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ABSTRACT Stereo disparity estimation is a difficult and crucial task in computer vision. Although many
experimental techniques have been proposed in recent years with the flourishing of deep learning, very
few studies take into account the optimization of computational complexity and memory consumption.
Most previous works take advantage of stacked 3D convolutional block to generate fine disparity, but with
a high computational cost and a large memory consumption. Considering the aforementioned problem,
in this paper, we proposed an efficient convolutional neural architecture for stereo disparity estimation.
In particular, a compact and efficient multi-scale extractor named MCliqueNet with stacked CliqueBlock
was proposed to extract the more refined features for constructing multi-scale cost volume. In order to reduce
the computational cost and maintain the accuracy of disparity, we utilized knowledge distillation scheme to
transfer contextual features from a teacher network to a student network. Furthermore, we present a novel
adaptive SmoothL1 (ASL) Loss for calculating the similarity between the contextual features of the teacher
network and those of the student network, resulting in a more robust distillation process. Experimental results
have shown that our method achieves competitive performance on the challenging Scene Flow and KITTI
benchmarks while maintaining a very fast running speed.

INDEX TERMS Stereo disparity estimation, 3D convolution, knowledge distillation, compact extractor, cost
volume.

I. INTRODUCTION
Estimating indoor and outdoor scenes via images is a chal-
lenging problem for 3D vision, which is due to the fact that
the depth of information is lost in the process of capturing
pictures. Therefore, it is crucial for 3D vision to accurately
estimate the missing depth information from images. In gen-
eral, depth estimation can be divided into active depth esti-
mation and passive depth estimation. Due to the low cost
of passive depth estimation, it is widely used in 3D vision.
Furthermore, passive depth estimation can be divided into
monocular depth estimation and stereo depth estimation, and
stereo depth estimation usually works better. Stereo depth
estimation uses the relationship between disparity and depth
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to estimate depth. The corresponding disparity is estimated
by matching pixels from rectified image pairs captured by
two cameras. The relationship for converting between depth
and disparity isD = Fl/d , whereD denotes depth, d denotes
disparity, F denotes the focal length of the camera, l denotes
the distance between two camera centers.

If the precisely disparity can be estimated, we can get the
exactly depth. Therefore, stereo disparity estimation from a
pair of stereo images has drawn more and more attention,
which is also widely used in 3D reconstruction [2], [3],
augmented reality (AR) [4], [5], self-driving [6], [7] and
robotics [8]–[10]. The traditional stereo disparity estimation
methods can be divided into global energy function [11], [12]
and local similarity [13], [14]. These methods have sev-
eral steps including matching cost computation, cost aggre-
gation, disparity optimization and post-processing [15].
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FIGURE 1. Comparing our proposed method with AnyNet [1] on scene flow dataset, it is clear that our results are better.

However, most traditional approaches are very sensitive to
occlusions, textureless, reflective surface and thin structures
areas.

In contrast, the emergence of powerful tool—
Convolutional Neural Network (CNN) can extract useful
information and contextual features from an image or video
stream for stereo disparity estimation. Not only can it effec-
tively improve feature matching accuracy, but also reduce the
handicrafts. Zbontar et al. [16] first presented a CNN-based
method to extract features and matching for estimating stereo
disparity, which pioneered the application of CNN to feature
matching and achieved remarkable results. Therefore, more
researchers are using CNN to extract and match features to
improve the accuracy of stereo disparity estimation. Although
these methods achieve remarkable results with CNN features,
they still fail in some challenging areas like occlusions.

To address aforementioned problem, methods based on 3D
convolution [17], [18] were proposed to aggregate matching
cost between two image features. They fully utilized the spa-
tial information to achieve more accurate results. However,
the calculation of 3D convolution will take heavy compu-
tation and memory burden. The process of 3D convolution
wouldmake training and deployment computationally expen-
sive in practice.

In order to reduce the number of parameters in networks,
the most intuitive way is to cut down on the number of 3D
convolutions. However, reducing the number of 3D convo-
lutions is usually at the expense of the accuracy. Therefore,
the model compression of 3D convolutions without los-
ing accuracy is a hot topic for researchers. For instance,
GANet [19] and GwcNet [20] were proposed. However, these
methods still cannot work in realtime due to the very high
computational cost.

Hence, this study is dedicated to the development of real-
time models. StereoNet [21] is one of them. It was proposed
to provide a realtime implementation using a fully end-to-end
CNN with a 720 × 1280 input on an Nividia Titan X GPU.

Furthermore, AnyNet [1] was also proposed to effectively run
on a computation-limited platform, which is a lightweight
network, achieving state-of-the-art results while havingmuch
fewer parameters than StereoNet [21].

To further enable themodel to be used in real-world scenes,
we believe that model compression is of critical importance
for disparity estimation. Model compression approaches can
be used to speedup the inference process with less mem-
ory and calculation requirements. These approaches can be
divided into network pruning [22], [23], parameter quantiza-
tion [24]–[26], low-rank decomposition [27]–[29] and knowl-
edge distillation (KD) [30]. In terms of both computational
cost andmemory resource, numerous studies based on knowl-
edge distillation have been reported in computer vision and
image processing. However, knowledge distillation was first
proposed by [30] for classification task. It cannot be directly
used to solve the regression problem in our task.

In this paper, to resolve aforementioned problem, we pro-
posed a novel fully end-to-end architecture for stereo
disparity regression using knowledge distillation scheme.
Meanwhile, to reduce the affection of the normally used
L2 loss by outliers in knowledge distillation module, we pro-
posed a novel loss called adaptive SmoothL1 (ASL) Loss.
Furthermore, we combined Focal Loss (FL) [31] and ASL
Loss to improve the performance of student network. In addi-
tion, a compact feature extraction network called multi-
scale CliqueNet (MCliqueNet) was proposed to significantly
improve the accuracy of disparity under a real-time condition.

Our main contributions can be summarized as follows:
1) We present a realtime framework in stereo disparity

estimation that yields significant improvements over
state-of-the-art results without increasing computa-
tional cost.

2) To our best knowledge, this is first work that utilizes
distillation knowledge scheme for disparity regression.

3) We show that the direct use of knowledge distillation
is hardly helpful in stereo disparity estimation, thus

192142 VOLUME 8, 2020



Q. Gao et al.: Compact StereoNet: Stereo Disparity Estimation via KD and Compact Feature Extractor

we proposed an adaptive distillation method to guide
the student network by using an adaptive loss func-
tion, which can alleviate the impact of bad teacher
propagation.

4) A new network structure called MCliqueNet was pro-
posed for feature extraction in stereo disparity estima-
tion and its effectiveness has been demonstrated.

II. RELATED WORKS
Feature matching is an important step in both traditional
and learning based algorithms in stereo disparity estimation.
The first step in feature matching is to extract features.
However, artificial features such as SIFT [32], SURF [33]
and ORB [34] are often time-consuming and not robust in
occasions, textureless, reflective surface and thin structures
areas, resulting in many mismatches in the feature matching
step. That is due to the fact that the wrong matches keep
lower cost than correct matches. Therefore, CNN-based fea-
ture extraction neural networks are emerging. Meanwhile,
CNN-based approaches not only improve the robustness
of feature matching, but also leverage a variety of tem-
poral and spatial information, making the performance of
learning-based methods constantly stand on SOTA. There-
fore, in this part, we will introduce traditional algorithms and
the learning-based methods respectively in detail.

A. TRADITIONAL STEREO DISPARITY ESTIMATION
Stereo disparity estimation has been investigated over several
decades, since the classic paper [35] was presented. The
traditional stereo disparity estimation methods can be divided
into global energy function [11], [12] and local similarity
[13], [14]. For the methods based on local similarity, SAD
(Sum of absolute differences), SSD (Sum of squared differ-
ences), NCC (normalized cross-correlation) [36] are used to
calculate the local similarity. Although it can achieve dense
disparity, it is very sensitive to outside interference. For the
methods based on global energy function, the key is to con-
struct energy functions and find a solution for optimization
problems. Common ways to solve the optimization problems
include Dynamic Programming [37], Graph Cut [38], and
Neural network [39]. More comprehensive results have been
reported in literature [15].

B. LEARNING-BASED STEREO DISPARITY ESTIMATION
Although there have been some breakthroughs with tradi-
tional methods on some complex conditions. For learning-
based methods, which can be traced back to 2016,
Zbontar and LeCun [16] first utilized a convolutional archi-
tecture to compute matching cost of the image patches.
After that, Luo et al. [40] utilized a Siamese architecture to
improve the accuracy. Mayer et al. [41] attributed a big syn-
thetic Scene Flow dataset to promote an end-to-end training
[17], [42]. Especially, GC-Net [17] was proposed, which is
first work to use a 3D convolution to merge geometry and
contextual information with soft argmin for disparity regres-
sion. Following GC-Net [17], PSMNet [18] was presented,

which used a pyramid pooling module and stacked a 3D
hourglass network in cost volume step to refine disparity map
and obtained remarkable performance than previous related
works. To improve the accuracy of disparity, Yang et al. [43]
utilized a semantic feature for disparity prediction.

C. LIGHTWEIGHT AND REALTIME CNN FOR STEREO
DISPARITY ESTIMATION
Despite the proliferation of CNN-based approaches, it poses
a significant challenge for real-world applications. Due to the
requirement of high computations of previous CNN-based
approaches, they are not usable in some realtime applications.
Thus, it is essential to develop a lightweight approach for
stereo disparity estimation to fulfill the requirement of these
realtime applications.

A lightweight network is a good choice for the trade-off
between accuracy and computation. The related lightweight
network includes pruning [22], [23], quantization(e.g. binary
connect [24], XNOR-Net [25]), low-rank decomposition
(e.g. mobilenet series [27], [44], [45], shufflenet series
[28], [46]) and knowledge distillation(KD) [30]. These meth-
ods have been successfully embedded on a resource-limited
platform with model compression techniques.

Lightweighting of stereo disparity estimation has been
studied. Du et al. [47] utilized low-rank decomposi-
tion to extract features in stereo disparity estimation.
Tulyakov et al. [48] used bottleneck modules to decrease
the memory footprint in inference. Du et al. [47] adopted an
efficient feature extractor with depth-wise separable convolu-
tions to reduce computational cost. In addition, GANet [19]
combined the traditional and deep learning methods to
decrease the use of 3D convolutions by adding SGA and
LGA layers for aggregating disparity. Guo et al. [20] also
proposed a Group-wise Correlation Stereo Network, which
utilized Group-wise cost volume to cut the computation cost.
Duggal et al. [49] developed a differentiable PatchMatch
module to speedup the inference process.

In addition, other studies focus on a realtime implemen-
tation of the stereo disparity estimation. Khamis et al. [21]
proposed the first realtime end-to-end network (StereoNet)
with 1/16 original resolution to regress the disparity map
and a post-processing step to refine the coast disparity by
dilated convolution. Tonioni et al. [50] proposed an unsuper-
vised, lightweight and effective continuous online network
(MADNet) to reduce computational cost. Further,
Wang et al. [1] presented the AnyNet, which not only
obtained a better performance but also used less parameters
(about 1/10 parameters) than StereoNet [21].

Although recent approaches have made significant
success, there’s still a long way to make stereo disparity
networks even more lightweight and realtime. Following
previous research, we would like to expand the research using
knowledge distillation to further improve the performance of
stereo disparity estimation. The knowledge distillation has
shown great performance in various fields such as face recog-
nition [51], object detection [52], speech recognition [53] and
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FIGURE 2. The whole framework and data pipline proposed in this paper. It consists of a teacher network [20] (red dash part) and a student
network (green dash part), where MCliqueNet was shown in Figure 3. The cost volume was mimicked after the 3D convolution filtering and the
softmax operation (blue dash part). Distillation loss module will be introduced in Section IV-D3 in detail.

pose regressor [54]. However, most studies using knowledge
distillation have been well applied in classification task but
not for solving a regression problem like disparity estimation.
Therefore, in this paper, we are committed to investigate how
knowledge distillation can be used to improve the perfor-
mance of stereo disparity estimation.

III. PROPOSED METHODS
Based on the aforementioned problem, we proposed a
novel stereo disparity estimation method with less param-
eters to learn the high accuracy yet fast CNN architecture.
An overview of the architecture is shown in Figure 2, which
consists of a teacher and a student network. In this paper,
the teacher network is a big network. We use the state-of-the-
art network–GwcNet [20], which has a mount of stacked 3D
convolutions with approximate 4.48M parameters. The stu-
dent network is a lightweight cascaded network with 0.042M
parameters, which is two order less than the teacher net-
work. For the teacher network, more details can be found in
GwcNet [20]. In this paper, we present only the components
of the student network.

A. MULTI-SCALE CliqueNet (MCliqueNet)
FEATURE EXTRACTOR
For the stereo disparity estimation task, we believe that more
refined features can make the probability of the mismatch
lower. AlexNet [55], VGG [56], ResNet [57], DenseNet [58]
and CliqueNet [59] play an important role in the development

of feature extraction networks. However, in our study,
how to design a lightweight and efficient feature extractor
is crucial for stereo disparity estimation. Considering the
number of parameters and the computational complexity,
the CliqueNet architecture is a good choice. The Clique-
Block of CliqueNet [59] can help to ease the training diffi-
culties and utilize parameters more efficiently and achieves
more refined features with smaller parameters. Therefore,
the CliqueBlock is chosen as the base unit in our feature
extractor. In order to further reduce the computational load
of the entire system, we designed a multi-scale CliqueNet,
instead of using the traditional CliqueNet directly. The multi-
scale CliqueNet converts a unique high-resolution image fea-
ture extraction task into a multi-scale feature extraction task.
CliqueBlock [59] after downsampling cascade can reduce the
images directly extracted at original resolution, which can
reduce the resource consumption of high-resolution image
feature extraction only.

The proposed MCliqueNet architecture mainly consists
of three CliqueBlocks [59] and two adaptive channel atten-
tion transition modules. The overview of network can be
seen in Figure 3. Considering not adding an additional com-
putational burden, we only perform one cycle for feature
refinement with CliqueBlock. Before the first CliqueBlock
architecture, we extract convolutional features with the kernel
size of 7× 7. Figure 3 illustrates the structure of MCliqueNet
in detail, which is shared by left and right images. Each
CliqueBlock will be aggregated with previous block after
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FIGURE 3. The structure of the proposed MCliqueNet. It mainly consists of three CliqueBlocks [59] and two adaptive channel attention transition
modules. The specific network parameters are given in detail in Figure 4.

FIGURE 4. The network parameters of the proposed MCliqueNet. There
are four branches in total, and the parameters on each branch are shown
here in detail.

3 × 3 convolution and average pooling, which aims to get
more contextual convolutional features and global features
in terms of both spacial and channel information. Next,
the aggregated features are fed into next CliqueBlock by
adaptive channel attention scheme. The purpose of this mod-
ule is to downsample high-resolution features while better
preserving the features extracted at high resolution. After the
adaptive channel attention transition module, the size of the
feature map will be rescaled to half of the original size, but
it does not change the number of channels. The parameter
details of the proposed network can be obtained in Figure 4,
which is divided into four branches to show the modules and
each branch and distinguished by different colored pipelines.

As mentioned above, in order to improve the robustness
of the features and reduce the probability of mismatches in
the stereo disparity matching process, we decided to merge
multi-scale features. Therefore, we utilize the output of three
concatenation layers to aggregate different levels of feature
maps, which can produce feature maps in different resolution
(1/16x, 1/8x, 1/4x).

B. THE CONSTRUCTION OF COST VOLUME
Oncewe have themulti-scale featuremaps, we need to build a
cost volume. The proposedmethod generates a 5-dimensional
cost volume to construct the relationship between a real 3D
world and a 2D image in different levels. The cost volume
represents the matching cost between the left and right fea-
tures from 0 to maximum disparity for every pixel. In order
to trade off complexity and accuracy, we combined the results
after subtraction between the left and right features with
L1-norm to construct the cost volume instead of using the
group-wise cost volume [20] directly, which also can be seen
in Figure 5. We marked the corresponding features that need
to be subtracted with the same color block, such as blue, red,
green, and etc. and the part without color is filled with zeros.

As we know, the most complex part of the deep learning
model in stereo disparity estimation is to refine cost volume.
Generally, we need to construct a 5-dimensional cost volume
of B×C×M×H×W , whereM denotes the maximum dispar-
ity, and the typical M = 192, H ,W respectively represent
the resolution of the input image, B is the batchsize, C is
the cost volume channel (here C = 1). If the 5-dimensional
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TABLE 1. List of aggregational components at different resolutions.

FIGURE 5. The process of building cost volume. According to the
obtained feature map, we combined the results after subtraction
between the left and right features with L1-norm to construct the cost
volume, the part without color is filled with zeros.

cost volume is sent directly to the cascade 3D convolution,
the computational cost is very large. Therefore, in our task,
in order to reduce the computational burden of 3D con-
volution, we built only 1/16 resolution cost volume where
M = 192/16.
For the 1/4 and 1/8 feature maps, in order to allow the

3D convolution only to learn an offset based on the previous
stage, we simply construct a residual cost volume by warping
the features in the same space. In particular, the correspond-
ing offset is −2, −1, 0, 1, 2 (M = 5), which can reduce the
computation significantly.

C. DISPARITY AGGREGATION AND REGRESSION
For disparity aggregation, although utilizing a lot of 3D con-
volutions is a good choice to merge geometry and context
information [17], the network will be at a extremely heavy
computational burden. Therefore, in this work, we used a few
3D convolutions to aggregate disparity (The number of 3D
convolution is 5).

In order to reduce the computational load of 3D convolu-
tion, the number of channels of 3D convolution is different at
different resolutions. Table 1 shows in details.

For the disparity regression, traditional methods use a
WTA (winner to take all) strategy. However, WTA is not dif-
ferentiable in a fully end-to-end training. Kendall et al. [17]
proposed a differential soft argmin method, which can be
written as follows:

d̂ =
Dmax∑
d=0

d × σ (−A) (1)

where d and A denote the disparity level and the filtered cost
volume after 3D convolution respectively. d̂ represents the
estimated disparity. The σ (·) denotes the softmax operation.
After this method was proposed, it has been widely used

in the stereo disparity estimation. Therefore, a soft argmin
method is also used in this work.

FIGURE 6. The matching cost. The horizontal axis represents the disparity
level, and the vertical axis represents the estimated cost of the
corresponding disparity, with a smaller cost indicating a higher matching.

D. KNOWLEDGE DISTILLATION OF COST VOLUME
In this part, we will state how to improve the performance
of small network by knowledge distillation scheme. The
high accuracy and large networks is called teacher networks,
while the low accuracy and small is called student networks.
In stereo disparity estimation pipeline, cost aggregation is a
critical step, which affects the accuracy and efficiency. Most
previous works take advantage a lot of 3D convolutions to
obtain accurate disparity, resulting in a high computational
cost and requiring a mount of memory resource. In order to
fully exploit the performance of small networks, we have ana-
lyzed and compared the cost volume between the large net-
work and the small network.We found that the cost volume of
teacher network after 3D convolution filtering has extremely
lowmatching cost in narrow range at corresponding disparity,
but the student networks are in a wide range. The results
are illustrated in Figure 6. Thus, we believe that if we could
transfer the characteristic of the teacher network to the student
network, then the performance of the student network could
be potentially improved without any cost. In order to make a
student network mimic the cost volume of a teacher network,
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mean square error (L2 loss) is used to minimize the distance
between cost volumes of the teacher network and the student
network. However, L2 Loss is not robust which can be easily
affected by outliers. In this paper, we proposed to utilize a
SmoothL1 loss for calculating the similarity of cost volumes
between teacher and student networks. The SmoothL1 loss can
be written as follows:

SmoothL1(x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

(2)

SmoothL1 can not only reduce the influence of outliers,
but also have the advantage of L2 Loss, which changes the
gradient as the loss changes. The first part of cost volume
loss of distillation knowledge can be represented as follows:

Lcvs =
1

HWD

HW∑
i=0

D∑
j=0

SmoothL1(a
ij
t − a

ij
s ) (3)

where H ,W , D denote the height,width and disparity of cost
volume. aijt ∈ At ,,a

ij
s ∈ As, As and At denote cost volume of

the teacher network and the student network after 3D convo-
lution filtering respectively, which can be seen in Figure 2.

In this paper, although we use the SOTA algorithm
GwcNet [20] as teacher network, the pre-trained teacher net-
work may not be accurate in inference processing for some
cases, which may guide student worse. If we simply allow
student networks to learn teacher networks without choice,
their performance will be poorer on some cases. To resolve
aforementioned problem, we proposed an adaptive SmoothL1
(ASL) Loss, which can adjust the contribution of the teacher
network by using the error between the teacher network
and the ground truth. Therefore, misdirection can be filtered
during knowledge distillation by adaptively adjusting Kj. The
function can be rewritten as follows:

Lacvs = KjLcvs (4)

where Kj is an adaptive weight, it can be written as follows:

Kj =

(
1−

EPE(DjT ,D
j
GT )− min(E)

max(E)− min(E)

)
(5)

where DjT denotes the jth prediction of teacher, DjGT denotes
the ground truth. E := {EPE(DkT ,D

k
GT )|k = 1, 2, . . . ,N },

N is the total number of training datasets, EPEmeans the end-
point-error. Therefore, as long aswe first infer the teacher net-
work on the training datasets, we can obtain the max(E) and
min(E). Please note that the Kj decreases as EPE(D

j
T ,D

j
GT )

increases. It can also be interpreted in a different way: when
the teacher network output has a large error, we should adjust
its teaching contribution (Kj should be decreased), which
aims to ensure the accurate knowledge of the teacher network.

After 3D convolution filtering, the cost volume will be
sent into the softmax operation, which yields the distribution
of probability of disparity from 0 to max disparity. From
Figure 7, we can see that the distribution of the teacher net-
work is unimodel and concentrate, but the student is bimomal

FIGURE 7. The probability of distribution. The horizontal axis represents
the disparity level and the vertical axis the estimated probability of
corresponding disparity.

evenmuti-peak. Therefore, the student network is ambiguous.
After Equation 1, it will produce errors at the disparity map.
In order to tackle this problem, we make the student network
to learn the distribution of the teacher network using a Cross
Entropy (CE) Loss. Furthermore, the distribution of disparity
has more negative samples than the positive samples (the
value of distribution of disparity is zero in most disparity
level). In order to reduce the influence of negative sam-
ples, inspired by Focal Loss(FL) [31], we modified the loss
function in order to apply knowledge distillation to regress
disparity. It can be written as follows:

Lcvdf =
1
HW

HW∑
i=0

( Dmax∑
d=0

(1− pis(d))
−γ (−pit (d) · log(p

i
t (d)))

)
(6)

where H andW denote the height and width of cost volume,
pis(d) ∈ Ps, pit (d) ∈ Pt . Ps and Pt denote the distribution
of the student network and the teacher network respectively,
which can be seen in Figure 2.

In this paper, since the cost volume of teacher network
is on a 1/4 scale but the cost volume of student network is
on a 1/16 scale, we should up-sample(x4) the cost volume
of student network with bilinear interpolation as the same
size of the teacher network (the teacher is B × C × D/4 ×
H/4×W/4, while the cost volume of the student network is
B × C × D/16 × H/16 × W/16). For example, we should
un-sample the As to fit the size of At . Please keep in mind that
we only up-sample the cost volume of the student once when
calculated the loss between teacher and student, we did not
further down-sample the up-sampled cost volume to aggre-
gate disparity, which also can be seen in Figure 2. The reason
we don’t down-sample the cost volume of the teacher is that
down-sampling may result in the loss of teacher knowledge,
which will affect the learning process of student.

E. SPATIAL PROPAGATION NETWORK (SPN)
In the last phase, we also used the SPN network [60]
to further improve performance which can refine our
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disparity predictions. The principle of SPN is to use the local
similarity of the left image to refine the disparity map. Please
refer to the original article to get more details.

F. LOSS FUNCTION
We train our network in a fully end-to-end supervised way,
which means the network directly estimated disparity image
through only a pair of stereo images. The proposed total loss
is written as follows:

Ltotal = λd1Lacvs + λd2Lcvdf + Ldis (7)

where λd1 and λd2 are the weight of Lacvs and Lcvdf
respectively. Ldis is the SmoothL1 loss between the estimated
disparity and ground-truth, which can be written as follows:

Ldis =
3∑
i=0

HiWi∑
0

λi

HiWi
SmoothL1(d∗i − d̂i) (8)

where d∗ is ground truth. d̂i denotes the estimated disparity
of ith stage. λi is the weight of ground truth and estimated
disparity of the ith stage. Hi and Wi denote the height and
width at different stages. The whole process can be clearly
understood in Figure 2.

IV. EXPERIMENTS AND RESULTS
In this section, we thoroughly evaluated the performance
of our proposed network architecture—Compact StereoNet
on Scence Flow [41], KITTI2012 [61] and KITTI2015 [62]
dataset at different settings. We reproduced Anynet and com-
pared the achieved results in our study. For a fair compari-
son, the performance of other methods have been achieved
using the same dataset and the same validation process. For
those metrics that have not been reported in previous works,
we have re-implemented the method in this study.

A. IMPLEMENTS DETAILS
The whole networks including a teacher network and a
student network were implemented using PyTorch 0.4.
Firstly, we pre-trained a teacher network—GwcNet [20] with
15 epochs on Scene Flow dataset [41]. After that, we jointly
trained the student network and the teacher network. The
batch size was set to 4 and Adam [63] was used for opti-
mization with β1 = 0.9, β2 = 0.999. The training process
was performed on a Nvidia GTX 1080 and required about
2 hours for an epoch. The Scene Flow dataset was used for
training and the process was stopped after 20 epochs. The
initial learning rate was set to 1e-3, and was decreased to
0.3 of the previous value every 4 epochs. Especially, we set
λd1 = 0.2, λd2 = 0.3, λ0 = 0.5, λ1 = 0.5, λ2 = 1, λ3 = 1.
After training and testing on the Scene Flow dataset,

we finetuned the pre-trained model on the KITTI2012 and
KITTI2015 dataset for 300 epochs respectively. The initial
learning rate was set to 1e-4. After 200 epochs, the learning
rate was changed to 1/10 of the original value. As in the
AnyNet [1] architecture, before 120th epoch, the proposed
method was trained without a SPN [60] module.

B. EVALUATION METRICS
For a fair comparison with state-of-the-art methods, we used
end-point-error (EPE) and three-pixel-error as evaluate met-
rics on the Scene Flow dataset. The EPE can be written
as (9), which means the average pixel-wise disparity error.
The three-pixel-error (T3) that defines as the absolute of
pixel error more than 3 pixels, which can be written as (11).
Besides, one-pixel-error (T1) and two-pixels-error (T2) were
also reported additionally to fully evaluate the performance
of the proposed network.

For the KITTI dataset, in addition to the previous evalu-
ation metrics, we used the D1-all metric to evaluate, which
defines as the pixels whose disparity errors are the larger of 3
pixels or 5% real disparity.

EPE =
1
N

N∑
0

∥∥∥GT [mask]− D̂[mask]∥∥∥
1
, (9)

where mask ∈ {0, 1}HW . H ,W represents the height and
width of image. The mask can be calculated as (10).
N denotes the number of 1.

m =

{
1, if 0 < d < 192
0, otherwise

(10)

where m ∈ mask, d denotes the disparity of GT.

T3 =
1
N

N∑
0

∣∣∣GT [mask]− D̂[mask]∣∣∣ , (11)

where mask ∈ {0, 1}HW , However, the N is the number
of mask=1 and |GT [mask] − D̂[mask]| is greater than 3.
A similar definition applies to T1, T2 and D1-all, but the
calculation of N is changed.

C. COMPARISON WITH OTHER METHODS
In this section, the quantitative results on the Scene Flow
dataset, the KITTI2012 dataset and the KITTI2015 dataset
are shown in Table 2, 3 and 4 respectively. All compared
methods were implemented on the same platform using the
same input on a single Nvidia GTX 1080 with the setting of
batch_size = 1.

1) SCENE FLOW
It is a big synthetic dataset, which contains 4370 group testing
data. We tested all of the 4370 group datasets, the quantitative
results can be seen in Table 2.

As shown in the Table 2, we compared the performance of
the proposed method with StereoNet [21] which has 0.31MB
parameters, but it is about five times as large as the number of
parameters in our proposed network. The EPE value of Stere-
oNet is 3.558, while our method achieves an EPE of 2.771.
The error rate is reduced by approximate 22.77%. At the same
time, it costs more time than our network. Since other T1, T2,
and T3 metric are not reported in the original article, we do
not report them either.

192148 VOLUME 8, 2020



Q. Gao et al.: Compact StereoNet: Stereo Disparity Estimation via KD and Compact Feature Extractor

TABLE 2. Quantitative results on the scene flow testing dataset. The result of StereoNet is reported by author with 16x, and unrefinement [21].

TABLE 3. Quantitative results on the KITTI2012 dataset.

TABLE 4. Quantitative results the on KITTI2015 dataset.

As for AnyNet [1], it uses U-Net [66] as the feature
extractor. we use it as our baseline. Although it has been
already a state-of-the-art work in lightweight network, our
metrics far surpass it as well. We implemented its work and
its metrics are also close to those reported in the paper.
We have compared its performance and our methods at all of
stages, including stage 1, 2, 3, and 4. However, in this section,
we only show the comparison at 4th stage. The performance
of the remaining three stages will be shown in section IV-D3.
Actually, all of stages are improved significantly. Especially,
the improvement is the most significantly at the first stage.
As we can see from Table 2, although the number of param-
eters and the time consuming of our model are almost same
even slightly lower with AnyNet, the EPE value dropped from
3.403 to 2.771, which is a significantly improvement by our

proposedmethod. Other indicators such as T1, T2, T3 are also
significant improved.

Comparing the state-of-the-art lightweight CNN networks
including the StereoNet [21] and the AnyNet [1] for stereo
disparity estimation, our method outperforms them in all
evaluation metrics under similar computational complexity.
The qualitative results between AnyNet and the proposed
Compact StereoNet are shown in Figure 8. For the qualitative
of StereoNet, we cannot reproduce its results. Therefore,
we just to report the quantitative results using original paper.

2) KITTI2012
The dataset have 194 groups training image. For a fair com-
parison, we performed five folds cross validations. We calcu-
lated the mean and variance of the five fold cross validations.

VOLUME 8, 2020 192149



Q. Gao et al.: Compact StereoNet: Stereo Disparity Estimation via KD and Compact Feature Extractor

FIGURE 8. Qualitative results on the scene flow dataset. The red box region can easily distinguish the difference. 1th and 3th rows are the results
using AnyNet, while the 2th and 4th rows are the results of the proposed Compact StereoNet v3. We can find that the results of Anynet are bad
for some edge processing.

FIGURE 9. Quantitative results on the KITTI2012 dataset. The color box areas can easily distinguish the difference. 1th and 3th rows are the
results using AnyNet, while the 2th and 4th rows are the results of the proposed Compact StereoNet v3. The Compact StereoNet v3 means that
the knowledge distillation with ASL loss and FL was used, which also can be seen in Table 2.

The quantitative results are shown in Table 3. As shown
in Table 3, we can see that the proposed compact
StereoNet v1 without using knowledge distillation scheme
can decrease the EPE value about 10.6% over the AnyNet.

Moreover, if we use the compact StereoNet v1 with knowl-
edge distillation can be further decreased the EPE metric
about 2.61%. The qualitative results are shown in Figure 9
between AnyNet and the proposed Compact StereoNet v3.

192150 VOLUME 8, 2020



Q. Gao et al.: Compact StereoNet: Stereo Disparity Estimation via KD and Compact Feature Extractor

FIGURE 10. Quantitative results on the KITTI2015. The color box areas can easily distinguish the difference. 1th and 3th rows are the results using
AnyNet, while the 2th and 4th rows are the results of the proposed Compact StereoNet v3. The Compact StereoNet v3 means that the knowledge
distillation with ASL loss and FL was used, which also can be seen in Table 2.

FIGURE 11. The comparison of results using different network for feature
extraction on same disparity estimation network (AnyNet) about
SceneFlow dataset. We can see that the performance of disparity
estimation can be significantly improved with MCliqueNet.

3) KITTI2015
The dataset have 200 groups training image. We also per-
formed five folds cross validation. As shown in Table 4, our
method surpasses AnyNet in all evaluation metrics. The qual-
itative results are shown in Figure 10 between AnyNet and
the proposed Compact StereoNet v3. The Compact StereoNet
v3 means using knowledge distillation with ASL loss and FL,
which also can be seen in Table 2.

FIGURE 12. The results of the proposed compact StereoNet with different
losses on the Scene Flow dataset. The compact StereoNet v1 means that
the knowledge distillation was not used, which also can be seen
in Table 2. L2 denotes that the distillation loss function is L2 Loss,
SL1 means SmoothL1, ASL means adaptive SmoothL1, CE means cross
entropy loss. FL means focal loss with γ = 2.

D. ABLATION STUDY
In this section, we investigate the effect of each module on
stereo disparity accuracy to further validate our proposed
approach.

1) FEATURE EXTRACTOR
We first evaluated our proposed MCliqueNet with extract-
ing feature. We use U-Net [66] as our baseline. As shown
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FIGURE 13. The matching cost and probability of distribution at ith pixel before and after distillation.(a), (b) are the matching cost at ith pixel before
distillation and after distillation separately. (c), (d) are the distribution of probability at ith pixel before distillation and after distillation separately.

in Figure 11, the performance is not improved by using tradi-
tional CliqueNet at all stages even the number of parameters
is larger than that of U-Net (the disparity estimation network
with traditional CliqueNet is 0.044MB, while the AnyNet is
0.043MB). On the contrary, it makes the performance worse
in stage 3 and stage 4. The results are slightly improved at
stage 1 and 2. The reason for this is that the deep features are
not well fused with shallow features. Overall, the accuracy
of disparity can be improved about 13.2% by using our
proposed MCliqueNet network which almost have a simi-
lar number of parameters and computational cost as that of
AnyNet. It demonstrates that the fusion of shallow and deep
features is beneficial for stereo matching. Moreover, from
Table 2, we can see that a network using U-Net as a feature
extractor, even with the knowledge distillation scheme, per-
forms far worse than one using our proposed MCliqueNet.
Meanwhile, if the original AnyNet is distilled directly,
the EPE decreased 2.44% and other evaluation metrics are
slightly improved. If we use the proposed MCliqueNet as
the extracting feature module, the EPE has been significantly
decreased at 6.13%.

2) DIFFERENT DISTILLING LOSSES
To evaluate the influence of different distilling losses,
we trained the same CNN architecture (Compact
StereoNet v1) with different losses. The results are shown
in Figure 12. First, we experimented with a single instruc-
tion i.e., using only SL1 or CE loss, and we can achieve
a slight improvement. If we combine SL1 with CE loss,
the performance will be significantly improvement. However,
the performance are degraded with L2 Loss as it is sensitive
to outliers. If we use ASL loss, the accuracy of disparity will
be further improved. Obviously, the combination of the ASL
loss and the FL is the best choice among all losses.

3) EFFECTS OF DISTILLATION
We have also analyzed the distillation effect of the cost
volume. The distilling effects are shown in Figure 13.
As the shown in Figure 13, Comparing 13 (a) and 13 (b)
or 13 (c) and 13 (d), the cost volume after distillation between
student and teacher network is more similar. Therefore,
the teacher network can correct the student network by using
knowledge distillation scheme.
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V. CONCLUSION
In this paper, we proposed a compact convolutional neural
architecture–MCliqueNet, which is suitable for stereo dis-
parity estimation to extract features. Furthermore, we have
proposed a lightweight network using knowledge distillation
to significantly improve its performance. Finally, we present a
novel adaptive SmoothL1 (ASL) loss for calculating similarity
between the cost volumes of the teacher network and the
student network. We have demonstrated the effectiveness
of our proposed method through extensive experiments and
ablation studies. Experimental results show that our method
achieves competitive performance on the challenging Scene
Flow and KITTI benchmarks while maintaining a very fast
running time.

In future, we will try different distillation methods to
improve the performance of small student networks for stereo
disparity estimation.
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