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ABSTRACT Muscle fatigue is required to be assessed in real-time to maintain the best physical condition,
especially for sports and rehabilitation areas. In recent years, numerous studies proposed muscle fatigue
estimationmethods with non-invasive surface electromyography (sEMG). However, the previous approaches
were limited to discerning whether muscle fatigue occurs and were unable to quantify the fatigue level due
to individual differences in muscle characteristics. In this study, we propose a novel method for quantitative
muscle fatigue estimation that is applicable for various people without individual calibration. Becausemuscle
mass is closely related to muscular endurance, it is utilized as a standard parameter in our assessment process.
We introduce a new concept of muscle fatigue score (MFS), based on the cosine similarity between muscle
mass and representative fatigue indicators. The MFS exhibits a high correlation coefficient (|R| = 0.7398)
with key muscle characteristics compared to previous representative muscle fatigue indicators calculated
from sEMG: mean frequency (|R| = 0.2848), median frequency (|R| = 0.1972), and low-frequency ratio
(|R| = 0.0346).

INDEX TERMS Muscle fatigue estimation, surface electromyography, muscle mass, spectrum analysis.

I. INTRODUCTION
Quantitative muscle fatigue estimation is necessary across
various fields, such as fitness, sports, and rehabilitation
[1]–[3]. For example, balancing training intensity and muscle
condition is crucial for athletes, especially for substantial
events such as the Olympics [4]. Therefore, quantitative mus-
cle fatigue estimation can be of great help in achieving effi-
cient training while maintaining muscle health. In addition,
muscle fatigue estimation has been used to aid in rehabil-
itation of various musculoskeletal disorders, such as spinal
cord injury, temporomandibular disorder, and cerebral palsy
[5]–[7]. Previously, muscle fatigue was estimated by mea-
suring lactic acid concentration in the blood; however,
this cannot be measured in real time due to exsanguina-
tion [8]. Therefore, recent studies have focused on more the
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convenient non-invasive surface electromyography (sEMG)
technique to estimate muscle fatigue [9]–[11]. It is known
that the low-frequency components of sEMG signal increase
as the muscle becomes tired [12]–[17]. Several representa-
tive muscle fatigue indicators were extracted from sEMG in
previous studies: mean frequency (MNF), median frequency
(MDF), and low-frequency ratio (LFR) [15]–[17]. Muscle
fatigue can be estimated by observing the change in each
indicator before and after a workout. Although previous stud-
ies reported a distinct increase in the low-frequency compo-
nents of sEMG after a certain amount of exercising, a large
standard deviation of the results indicates that the accuracy
and reliability are still insufficient for practical applications.
Several other studies have utilized advanced machine-
learning algorithms to improve the accuracy ofmuscle fatigue
estimation [18]–[21]. However, individual differences in
muscle characteristics required additional calibration process
to quantify muscle fatigue in each subject.
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FIGURE 1. Overall flowchart of muscle fatigue score (MFS) parameter extraction and its application. During parameter extraction, surface
electromyography (sEMG) of each subject is measured before and after a certain workout. Representative muscle fatigue indicators are then extracted
from the spectrum analysis of measured sEMG: mean frequency (MNF), median frequency (MDF), and low-frequency ratio (LFR). The cosine
similarities between muscle mass and each frequency indicator are calculated, and the MFS is formulated. In the MFS application step, sEMGs from
other subjects are measured before and after a workout, and the MNF, MDF, and LFR are obtained through spectrum analysis. Finally, the muscle
fatigue of each subject is estimated using the MFS formula.

In this work, we propose a novel muscle fatigue estima-
tion approach applicable for various people without individ-
ual calibration. Our estimation process comprises two steps,
as shown in Figure 1. We first extracted the muscle fatigue
score (MFS) parameters and then applied the MFS formula
for muscle condition assessment [22]. In the MFS parameter
extraction step, the sEMG signal was measured for eight
subjects before and after a workout. In each workout, subjects
performed repetitive leg curls with a 5-kg sandbag until they
could no longer continue. Then, we extracted the representa-
tive muscle fatigue indicators, 1MNF, 1MDF, and 1LFR,
from the measured sEMG. We calculated the cosine simi-
larities between the muscle mass and the extracted muscle
fatigue indicators. Finally, we formulated the MFS equation,
which can be applied with a subject’s sEMG and muscle
mass, as shown in Figure 1. In the MFS application step,
we measured the sEMG from the other eight subjects and
obtained their MFS after a workout. Then, we compared our
MFS with the previous muscle fatigue estimation methods
in terms of quantification characteristics. As there is still no
method to quantitatively measure muscle fatigue in real-time,
we compared the correlation between the individual muscle
characteristics and estimated muscle fatigue after the partici-
pants completed the same workout as a quantification index.
If a method quantifies muscle fatigue with a high degree of
accuracy, people with more muscle mass would be assessed
to have less fatigue than those with lower muscle mass after
the same workout [23], [24]. When we measured the muscle
fatigue of subjects after they performed 40 repeats of leg curls
wearing a 5-kg sandbag, previous methods showed irregular
muscle fatigue, regardless of muscle mass. However, our
MFS clearly showed a negative correlation between muscle
mass and muscle fatigue. Because our MFS exhibits superior

quantification characteristics considering individual muscle
conditions, it is easy to compare fatigue levels of multiple
people without complex individual calibration process.

II. MATERIALS AND METHODS
A. PARTICIPANTS
Muscle fatigue is affected by various physiological variables,
such as age, gender, ethnic group, muscle mass, and red/white
muscle ratio [25]–[27]; in particular, muscle mass is known
to have a significant effect on muscular endurance [23], [24].
Therefore, we focused on the correlation between muscle
mass and muscle fatigue. Experiments were conducted with
sixteen subjects, and of whom were males aged 21–27 years,
as shown in Table 1. First, theMFS parameters were extracted
from eight subjects (S1–S8), and we applied the MFS for-
mula to the other eight subjects (S9–S16) to estimate muscle
fatigue. This study was approved by the Institutional Review
Board of Pohang University of Science and Technology
(PIRB-2019-E030).

B. EXPERIMENTAL SETUP
The muscle mass of each subject was measured using a
body composition analyzer (ACCUNIQ, IOI 353). We used
commercial Ag/AgCl electrodes (3M, 2223H) to measure the
sEMG signals. Two electrodes were placed on the thigh at
a distance of 6 cm, and one ground electrode was attached
to the ankle of the opposite leg. The sEMG was measured
using a high-resolution semiconductor analyzer (Keysight,
B1500A)with a sampling frequency of 250Hz. TheDCoffset
and baseline wander were removed by a second-order But-
terworth high-pass filter with a cutoff frequency of 33.9 Hz,
and a notch filter was used to remove 60-Hz noise [28].
All filters used in signal processing were implemented
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TABLE 1. Physical information of sixteen subjects in this work.

TABLE 2. Rating of perceived exertion scale for reliable exercise intensity
monitoring [29].

through MATLAB. To increase the muscle fatigue level, leg
curls were performed with a 5-kg sandbag. The participants
evaluated their subjective muscle fatigue after leg curls based
on the perceived exertion scale defined in Table 2 [29], which
is a well-known and reliable indicator for exercise intensity
monitoring.

C. SIGNIFICANCE OF MUSCLE MASS
It is generally known that muscle mass and muscle fatigue
are closely related. Previous studies have demonstrated that
people with larger muscle mass perceive less fatigue after
exercising with the same intensity [27], [28]. Therefore,
we utilized muscle mass as a key variable to calculate the
MFS from sEMG signal. As shown in Figure 2, we measured
the maximum number of leg curls (5-kg sandbag) for all
subjects and organized the data as a function of leg muscle
mass. It is clearly shown that the maximum number of curls

FIGURE 2. Number of maximum leg curls with 5-kg sandbag as a function
of leg muscle mass. The strong correlation between muscle mass and
maximum curls indicates that people with more muscle mass have better
muscular endurance.

increases as the leg muscle mass increases. The Pearson cor-
relation coefficient (R) between the leg muscle mass and the
number of maximal leg curls is 0.8205, which indicates that
the relation between muscle mass and muscular endurance
is strongly positive [30]. This trend can be interpreted to
indicate that a person with considerable muscle mass will
experience less muscle fatigue when working out at a certain
intensity. Therefore, if the muscle fatigue estimation method
is accurate, it should evaluate that people with a large amount
of muscle mass feel less muscle fatigue than those with less
muscle mass after the same workout.

III. DATA ANALYSIS
A. PREVIOUS MUSCLE FATIGUE INDICATORS
Previous studies on muscle fatigue estimation have shown
that the low-frequency component of the sEMG signal
increases as the muscle becomes fatigued [13]. The represen-
tative indicators that quantify the portion of low-frequency
components are the MNF [15], MDF [16], and LFR [17].
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Each indicator is defined as

MNF =

∫ fs/2
0 f · P(f )df∫ fs/2
0 P(f )df

, (1)∫ MDF

0
P(f )df =

1
2

∫ fs/2

0
P(f )df , (2)

LFR =

∫ 45
0 P(f )df∫ fs/2
0 P(f )df

, (3)

where fs denotes the sampling frequency and P(f ) is the
power spectral density of sEMG signal. Previously, muscle
fatigue was assessed by the change in the indicator after a
workout. The change in each indicator (1MNF, 1MDF, and
1LFR) is defined as

1MNF = MNFafter −MNFbefore, (4)

1MDF = MDFafter −MDFbefore, (5)

1LFR = LFRafter − LFRbefore. (6)

The subscript ‘‘after’’ refers to the indicator extracted after
a workout, and the subscript ‘‘before’’ refers to the indicator
extracted before a workout. It was clearly shown in previous
muscle fatigue analysis using sEMG that the MNF and MDF
shift negatively and the LFR shifts positively after a work-
out [12]–[17]. However, the reliability of the estimation is
insufficient, owing to the large variation of the result. In addi-
tion, thesemethods cannot quantifymuscle fatigue because of
the individual differences inmuscle characteristics. The value
only shows the tendency, not a quantitative fatigue level.
In other words, the estimated muscle fatigue value of one
person does not have any meaning to another person because
they have different muscular properties. However, we pro-
posed a quantitative method to evaluate muscle fatigue by
introducing muscle mass, which is closely related to muscle
fatigue, into the sEMG analysis.

B. MUSCLE FATIGUE SCORE
Our muscle fatigue estimation approach, named MFS,
is based on a comprehensive quantification using the previous
indicators and their correlation with muscle mass. A detailed
flowchart of our MFS method is depicted in Figure 3. The
MFS comprises three steps: 1) sEMG signal measurement;
2) MFS parameter extraction; and 3) MFS application.
In step 1, each subject’s sEMG signal is measured before a
specified workout; subsequently, the MNF, MDF, and LFR
are obtained through spectrum analysis of the measured
sEMG. An example sEMG signal and its power spectral
density are shown in Figure 4a. Subjects perform leg curls
up to the maximum number they could; then, sEMG is
measured again from each subject, and the low-frequency
components are increased, as shown in Figure 4b. The dotted
lines in the power spectral density graph in Figure 4 indicate
the MDF, which is shifted negatively after workout. The
change in MNF, MDF, and LFR is calculated for each par-
ticipant. In step 2, the cosine similarities between the muscle
mass and1MNF/1MDF/1LFR are obtained. The calculated

FIGURE 3. Block diagram of MFS analysis process. sEMG is measured
before and after the workout, and the change in MNF, MDF, and LFR is
extracted by spectrum analysis of the sEMG signal. The cosine similarities
between muscle mass and each muscle fatigue indicators (1MNF, 1MDF,
and 1LFR) are calculated from eight subjects, and then the MFS formula
is derived. The formula is used to estimate the muscle fatigue of the other
eight subjects.

FIGURE 4. Measured sEMG signal of subject S8 (left) and its spectral
data (right) a) before and b) after 60 leg curls. As shown in the spectral
data, the low-frequency components of the sEMG are increased after the
workout. The dotted vertical line represents the median frequency (MDF),
and a clear negative shift is observed after the workout.

TABLE 3. Calculated cosine similarities between each muscle fatigue
indicator and muscle mass.

cosine similarities in our experiments are shown in Table 3.
We propose the MFS formula as follows:

MFS

=
simMNF ·1MNF+simMDF ·1MDF+simLFR ·1LFR

MuscleMass
,

(7)

where simMNF, simMDF, and simLFR are the cosine similar-
ity between muscle mass and 1MNF, 1MDF, and 1LFR,
respectively. We utilized sEMG data from eight participants
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FIGURE 5. Results of muscle fatigue score (MFS) as a function of muscle
fatigue level. The MFS increases as the subjective muscle fatigue level
increases in all subjects.

to derive these cosine similarities. In step 3, we applied the
MFS formula to the other eight subjects to estimate their
muscle fatigue.

IV. RESULTS AND DISCUSSION
A. MUSCLE FATIGUE ASSESSMENT
We attached skin electrodes onto the subjects’ thigh and
instructed them to perform leg curls at 4-sec intervals. Then,
we measured the sEMG during the leg curls and simultane-
ously surveyed the subjective muscle fatigue using a stan-
dard perceived exertion scale in Table 2 for each subject.
In Figure 5, the calculated MFS data from four participants is
plotted as a function of subjective muscle fatigue. As the sub-
jective muscle fatigue increases, the MFS increases, which
indicates that theMFS clearly quantifies the fatigue level. The
MFS not only shows explicit muscle fatigue estimation, but
also exhibits outstanding reliability, compared to the previous
muscle fatigue indicators: 1MNF, 1MDF, and 1LFR. We
conducted additional experiments to numerically compare
the reliability of each muscle fatigue indicator. As shown
in Figure 6A, the subjects performed 40 times of leg curls, and
sEMG was measured for the fatigue analyses. We repeated
this process 3 times with a sufficient rest period of more than
3 days and calculated the relative variance of muscle fatigue
indicators [30]. Relative variance (RV) is defined as:

RV =
V (x)
{E(x)}2

, (8)

where V(x) is the variance and E(x) is the mean value
of muscle fatigue estimation. As shown in Figure 6B, our
MFS shows lower variance compared to the previous muscle
fatigue indicators, which implies that the MFS exhibits the
highest reliability [31]. Because MFS is calculated based
on various indicators from sEMG signal and correction by
individual muscle mass, it exhibits higher reliability than the

FIGURE 6. Relative variance of muscle fatigue indicators. A) The block
diagram of relative covariance calculation. The subjects’ muscle fatigue
indicators after 40 leg curls are extracted three times with a sufficient rest
period. B) Average relative covariance of eight subjects for each muscle
fatigue indicator. The MFS exhibits the lowest relative variance, compared
to the others.

other muscle fatigue estimation methods that utilize a single
indicator.

B. MUSCLE MASS CORRESPONDENCE
Muscle mass is one of the most important indicators of
muscular ability. It is well known that a person with con-
siderable muscle mass feels less muscle fatigue, compared
to a person with lower muscle mass, after the same work-
out [23], [24]. To confirm the reliability of the MFS with
previous estimation approaches, we calculated the MFS for
eight subjects after performing 40 leg curls and compared it to
1MNF, 1MDF, and 1LFR. If a muscle fatigue indicator can
standardize fatigue level with high reliability, the result value
would be less for people with more muscle mass. As shown
in Figure 7, |1MNF| exhibits a positive correlation with
muscle mass, and |1LFR| shows no correlation with muscle
mass. Even though |1MDF| has a negative correlation, its
R value is only −0.1972, indicating that the MDF is weakly
correlated with muscle mass [32]. This low correlations of
the previous muscle fatigue indicators are caused by several
abnormal data, which is usually observed when the reliability
is low [33], [34]. The MFS exhibits an R value of −0.7398,
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FIGURE 7. Results of muscle fatigue estimation as a function of muscle mass of each subject using our
muscle fatigue score (MFS) and other conventional fatigue indicators, 1MNF, 1MDF, and 1LFR, after
40 leg curls. As shown in Figure 2, people with more muscle mass have better muscular endurance and
less muscle fatigue after the same workload. The MFS exhibits the most negative Pearson correlation
coefficient (R = −0.7398), which indicates that the reliability of MFS is superior to the other methods.

which represents an outstanding high correspondence with
muscle mass. We note that the muscle fatigue level can be
affected by other variables, such as age, gender, and ethnic
group; however, the experiment was conducted in a group of
similar characteristics. The accuracy of MFS can be further
improved with more diverse data sets.

V. CONCLUSION
In this article, we present a new muscle fatigue estimation
method based on non-invasive sEMG measurement. As pre-
vious muscle fatigue estimation approaches were based only
on sEMG signal analysis, they cannot incorporate individual
characteristics in muscle conditions.We utilized muscle mass
as a key parameter in fatigue estimation and calculated the
cosine similarity between muscle fatigue indicators and mus-
cle mass. Our MFS method can be applied to various people
without an individual calibration process, and its reliability
is better than that of previous approaches. We believe our
algorithm will play an important role in sports and healthcare
sectors by providing quantitative muscle conditioning with a
wearable sensor platform.
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