermore, it has been observed that the
overall operation cost of the system is also minimized. The performance of the developed model is compared
with traditional non-MPC based mixed-integer linear programming approaches and it has been concluded
that MPC-based optimization is more economical and effective in handling the duck curve challenges.

INDEX TERMS Battery energy storage system, curtailment, duck curve, model predictive control, photo-
voltaic, load shedding.

NOMENCLATURE
Parameters
ηch Charging efficiency of BESS.
ηdis Discharging efficiency of BESS.
Pmaxg Maximum power generation of unit g.
Pming Minimum power generation of unit g.
Pload,i(k) Demand at bus i in time step k .
T Total time.
Utg Minimum up-time of unit g.
Dtg Maximum down-time of unit g.
Rupg Ramp-up of unit g.
Rdng Ramp-down of unit g.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiuhua Huang .

Cshed Price penalty for load shedding.
Ccurt Price for solar PV curtailment.
TPV ,i Solar PV Capacity at bus i.
PPV ,i(k) Solar PV Power in time step k at bus i.
Cup
g Start-up cost of generator g.

Cdn
g Short-down cost of generator g.

Pnet,i(t) System net load in time instant t .
PRatedij Rated capacity of transmission lines.
Ei BESS Capacity at bus i.
Pnet (t) Net load in time t .

Number Sets
N Planning horizon.
Ng Set of generators.
Ni Set of buses.
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Variables

TOC Total operational cost.
Fcg(k) Fuel cost of unit g in time step k .
Sug(k) Start-up cost of unit g in time step k .
Sdg(k) Shut-down cost of unit g in time step k .
Pg(k) Power generated by unit g in time step k .
ppv,i(k) PV power generated at bus i in time step k.
Pcurt,i(k) PV power curtailed in time step k.
Pshed,i(k) Load shed at bus i in time step k .
δg(k) On/off status of unit g in time step k .
yg(k) Start-up status of unit g in time step k .
zg(k) Shut-down status of unit g in time step k .
SoCi(k) State of charge of the BESS at bus i in time k .
PBESS,i(t) BESS power at bus i in time step k .
Pij(k) Power flow from bus i to bus j in time step k .
Pdef (t) Unblalanced net load in time t .
Flexon(t) System online flexibility in time t .
Flexoff (t) System offline flexibility in time t .
θi(k) Voltage angle (rad) at bus i in time step k .
Rnet (t) System net load ramp in time t .
ag, bg, cg Fuel cost coefficients of unit g.

I. INTRODUCTION
Solar photovoltaic (PV) integration into power grids is on
the rise [1], [2]. Solar PV has been widely adopted as it is
relatively more available and more predictable than the other
renewable energy sources (RESs). This has led to the high
penetration of solar PV. The output of solar PV depends on
the prevailing weather conditions. The solar PV can generate
power only during the day and none after sunset because the
output depends on solar irradiance. The output is usually at
its peak during mid-day. With this behavior, high solar PV
penetration causes the net load to exhibit a strange behaviour
where the peak of the net electricity demand shifts from the
day-time to the night. This cuts peak demand during the
day-time which results in a very sharp increase in demand
after sunset. This changes the shape of the net demand curve
into the form of a duck shape known as the duck-curve. In this
curve, there is a large gap between the day and night demands.
This poses a great challenge in meeting the net demand. High
penetration of RESs also leads to a new operating paradigm
where the grid has too much RES without corresponding
adequate demand. This leads to curtailment of the RES out-
put which might be counterproductive [3]. The duck curve
requires the use of more flexible and expensive power sources
in order to smooth the sharp increase and decrease in the
peaks. This raises another concern of flexibility of power sys-
tem as the grid incorporates more PVs. In countries with high
penetration of solar PV, unplanned stress on the electrical grid
occurs regularly [4]. The National Renewable Energy Labo-
ratory (NREL)made a report about the duck curve. The report
pointed out the risk of over-generation posed by the duck
curve with increased PV penetration [5]. It discusses in detail
the level of PV curtailment needed to improve flexibility and

FIGURE 1. Duck curve fattening.

pointed out the benefits of employing distributed resources to
improve flexibility and reduce curtailment.

One of the main solutions for handling the duck curve
ramps include PV curtailment. Curtailment involves decreas-
ing the power output of wind or solar PV below the potential
output. This may cause the overall benefits of adding more
solar to fall to a point where additional installations are not
worth the cost (Cochran et al. 2015) [6]. The duck curve only
represents one day of the year and does not adequately show
the amount of actual curtailment when there is an increase
in the PV penetration, and does not show the effects of
smoothing options. To this end, the authors of [7] proposed
a technique of modelling probabilistic duck curve and prob-
abilistic ramp curve using kernel density estimation, copula
function, and dependent discrete convolution. According to
the NREL report, the California ISO (CAISO) suggested
two approaches to mitigating the effects of the duck-curve,
namely, fattening and flattening the duck-curve. Fattening
encompasses all the methods that lead to an increase in the
flexibility of the power grid and gives room for continuous
penetration of variable generation resources, for instance,
the use of energy storage systems. It also involves decreasing
theminimum power generation. This is illustrated in Figure 1.
Flattening involves shrinking the ‘‘belly’’ shape of the duck
curve. This basically involves demand response by shifting
the supply/demand patterns, to allow solar to provide the
energy demand that would not normally be present in the
middle of the day as proposed by [5]. An example of duck
curve flattening is shown in Figure 2. Other options that
were proposed to address the duck-curve challenges include
regional interchange of energy.

Energy storage system (ESS) is widely used for improving
the flexibility of power systems. In power grids with high
PV penetration, ESS have been used to provide flexibility.
Managing ESS optimally is crucial to power system opera-
tion [8]. The authors of [9] proposed amodel that uses electric
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FIGURE 2. Duck curve flattening.

boilers for heat and pumped hydro storage to enable a higher
penetration of renewable energy in China. The authors of [10]
developed a microgrid scheme which uses PV. The potential
energy from high rise buildings is used for mini hydro pump
storage which shifts load from peak to off-peak periods.
Chaudhary and Rizwan presented a technique that accom-
modates PV penetration through an energy management sys-
tem (EMS) using pumped hydro storage and advanced PV
forecast [11]. Floch et al. presented a distributed charging
algorithm for plug-in electric vehicles to mitigate the duck
curve challenges [12]. Recent works on handling duck-curve
using ESS considered concentrated solar power (CSP) and
pumped storage hydroelectricity (PSH) as ESS for handling
the duck-curve peaks [13], [14]. PV curtailment is economi-
cally better solution to flexibility than ESS as shown by better
results in dealing with flexibility issues, this is pointed out
by Sevilla et al. [15]. Demand side management is also an
option for handling flexibility requirements posed by high
PV penetration. It involves shifting some of the loads from
peak to off-peak times [16]. For instance, Sanandaji et al.
propose a method of using thermostatically controlled loads
such as air conditioners and refrigeration units to serve as fast
regulation reserve service in the sunset thereby meeting some
demand after sunset [17]. Lazar proposed an ‘‘aggressive
demand response’’ as one of the strategies of dealing with
duck curve challenges [18]. Demand-response programs are
used to reduce load on the days when the stress on the system
are not critical. Demand-response includes shedding some
load when the power production is low. This is done at a cost
which increases the total cost of operation.

This paper proposes a model for tackling the challenges
posed by the duck-curve as a result of high PV penetra-
tion. This involves smoothing the duck curve using high
flexibility product with an efficient EMS. The model min-
imizes the total operation cost of the power grid. Because
the solar PVs depend on solar irradiance and ambient

temperature [19], [20], their output is the highest during the
day and zero after sunset. This might lead to under pro-
duction by the grid after sunset and overproduction during
peak periods of the PV output. One approach to handle
this is the use of PV curtailment during overproduction and
load shedding during periods of underproduction. The BESS
being a high flexibility product, absorbs power during high
ramp-down of the duck-curve and it discharges power during
the high ramp-up of the duck-curve. This paper proposes an
MPC-based optimal scheduling of generating units, BESS,
load shedding and PV curtailment. Current researches on
duck-curve handling generally model the economic dispatch
in an open-loop system one day ahead [13], [14]. The models
are formulated based on the forecast of the weather condi-
tions, the predictions of the demand and electricity price,
and the optimal unit dispatch is carried out in one cycle for
each hour of the day ahead. The unit schedule based on these
static methods may not be optimal in real time situations due
sudden fluctuations of some factors in real time. In the MPC
model, the operational schedule of the power-grid is formu-
lated based on the predictions of future control actions for the
EMS. These predictions are continuously updated in relation
to the latest system state. The MPC-based model is compared
with a non-MPC mixed integer linear programming (MILP).
The optimization problem is formulated as an MILP problem
based onMPC. Flexibility analysis is carried out on themodel
to show its effectiveness. The proposed model is simulated
on the IEEE 24-bus reliability test system. The optimization
is solved in GAMS optimizer using CPLEX solver. The
main contributions of the paper can be summed up as
follows:

1) The model uses MPC for producing control actions
for charging and discharging of the BESS, load shed-
ding, PV curtailment and unit scheduling. For the MPC
model in this paper, 1-hour sampling time and 6 hours
of planning horizon for the MPC are used. The model
is tested for 24 hours because it coincides with the daily
electricity demand and price.

2) A comparison is made with a non-MPC based MILP.
This comparison is made to show the effectiveness of
the proposed model.

3) A detailed flexibility analysis is carried out to show
the effectiveness of the proposed EMS. The flexibility
analysis showed that the EMS effectively handled the
fast ramps of the duck curve.

The rest of the paper is organized as follows. Section II
shows the formulation of the proposed model. Section III
discusses the model predictive control. Section IV shows the
formulation of the flexibility analysis. SectionV describes the
case study. Section VI discusses the results of the simulation.
Section VII concludes the paper.

II. SYSTEM MODEL
The MPC-based EMS handles the fast ramps of the duck
curve. The EMS dispatches the thermal units for balancing
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FIGURE 3. MPC Scheme.

the net load and schedules the BESS for minimizing PV
curtailment and load shedding. The time horizon of the MPC
is chosen to be N = 6, and the time-step k is 1 hour. The
total time horizon for the operation of the power grid is
24 hours. Using 1-hr time-step and 6-hr time horizon for the
MPC would give more accurate control actions prediction.
The 1-hr time-step for the MPC is chosen as it matches the
1-hr time instant of unit commitment. Using 6-hr planning
horizon would be faster than higher time steps like 24-hr.
The main objective is to minimize the total operational cost
(TOC). For each time step k, MPC optimizes the TOC for
the time horizon N , while implementing only the first control
action and updating the state of the system. This is done for
every time instant t of the time horizon of the power system
operation T . This is shown in Figure 3. The state-space MPC
is a good candidate for powergrids. The state-space formu-
lation can easily incorporate multivariable systems, which is
the case for powergrids. With regards to the proposed model,
the state vector x(k) is the state of charge SoC(k) of the BESS.
The output y(k) for power grids coincides with the state x(k).
The control vector u(k) is the BESS power PBESS,i(k) which
consists of the power flows that can be manipulated, namely,
curtailed PV power Pcurt,i(k), load shed Pshed,i(k), power
supplied by the generators Pg(k) and online status of the
generating units δg(k). The disturbances d(k) of the MPC are
quantities that can be measured but not manipulated or con-
trolled. The disturbances with regards to the proposed EMS
are the solar PV output PPV ,i(k) and load Pload,i(k) which
are represented by the net load Pnet,i(k). The BESS is only
considered as the state variable because theMPC is developed
to give an optimal UC of the power sources by making
efficient management of the BESS. Since the optimization
problem involves unit commitment, 1-hr timescale is used.
This timescale synchronizes with the capacity of the BESS
which is inMWh.Whichmeans the BESS charges/discharges
for 1 hour long before the next decision is made. The MPC
dynamics can be defined in the state space equation shown

in (1) below.

x(k + 1) = x(k)+ u(k)+ d(k)

y(k) = x(k) (1)

With

x(k) = SoCi(k)

u(k) = [Pcurt,i(k) Pshed,i(k) Pg(k) δg(k)]T

d(k) = Pload,i(k)− PPV ,i(k) = Pnet,i(k)

y(k) = x(k)

The MPC-based model is formulated as follows. From equa-
tion of the state in (1), the BESS state is defined by (2).

SoCi(k + 1) = SoCi(k)+ ηPBESS.i(k)

η =

{
ηch, if PBESS,i(k) > 0 (charging)
1/ηdis, otherwise (discharging)

(2)

PBESSi(k) is defined by the power balance equation in (3).

PBESS,i(k) = Pg(k)+ Pshed,i(k)+ PPV ,i(k)

−Pcurt,i(k)− Pload,i(k) (3)

The rest of the system constraints are expressed as follows.

−Ei ≤ PBESS,i(k) ≤ Ei (4)

0 ≤ SoCi(k) ≤ Ei (5)

Fcg(k) = ag(Pg(k))2 + bgPg(k)+ cg ∀g ∈ Ng
(6)

Pg(k)− Pg(k − 1) ≤ Rupg (7)

Pg(k − 1)− Pg(k) ≤ Rdng (8)

δg(k)− δg(k − 1) ≤ δg(τ ) (9)

δg(k − 1)− δg(k) ≤ 1− δg(τ ) (10)

where τ = k + 1,. . . , min(k + Utg − 1, T ) for minimum up
time. For minimum down time τ = min(k + Dtg − 1, T ).

yg(k)− zg(k) = δg(k)− δg(k − 1) (11)
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yg(k)+ zg(k) ≤ 1 (12)

δg(k), yg(k), zg(k), ∈ [0, 1] (13)

Sug(k) = Cup
g yg(k) (14)

Sdg(k) = Cdn
g zg(k) (15)

Pming ≤ Pg(k) ≤ Pmaxg (16)

Pcurt,i(k) = PPV ,i(k)TPV ,i − ppv,i(k) (17)

0 ≤ ppv,i(k) ≤ PPV ,i(k)TPV ,i(k) (18)

0 ≤ Pshed,i(k) ≤ Pload,i(k) (19)

Pij(k) =
θi(k)− θj(k)

Xij
ij ∈ l (20)

−PRatedij ≤ Pij(k) ≤ PRatedij ∀i, j ∈ Ni (21)

The cost function of the MPC-based EMS is defined by

TOC=min
T∑
t=1

Ng∑
g=1

[Fcg(t+k|t)+Sug(t+k|t)+Sdg(t+k|t)

+CshedPshed,i(t+k|t)+CcurtPcurt,i(t+k|t)] (22)

The BESS power limit is given by (4) [23]. The SOC
limit is defined by (5). The fuel cost of the generating units
is defined by (6) based on the formulations in [24], [27].
The ramp-up and ramp-down constraints of the units are
defined by (7) and (8) respectively [25]. Theminimum up and
minimum down constraints are defined by (9) and (10) based
on the formulation in [26]. The constraint in (9) defines the
minimum up time in such a way that if a unit is turned on at
time step k , that unit will remain on for the rest of either the
time horizon or the unit’s minimum up time, depending on
which is shorter. For instance, if unit g is off at (k − 1), that
is, δg(k−1) = 0 and then turned on at k , that is, δg(k) = 1, (9)
will force all the binary optimization variables corresponding
to the unit ON/OFF-state to be equal to 1 for next Utg − 1
or T . Constraints in (11) and (12) ensure that generator g is
only in one state, that is, on or off at any given time step k .
δg(k), yg(k) and zg(k) are defined as binary variables by (13).
The start-up and shut-down costs of the units are defined
by (14 and (15). The maximum and minimum generation
limits of the units is defined in (16).

Sudden drop in demand causes challenges with units that
are not flexible. Instead of shutting down these units or
leaving them online and generating power in excess of the
demand, the PV output is curtailed. The PV curtailment is
modelled by (17) [27]. It defines the amount of PV output
curtailed at time step k . The first term in the right hand
side of (17) is the maximum possible solar energy that can
be generated at time step k . The second term is the actual
solar energy produced at time step k . During periods of over-
production, the actual solar energy generated is controlled
so that it is less than the maximum that can be generated.
The difference between these two terms is the PV energy
curtailed. The PV output at the buses is limited by (18).

The interruptible load constraint is defined by (19). It con-
stitutes a certain quantity of load that can be interrupted at a

cost. The equation shows the maximum amount of load that
can be interrupted.

The optimal power flow (OPF) formulation is modelled
by (20) and (21). The power injection into bus i is given
by (20). The flow limit from bus i to bus j on the transmission
line is given by (21), it limits the flow of the power between
the buses.

The cost function of the MPC is defined by (22) which
is the objective function of the optimization problem. The
first term is the fuel cost of the units which is defined in (6).
The second and third terms are the start-up and shut-down
costs of the units, respectively. They are defined in (14)
and (15) respectively. The second to the last term is the cost
for load shedding. The last term of (22) is the PV curtailment
cost. It is cost incurred as a result of curtailing the PV output.

A. NON-MPC BASED MILP OPTIMIZATION
TheMILP consists of a linear objective function with a binary
variable (generator status) and linear constraints. The MILP
is of the form shown below.

min cT x Ax = b (linear constraints)

l ≤ x ≤ u (bound constraints)

All the x take integer values.
In the non-MPC MILP formulation, the objective function

and constraints are similar to that of theMPC based optimiza-
tion without the time steps. The optimization is performed
for the 24-hr planning horizon in one cycle not in steps.
Time instant of 1-hr is used in the simulation. A comparison
is made between the non-MPC MILP optimization and the
MPC-based optimization is done in Section VI.

The MPC-based model in this paper is formulated using
MILP. The timescale of the MPC based formulation is slow
enough to be comparedwith the non-MPC based formulation.
Also, since the timescales of both the non-MPC MILP opti-
mization and that of the MPC coincide, the MILP optimiza-
tion is embedded into the MPC giving rise to MILP-based
MPC optimization. Using the MILP formulation, the feed-
back control action of the MPC can be applied which pro-
duces future control actions. For each time instant of the
MPC, an MILP optimization is solved.

III. MODEL PREDICTIVE CONTROL
The MPC scheme consists of computing existing system
knowledge and future predictions online in order to obtain
the control actions to a system instead of using offline static
parameters [28]. The MPC consists of time steps which con-
stitute a finite time horizon. For every time step, the sys-
tem is optimized for a finite time horizon by producing a
sequence of control action, and implementing only the first
control action [21]. Then the system enters the next time step
with an updated system state and future knowledge, and the
above calculation is repeated. MPC is a closed loop control
action as it continuously modulates control actions to correct
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inaccurate predictions. The methodology of the MPC control
strategy is carried out in the following steps [22].

1) The future outputs for a finite time horizon N , are
forecasted by the MPC at time instant t . The predicted
output y(t + k|t), for k = 1 . . .N , depends on the past
input and output up to time instant t , and on the future
control signal u(t + k|t), k = 0 . . .N − 1.

2) The control signal is computed based on optimization
of the objective. The control signal keeps the output as
close as possible to the reference trajectory (objective).

3) The current control signal u(t|t) is implemented while
the next control signals are discarded, this is because at
the next time step k = 1, the output y(t + 1) is known.
Step 1 is repeated with this new values of the output
y(t + 1|t) and state x(t + 1|t). Therefore, the control
signal u(t + 1|t + 1) is calculated.

IV. FLEXIBILITY ANALYSIS
Flexibility is the probability that the available flexible
resources would satisfy the demand as at when needed with-
out curtailment and load loss. Lack of upward flexibility
results in load loss, while the lack of downward flexibility
causes RES curtailment. The flexibility index used in this
paper is the period of flexibility deficit (PFD) [29]. This
shows periods where the system ramping is greater than the
ramping provided by the system’s flexibility sources. This is
expressed as follows [30]:

Pdef (t) = Rnet (t)− (Flexon(t)+ Flexoff (t)) (23)

where, the net load ramp is defined by equation (24) below:

Rnet (t + 1) = Pnet (t + 1)− Pnet (t) (24)

The online and offline available flexibility are given by equa-
tions (25) and (26).

Flexon(t) =
∑
g

xg(t)min(Rupg ,P
max
g − Pg(t)) (25)

Flexoff (t) =
∑
g

(1− xg(t))min(Rupg ∗ (1− yg),P
min
g ) (26)

For negative values of the net load ramp, Pdef (t) becomes:

Pdef (t) = |Pnet (t)| − Flexon(t) (27)

Flexon(t) =
∑
g

xg(t)min(Rdng ,Pg(t)− P
min
g ) (28)

Online flexibility is the ramping capability of the online
power sources in handling the ramps of the net load at time
instant t . Offline flexibility consists of available offline units
that can be started in order to meet up with a ramp up in
demand at time instant t .

V. CASE STUDY
The proposed formulation is simulated on the IEEE
24-bus RTS. The model is simulated in GAMS software
using CPLEX solver. Historical solar data of Dammam,
Saudi Arabia, is used for the summer season of 2017, 2018

FIGURE 4. Duck curve.

and 2019. The average of a daily solar output is taken as the
PV output data. Table 1 shows the parameters of the thermal
units for the IEEE 24-bus. The transmission lines data and
load data are provided in [31]. A 6-hr MPC time horizon
with 1-hr time step is used. The case study is conducted
for 24 hours. This is chosen as it coincides wih the daily
customer demand and daily cycle of the solar energy. The
random variables of the load and PV are not considered
because historical values are used. The MPC controller uses
this data to predict the control actions for successive time
steps. In order to illustrate a high level of PV penetration,
six 200 MW solar PVs are integrated at buses 8, 10, 13,
15, 18 and 20 which resulted in a duck curve pattern as
shown in Figure 4. BESSs of 20 MWh capacities are initially
integrated to each bus containing the solar PV. The capacity of
the PVs is later changed to 230MW at each bus after carrying
out sensitivity analysis in Section VI-C as shown in Figure 5
and the BESS capacities at each bus is changed to 130 MWh.

The cost of the load shedding at every bus for each hour
is fixed to 500 $/kWh [32]. The PV curtailment cost is cal-
culated as in [3]. The PV curtailment cost is 286 $/kWh. The
BESS characteristics are shown in Table 2. The total capacity
of the thermal units is 3,375 MW and peak of the net load is
2,802.7 MW. Although the total capacity of the thermal units
is greater than the peak of the net load, BESSs, load shedding
and PV curtailment are used in the model because the thermal
units can not respond to the fast ramps of the duck curve.
In order to show the effectiveness of the model, the results
from the MPC based EMS is compared to that of an MILP
optimization with no MPC.

VI. RESULTS
A. MILP OPTIMIZATION
This is the open loop solution to the mixed integer opti-
mization. In this simulation, the MPC is not implemented.
It based on the solution to the MILP optimization of the unit
commitment problem. After the simulation is run, the optimal
unit commitment is shown in Figure 6. The SOC level is
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TABLE 1. Parameters of the Thermal Units.

TABLE 2. Typical BESS characteristics.

FIGURE 5. Allocation of solar PVs on the IEEE 24-bus RTS.

shown in Figure 7. The total operational cost for 24 hours
is $ 340,235.

B. MPC-BASED
This is the closed loop solution to the optimization problem
based on MPC. The model proposed in (2) to (22) is imple-
mented for 24-hr planning horizon. The time horizon for each
hour of the 24-hr MPC based optimization is 6 hours. In each
hour of the optimization, control actions are optimized for
the next 6 hours while implementing only the first control
actions. After the simulation, the optimal unit commitment
is shown in Figure 8. The SOC of the BESSs is shown
in Figure 9. The total operational cost is less than that of the
MILP optimization.

FIGURE 6. Unit commitment for non-MPC MILP.

In all the simulations, the system is operated with the
same load profiles, generating units, PV capacity and BESS
capacity. The main purpose of the optimization is to tackle
the duck curve fast ramps by maintaining the energy balance
between production and consumption.

The SOC level of the MPC-based optimization is more
evenly distributed along the planning horizon compared to
that of the MILP optimization. In the MPC-based SOC is
higher in the early morning and lower later in the day. This
is because of steeper slopes of the duck curve and higher
demand later in the day. After performing sensitivity analysis
and determining the right size of the BESS (130 MWh),
the TOC of the MPC-based optimization is $ 284,752. Using
the same size of BESS (130 MWh) for the non-MPC MILP
optimization, the TOC is $ 340,235. The MPC based EMS is
proven to be effective as it handles the fast ramps of the duck
curve at a cost that is less than the non-MPC based MILP
optimization.
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FIGURE 7. SOC for non-MPC MILP.

FIGURE 8. Unit commitment for MPC-based EMS.

C. SENSITIVITY ANALYSIS
Sensitivity analysis is carried out to find the effects of varying
the PV capacity and size of the BESS on the TOC. An initial
optimization is carried out using PVs of 200 MW each at
buses 8, 10, 13, 15, 18 and 20 and BESSs of 20 MWh each at
buses 8, 10, 13, 15, 18 and 20. The size of the PV at the buses
is varied from 10 MW to 280 MW. The results are shown
in Table 3. Increase in the PV capacity decreases the TOC.
A point is reached where further increase in PV penetration
(230MWcapacity, 48.42% penetration) increases the TOC as
shown Table 3. This is as result of the net load having steeper
slopes (faster ramps). Thus, 230 MW PVs are allocated each
at buses 8, 10, 13, 15, 18 and 20. The resulting duck curve
(net load) is shown in Figure 10.

Using PVs of 230 MW each at buses 10, 13, 15, 18 and
20, the BESS size is varied. The effect of the variation of
the BESS is shown in Figure 12. Increase in the size of the
BESS decreases the TOC. With 130 MWh BESSs each at

FIGURE 9. SOC for MPC-based EMS.

FIGURE 10. Duck curve with 48.42 % penetration.

buses 10, 13, 15, 18 and 20, the minimum TOC ($ 284,752)
is reached where increase the size of the BESS results in no
further decrease in the TOC as shown in Figure 12. As a
result, 130 MWh BESSs are used and the SOC level is shown
in Figure 12. The MPC-based optimization is carried out
using 130 MWh BESSs and 230 MW PVs.

D. FLEXIBILITY ANALYSIS
Flexibility assessment is carried out on the model to show
the effectiveness of the flexibility of the generating units and
BESSs in tackling the fast ramps of the duck curve. The
flexibility analysis is carried out based on (23) to (28).

1) NO BESS
The flexibility analysis is carried out with 230 MW PVs
without BESS. Due the to fast ramps of the duck curve and
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TABLE 3. Sensitivity of PV capacity relative to TOC for 24 hours.

FIGURE 11. System flexibility with no BESS.

limited flexibility of the generating units, flexibility deficit is
recorded as shown in Figure 11. Upward flexibility deficit
is recorded as a result of 216.1 MW load shedding. The
load shedding is as a result of the generating units limited
flexibility to quickly ramp up in response to the duck curve
fast ramp.

2) FLEXIBILITY OF THE MPC-BASED MODEL
The MPC-based model optimally scheduled the generating
units and the BESS. No PFD is recorded for the 24 hour
planning horizon. This is as result of the fast ramps of the
net load being equally met by the flexibility of the generating

FIGURE 12. Sensitivity of BESS capacity for 24 hours.

FIGURE 13. Flexibility of the generating units and BESS.

units and BESSs. Figure 13 shows the net load ramps, and
the available flexibility of generating units and BESS for
each hour t of the planning horizon. As shown in the figure,
the available flexibility of the generating units and BESS is
greater than the net load ramps for each hour t . The flexibility
analysis carried out on the model shows the that the proposed
model is effective because there is no period of flexibility
deficit through out the planning period.

The BESS is sufficient enough to provide the necessary
charging/discharging actions as shown in the sensitivity and
flexibility analyses. The flexibility analysis also shows that
for all the time instants, the ramps of the net load are being
handled by the system’s flexibility. In case the BESS charging
and discharging actions are not sufficient, the EMS would
use PV curtailment and load shedding to meet the ramping
requirements. The control actions of the MPC modified the
duck curve. The high ramps of the duck are reduced. This

186848 VOLUME 8, 2020



S. S. Ahmad et al.: MPC Approach for Optimal Power Dispatch and Duck Curve Handling

FIGURE 14. Modified duck curve.

eliminated load shedding. The modified duck curve is shown
in Figure 14.

VII. CONCLUSION
In a power system with high PV penetration, a model was
developed based on MPC to handle the duck curve phe-
nomenon. The fast ramps of the duck curve are effectively
handled by the EMS. The MPC-based EMS handled the fast
ramps using BESS, load shedding and PV curtailment. A case
study is carried out on a 24-bus RTS system to simulate
the model. The flexibility analysis carried out shows that
the proposed model is effective in handling the fast ramps
of the duck curve while minimizing the total operation cost.
This is evident as there is no period of flexibility deficit in
the entire planning horizon. In comparison with non-MPC
based MILP, the MP-based optimization is more economical
in handling the duck curve fast ramps.
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