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ABSTRACT As more schools incorporate 3D printing into their curriculum to stimulate the creativity of
K-12 students with a learning-by-doing approach, it becomes crucial to understand how users work with 3D
modeling tools and to evaluate integrated lesson plans in the STEAM (Science, Technology, Engineering,
Arts and Math) educational framework. Our work consists of two stages: an investigation of usage patterns
of modeling, and an evaluation of the usability of Qmodel Creator, in collaboration with Lanyu Primary and
Junior High School, Sanchong High School, and Affiliated Experimental Elementary School of National
Chengchi University. Participants operation logs, screen recordings, and finished work for respective 3D
modeling software were recorded and analyzed. Two types of indicators have been developed. One is
concerned with the quantification of learning behavior, including Effective Operating Period (EOP), Trial-
and-Error Period (TEP), and Implementation Period (IP). The other has to do with the evaluation of learning
outcome, i.e., the complexity of 3Dmodels, including the Degree of Detail (DoD), shape (Cf ), partition (Cp),
and block-ratio (Cr ) complexity. Based on the proposed features, we are able to identify the key factors that
affect students’ learning experiences and performance in terms of learning patterns and model completeness.
Through these indicators, instructors can gain better insights into student’s learning status of 3D modeling
software.

INDEX TERMS Learning patterns, 3D modeling software, STEAM lesson plan, Qmodel creator, perfor-
mance evaluation, K-12 education.

I. INTRODUCTION
Learning behavior begins for various reasons and in quite
different styles. One can keep obtaining fresh knowledge and
engaging with novel technologies, either for solving prob-
lems or just for fun [1]. Moreover, a material for learning
may inspire one person but not another [2]. Researchers have
proposed a variety of theories and models in an attempt to
identify the key factors affecting our learning process. Moti-
vation is an intuitive attribute [3], [4], having both intrinsic
and extrinsic forms, and it can change over time [5]. Although
learning motivation is an interesting aspect, there can be vari-
ous types of motivation to explain the same learning behavior.
It is thus a challenging task to select quantitative indicators
for accurate measurement of learning motivation. In addi-
tion, individual differences are a critical issue. For educators
who design different lessons for students according to their
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aptitudes, how can the performance of their lesson plans be
assessed fairly? Is it attainable to observe and analyze their
learning patterns objectively?

The K-12 classrooms serve as ideal test-beds for investi-
gating learning behavior because multiple stages in learning
development can be observed, explored, and examined [6].
It is also noted in [6] that children have the capability to
plan, organize, and integrate the knowledge to be learned as
the cognitive development matures in all aspects. Traditional
questionnaire-based approach for assessing learning process
and outcome has its limitations due to lack of objective
measure. Moreover, choosing suitable materials for children
in lesson plans is imperative. In this work, an integrated
approach encompassing quantitative and qualitative evidence
is adopted to study learning patterns in the K-12 classrooms.

A. BACKGROUND OF THE CASE STUDY
To enhance the competitiveness of the future workforce, the
fundamental concepts and practices in science, technology,
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FIGURE 1. Demonstration on how to create a snail using Qmodel Creator
[15]. (a) Sketch a contour, (b) System generates a rough model with
thickness adjustment, (c) Sketch another part, and then combine all
components into one, (d) Add details to the model.

engineering, art, and mathematics (STEAM) have been
redesigned and developed as regular curriculum of K-12
education over the past decade [7]. Due to advances in 3D
printing technology and the affordability of 3D printers, many
teachers have introduced 3D printers [8], [9] and relevant
lesson plans into K-12 classrooms [10] to build an integrated
framework of STEAM education [11].

The common objective is to stimulate the creativity of
K-12 students with a learning-by-doing approach [12]. How-
ever, studying with computers and 3D printing technology
is not the same as tutoring the lessons of the original K-12
education, and it is still challenging in practice [13]. One
of the potential issues is that the learning curve of new
technologies is always high for both students and teachers.
Moreover, applying the learning-by-doing method in les-
son plans involves drawing connections between essential
STEAM disciplines and results in a specific task. Multiple
strategies might solve the above problem, depending on the
level of domain knowledge [14]. This variability leads to
another question: how to evaluate the effectiveness of the
STEAM lesson plan and student’s performance?

This research examines learning patterns when working
with 3D modeling software. The process of 3D manufactur-
ing usually includes the following stages: (1) constructing
models using software or scanning tools, (2) editing and
refining, and (3) 3D printing. In [13], [14] for example, the
usage of 3D modeling and editing software is probably too
complicated, so certain K-12 lecture cases focus more on
the printing phase of the process. To ease the learning curve
of modeling for K-12 students, we adopted Qmodel Creator
[15], a cubic style modeling software with an intuitive user
interface that quickly converts 2D drawings into 3D models.
Fig. 1 shows how a 3D model of a snail can be generated
using very simple sketches. It is also critical to provide teach-
ers and students a platform for online communication, idea
exchange, and peer evaluation. In response to the needs of the
course, Lin et al. developed the 3DModel Co-learning Space
(3DMCLS) [16], a web interface for students uploading their
finalized work. It can also be achieved through the in-app
function of Qmodel Creator if students create models using
this application. The file format, Standard Template Library
(STL), is supported by 3DMCLS, so teachers can easily
utilize this platform by choosing any modeling software that
can export STL files. Fig. 2 shows models on 3DMCLS
created in different modeling programs, including Tinkercad
[17], Qmodel Creator and 123D Design. Fig. 2 reveals an

FIGURE 2. Models created in various 3D modeling software programs on
3DMCLS [16].

additional concern: the instructor has to assess heterogeneous
models to evaluate students’ learning status.

B. MAIN CONTRIBUTIONS
Our investigation centers on two perspectives: (1) stu-
dent’s learning pattern, and (2) the outcome after learn-
ing. The learning pattern informs us about individual’s
behavior during the learning progress, representing the skill
level currently. Therefore learning patterns should be task-
independent. Meanwhile, the outcome presents the produc-
tion based on the domain knowledge after one’s learning.
Hence, the evaluation for an outcome is expected to be highly
dependent to the task. The main contributions of this work are
listed as follows:

1) IDENTIFYING FEATURES FOR LEARNING PATTERNS
We collected and derived the indicators from operation logs,
including: Effective Operating Period (EOP), Trial-and-Error
Period (TEP), Implementation Period (IP), mean and stan-
dard deviation of TEP and IP step. The operation logs of
the participants were recorded not only as a reference to
understand the learning behaviors, but also as a field obser-
vation (data-logging) of the usability test [18] of Qmodel
Creator. Based on the results in this paper, we believed that
the analysis of the modeling operating pattern is essential.

Although we could easily obtain the log file of Qmodel
Creator, we still need to examine students’ operating pro-
cedures when other commercial modeling applications are
employed. Therefore, we adopted a video segmentation
approach to make it easier to retrieve and label user oper-
ation indicators so that the same features of user behavior
could be observed and compared when different software was
employed.

2) DEFINING THE DEGREE OF COMPLETION FOR 3D
MODELS
In order to evaluate the learning outcome, the learning task
should be specified firstly. That is, we need to develop
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quantitative indicators to better characterize the constructed
3D model. We took multiple features of a model into con-
sideration, including the Degree of Detail (DoD), the num-
ber of connected components, the largest component ratio
(LCR) of a model, and the shape (Cf ), partition (Cp), and
block-ratio (Cr ) complexity, which will be described in the
subsequent section. In terms of multiple analytic results,
these model-related features, especially Cr , are appropriate
for representing the completion degree of 3D models.

3) DEVISING AN INTEGRATED QUANTITATIVE AND
QUALITATIVE APPROACH
In addition to the above quantitative methods for learning
patterns and the degree of completion of outcome, we also
carried out qualitative investigation and analysis. Firstly,
different from questionnaires which are more suitable for
assessing adult learning patterns, we adopted observation
approach to identify the issues students encounter when
learning the modeling software. Besides, to further explore
students’ learning background and attitudes, we conducted
face-to-face interview, which includes a simple drawing test,
to improve for the efficacy of traditional questionnaires. From
these qualitative data, we can profile the student’s knowledge
and ability (i.e. computer, art, etc.), and compare the quali-
tative analysis with the above quantitative results to examine
the learning process from a broader perspective.

The items of qualitative data collection and analysis are
adjusted according to the objectives of different stages. Our
two-stage research evaluated the usability of Qmodel Creator
and investigated the learning patterns of modeling in K-12
classrooms. In the first stage, we hosted two workshops to
introduce Qmodel Creator to K-12 students and collected
user logs. The conclusion of the stage was that there were
detectable distinctions in the details of the finished models
built by users from different skill level groups. Further-
more, our analysis indicated that students with different back-
grounds had respective preferences on particular functions of
Qmodel Creator. Finally, we examined the operation logs and
concluded that Qmodel Creator was a suitable 3D modeling
software for all ages of K-12 students.

In the second stage, we reviewed the performance of the
previous experimental design and developed a lesson plan
for teaching multiple modeling software and 3D printing
in an elementary school. According to the operation pat-
terns, we roughly divided students into the following four
categories: Novice with little interest, Novice with caution,
Intermediate, and Advanced. The proposed classification and
quantitative indicators for models will help teachers to track
students’ progress and identify aspects that require further
improvement.

The remainder of this paper is organized as follows.
Section II reviews the referenced literature, including mea-
sures for both learning behavior and the degree of completion
of 3D models. Section III elucidates the two categories of
quantitative indicators. In Section IV, we present the experi-
mental design of our two stage research. In SectionsV andVI,

the experimental results of the two stages are illustrated and
discussed respectively. Section VIII concludes this work.

II. LITERATURE REVIEW
In the section, we will review literature in the two cate-
gories: learning behavior and 3D model complexity, which
are fundamental in measuring learning pattern and learning
outcome, respectively.

A. STUDIES OF LEARNING BEHAVIOR: LEARNING
PATTERN
Learning behavior involves an interactive process of taking
knowledge, responding, and presenting outcomes. The def-
inition of learning pattern, however, varies slightly in the
literature.

Vermunt et al. summarized the learning pattern [19], which
consists of the four elements: cognitive processing strategies,
meta-cognitive regulation strategies, (metacognitive) concep-
tions of learning, and learning motivations or orientations,
and therefore can be identified as the following qualitative
learning patterns: reproduction-directed, meaning-directed,
application-directed, and undirected. The authors derived the
‘‘learning style’’ from [20] to ‘‘learning pattern’’ [21], which
eventually defined the discerned behavior ‘‘as a coherent
whole learning activities that learners usually employ, their
beliefs about learning and their learning motivation’’, and
constructed the cognitive framework based on the empiri-
cal evidence. Moreover, the patterns are interdependent with
the personal factors (age, gender, culture), contextual factors
(teaching style, collaborative type, lesson plan), and learning
outcomes (score or performance), usually measured by ques-
tionnaires or Likert scale (in [22], the instrument is Inventory
of Learning Styles, as known as ILS). However, the dedicated
scales should be designed for the target students, as well as the
sufficient number of data collection, ensuring the reliability
and validity to support the analytic results of the cognitive
factors. That is, the learning questionnaires for students of
higher education may not be so appropriate in elementary
schools.

What other measurement approach for learning pattern
can be applied, especially introducing a brand new lecture
or for detecting students who feel stuck in their learning
process? Nemiro et al. have conducted a STEM program in
K-12 classrooms over three years. In [23], the data collection
methods for learning behavior are mainly observation (by
Psychology undergraduate students as external experts) and
journals (written by part of participants). Their interests lie in
students’ creative process and creativity techniques, and the
two types of behavior are the essential quantitative indicators.
Either external observation or self-journal is a kind of data
logging approach. However, the logging frequency is weekly,
and the quantitative results are not only representative of
learning process, but also for the outcome. Also, lots of
discussion is necessary to meet the consensus of the event
coding. The degree of experts’ mutual agreement is the key
to the quality of the quantitative indicators.
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FIGURE 3. The assumed skill acquisition model derived from Dreyfus et
al.’s work [28] and trial-and-error theory.

The importance of trial-and-error period has been pointed
out in [23], ‘‘Once students had successfully completed pro-
gramming a robotic challenge task, the long and frustrat-
ing iterative trial-and-error period ended with a feeling of
relief, a sense of pride in one’s accomplishment, and often
behavioral displays of excitement accompanied this pride.’’
Learning by trial-and-error is well observed as one of the pri-
marymethods in the development of human beings [24], [25].
Studies on the trial-and-error approach applied in education
are abundant and have a historical context. On the other side,
the effect of frustration reaction should be still considered in
the progress of one’s trial [26], [27]. We speculate whether
the element of trial-and-error conduces to human’s learning.
Can the factor be defined or labeled explicitly?

Furthermore, can we generalize the human behavior of
learning process as the evolving progress or status of skill
acquisition? Dreyfus et al. [28] presented a phenomenology
of skill acquisition by humans and offered a theoretical expla-
nation for it. Based on subjective and objective results, they
presume that the learning process goes through five stages:
novice, advanced beginner, competent, proficient, and expert.
The process from novice to expert is universal and applicable
in many fields, including aircrew emergency decision [29],
ethical action [30], and even evaluation of an AI system [31].
Since the learning activities exist in the interactive relation-
ship between humans and their daily life, if we can record the
details of how people learn as the actual evidence, we may
find the distinguishing/unconscious patterns between skill
levels, for example, from novice to advanced beginner.

Based on these theories, we assume a model that formu-
lates the process of skill acquisition from novice to advanced
beginner and then competent user, as depicted in Fig. 3.
By analyzing the features of learning behavior in the trial-
and-error period, the degree of mastery of the skill could be
better understood.

B. STUDIES FOR MEASURING OUTCOME: 3-D MODEL
COMPLEXITY
The means to evaluate the effectiveness of learning depend
on the context of learning or tasks. For learners who have not
matured to construct 3D models, what we are interested in is
whether they will pay attention to an unfamiliar task, as well
as whether the quality of the finished outcome reflects the
degree of the author’s passion. For more inquiring students,
will their 3D models have more degree of details?

FIGURE 4. Shape descriptor extraction using Fiolka et al.’s method [35].

In order to obtain information from 3D models for further
analysis, we explore some relevant literature in quantifying
the complexity of an entity. Valentan et al. proposed several
basic indicators of shape complexity to evaluate if the manu-
facturing procedure is optimal [32]. These geometry-based
features inspire us to consider the shape complexity of
models. Morphological and topological complexity have
been discussed in [33], [34], and applied to a wide range
of categories. Such algorithms work well on point clouds
or more complicated models. 3D objects created by stu-
dents are too simple to be properly characterized by these
features.

Fiolka et al. [35] proposed ’SURE’ descriptor in 3D point
clouds based on entropy. The shape descriptor is extracted by
computing histograms of surfel pairs of a local interest point.
Fig. 4 illustrates the process of extracting the descriptor.

Liao and Chen also calculate the complexity of image
based on entropy using information-theoretic modeling for
logo design analysis [36]. Three different indices of complex-
ity of the image can be computed: (1) partition-based com-
plexity (Cp), (2) homogeneity-based complexity (Cf ), and (3)
area-ratio complexity (Cr ). Fig. 5 shows the results of two
logo analysis using their proposed measures. In this paper,
we will employ the entropy of normal vectors to measure
the complexity of a 3D model. We will also compare the
difference between the entropy of normal vectors in 3D with
the entropy of pixel intensity in 2Dwhen used to gaugemodel
complexity.

III. THE PROPOSED METHODOLOGY
In this section, we propose two classes of quantitative indi-
cators, namely, usage pattern related features and 3D model
related features, to address the performance evaluation of a
general 3D modeling task.

A. USAGE PATTERN RELATED FEATURES
For extracting the features of a usage pattern, we adopted a
field observation method. That is, the indicators: Trial-and-
Error Period (TEP), Implementation Period (IP) and Effective
Operating Period (EOP), were extracted from the user logs
recorded using Qmodel Creator and the screen recordings of
users operating the commercial modeling application. The
flowchart we used to analyze usage patterns is presented in
Fig. 6.
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FIGURE 5. Results of logo complexity based on partition, feature, and
ratio entropy [36].

FIGURE 6. Workflow of usage pattern analysis.

1) FROM THE LOG OF QMODEL CREATOR
Fig. 7(a) depicts the Qmodel Creator user interface. For
all participants, we recorded the operation along with the
corresponding timestamp for subsequent calculation of the
operation time span. We stored the information in a log file
as follows: The first field was the timestamp, and the second
field was the operation event. Fig. 7(b) presents a snapshot of
the Qmodel Creator log file.

In Qmodel Creator, traditional 3Dmodeling functions such
as adding and deleting voxels require more steps than using
intuitive modeling. Certain function keys are shared (e.g.,
Clean/Undo/Redo). The following list contains operations
that are classified as ‘‘intuitive’’. The rest are regarded as
traditional 3D operations.

– Change mode to ‘‘Draw Simple’’
– Change mode to ‘‘Draw Symmetry’’
– Start drawing
– End drawing
– Click OK

As shown in Fig. 7-(b), drawing operations come in pairs,
with ‘‘Click OK’’ as the operation logged after ‘‘Adjust
Thickness’’ and ‘‘Click Confirm’’.

2) FROM THE OPERATION RECORDING
Fully automatic processing of operation videos for an arbi-
trary commercial modeling application is undoubtedly chal-
lenging and still unattainable. Instead, we implemented a

FIGURE 7. User interface and log of Qmodel Creator. (a) Interface; red
square indicates two intuitive modeling functions: Draw Simple and Draw
Symmetry. (b) Snapshot of Qmodel Creator log file. Red frame indicates
intuitive operations.

video segmentation system using OpenCV [37] with an
adjustable threshold so that the video could be separated
hierarchically. Fig. 8 illustrates the simplified workflow of
the usage pattern extraction from the operation recording.
Through comparison with the finalized model, a labeler can
focus on a video segment to tell whether the user is in a trial
(Action 1, 3, and 4-3), implementation (Action 4-2 and 6-1),
or ineffective operation (Action 2 and 5) mode.

More detailed examples reveal all the steps of the hierar-
chical segmentation further, as shown in Fig. 9. Fig. 9-(a)
is a series of significantly segments using a larger thresh-
old, representing an obvious change between frames, such
as expanding a sub-menu or switching to another window.
Fig. 9-(b),(c) and (d) are segmented results using decreasing
thresholds respectively. Of course, the labeler can choose
either top-down or bottom-up way by using decreasing or
increasing value, depending on the labeler’s need. We adopt
and recommend the top-down approach, because coarser
blocks will be extracted in the beginning so that the labeler
can discern which segments are effective, related to outcome,
or just a trial. If he/she just wants to retrieve the effective
steps to check the smoothness of operation without labeling
the function, the labeler can set a smaller value (default
being half of previous threshold) to further process the
blocks.

3) INDICATORS OF USER BEHAVIOR
We propose the following indicators derived from operation
logs or recordings.

a: MEAN AND STANDARD DEVIATION OF STEP PERIOD
In the log files or videos, each operation has a timestamp.
Therefore, we can compute the period from the previous
operation to the next, thus fully encoding the student’s
situation. If the student leaves and causes interruption in
his/her operation, the mean and standard deviation will be
larger.

b: EFFECTIVE OPERATING PERIOD (EOP)
We estimate an effective operating period that excludes daze,
idle, or disturbed periods, with the threshold set at 5 seconds.
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FIGURE 8. Semi-automatic procedure of usage pattern extraction from operation recordings. In the manual steps, the
labeler should decide whether to process the clip further or just to label it.

FIGURE 9. Extracting usage patterns of Tinkercad from screen recordings. (a) Segmentation with a larger threshold (b) Segmentation with a smaller
threshold (c) A sequence of the same actions, which can be further decomposed by adopting a smaller value than b). (d) There is a slight difference
between frames switching from c) to d). The labeler can confirm the new action extracted or not, by just decrementing the threshold to be lower than c).

c: Trial-and-Error Period (TEP):
Operations in this period do not affect the final outcome.
In the log files, we check for the operator ‘‘Click Clear’’
or ‘‘Click Undo’’ commands, and then we label the related
operators and perform the calculation.

d: IMPLEMENTATION PERIOD (IP)
We define the duration of a set of operations that results in the
creation of a model as the Implementation Period. Actually,
we can define the Trial-and-Error Period, Implementation
Period, and Effective Operating Period relations as Eq. 1.

EOP = TEP+ IP+1t (1)

where 1t is the switching cost between TEP and IP.

e: MEAN AND STANDARD DEVIATION OF TEP STEP
This represents an overview of a student’s operating speed
during the TEP.

f: MEAN AND STANDARD DEVIATION OF IP STEP
This represents an overview of a student’s operating speed
during the IP.
Since we focus on the operating patterns of modeling

mostly, these indicators not only provide the task interval, but
also the speed and the stability of the students’ work, repre-
senting the different perspectives of the learning behaviors.

B. 3D MODEL RELATED FEATURES
Due to various conditions in K-12 classrooms, such as lim-
ited resources or vague criteria, the evaluation of modeling
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FIGURE 10. Models created by Qmodel Creator with different degrees of
detail. (a) 9.81 (b) 1.46 (c) 6.61 (d) 1.89.

FIGURE 11. DoD from Tinkercad models. (a) 37.14 (unreasonable value)
(b) 3.51 (reasonable value).

production is volatile. The main objective for developing 3D
model related features is to quantify the complexity of the 3D
model automatically for consistent analysis. For comparison,
we also collected expert evaluations of the models, as will be
described in the following section.

1) DEGREE OF DETAIL (DoD)
First, we adopt a simple, geometric method inspired by [32]
to measure the complexity of 3D models. The complexity
of the model should be easily verified by intuition or rules.
For example, the larger value indicates the more degree of
complexity, or more degree of complexity represents more
details with the model. Different from [32], we discovered
that if the surface to volume ratio is larger, and thus a higher
surface area percentage, then the model has more details.
Moreover, to exclude the size factor, we multiply an approx-
imate side length of the model. Thus, we compute the value
named Degree of Detail according to the following formula:

Degree of Detail =
Surface
Volume

×
SLavg
6

(2)

where SLavg is the average side length of the bounding box
of the model. Using Eq. 2, a cube model with size N will
have a DoD equal to 1. Cube is an initial geometry without
decorating any details, and its value is the lower limit ofDoD.
This result is in line with our expectations.

Cube DoD = (6× N 2/N 3)× (N/6) = 1 (3)

Fig. 10 presents some models created using Qmodel Cre-
ator and their corresponding DoDs. It works reasonably
well on Qmodel Creator models. However, we detected an
absurd condition with models created in other software, such
as Tinkercad [17]. A flat, simple model such as the one shown
in Fig. 11(a) will have a high DoD because the average side
length is used as one of the parameters.

To extract more reliable structural information from 3D
models, we combine [35] and [36] on quantifying the com-
plexity of an entity. Themeasures we developed for analyzing
3D models examined the shape complexity from different
perspectives, as described in the next subsection.

2) MIXED MODEL FEATURES
To better assess quality and complexity, we extract five
features for model representation as follows: number of con-
nected components, largest component ratio, shape com-
plexity, partition complexity, and block-ratio complexity,
as shown in Fig. 12.

a: NUMBER OF CONNECTED COMPONENTS
First of all, we can tell whether a model is structurally sound
by computing the number of connected components in the
model. Amodel with a large number of components will have
a higher risk of failure during printing and result in waste
of materials. Fig. 13 demonstrates two models with different
numbers of connected components, representing the tendency
of making errors respectively.

b: LARGEST COMPONENT RATIO
Even though students often create multiple components
in a model, there exist differences in their performance.
We choose the component with the largest number of facets
and compute the largest component ratio (LCR) by Eq. 4.
A larger ratio indicates a higher degree of completion,
as depicted in Fig. 14.

LCR =
Number of largest component faces

Number of total faces
(4)

c: MODEL COMPLEXITY
According to [36], complexity is directly related to entropy,
based on information theory. However, if we intend to use
2D methods in 3D space, the issue we might encounter is the
difference in their representation. For example, a 2D image
is divided into pixels as a unit, and each position of a pixel is
a discrete integer, while a 3D model consists of vertices and
faces, and that position measure is continuous.

After the largest component has been retrieved, we obtain
the bounding box of the component and then divide each
axis into 64 equal parts as the units of the axis. Moreover,
we introduce Fiolka et al.’s method [35] to calculate normal
vector entropy instead of intensity entropy. We generate N
vectors as histogram bins by dividing equidistant azimuth
angles on a uniform sphere. We then obtain the smallest
inner product of normal vectors of the model and generated
vectors to build a histogram and compute the normal entropy,
as illustrated in Fig. 15(a). Fig. 15(b) visualizes all normal
vectors on each vertex of this model. In our implementation,
the equidistant azimuth angle is set to 10 degrees.

We carry out the partition algorithm based on normalized
entropy calculation, as given in Eq. 5. First, we segment the
component into homogeneous regions with similar entropy
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FIGURE 12. Workflow of model analysis.

FIGURE 13. Results of number of connected components of two Tinkercad models. (a) 19 (b) 6.

FIGURE 14. Results of largest component ratio (in red rectangle) of two
Tinkercad models. (a) 0.298 (b) 0.837.

values. The partition can be applied according to the direc-
tions of the three axes. We iterate through each unit of axes
and compute the corresponding normalized entropy. Each
normalized entropy is used to determine whether the partition
should be continued. If the minimum of the sum of the
entropy of two partitioned blocks is smaller than a threshold,
the segmentation process stops. In this paper, the threshold
is set to 0.1. Otherwise, the partition proceeds according to
Eq. 6.

Entropy = −
∑
i

pilog2pi

Maximum entropy(bins)

= −log2
1
bins

NE =
Entropy

Maximum entropy
(5)

FIGURE 15. Normal vector entropy calculation using Fiolka et al.’s
method [35]. (a) Sphere is equally divided into N vectors, labeled as blue
arrows, for building a histogram (b) The red parts are the normal vectors
on vertices.

Ex = Argmin(NE(Part(X (0, i),Y (0,Max),Z (0,Max))

+NE(Part(X (i,Max),Y (0,Max),Z (0,Max)))

Ey = Argmin(NE(Part(X (0,Max),Y (0, j),Z (0,Max))

+NE(Part(X (0,Max),Y (j,Max),Z (0,Max)))

Ez = Argmin(NE(Part(X (0,Max),Y (0,Max),Z (0, k))

+NE(Part(X (0,Max),Y (0,Max),Z (k,Max))

Blockpart decision
= Argmin(Ex ,Ey,Ez)

∀ i, j, k = 1 ∼ (Max − 1) (6)

where Max is number of division in each axis, as 64 in the
paper. Ex , Ey, Ez are the optimal results of partition according
to axis-x, y and z respectively, and we can therefore obtain
Blockpart decision as the two partitioned blocks.
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FIGURE 16. Complexity measures of the two models.

Once the partition is done, the complexity score can
be computed accordingly. The first complexity measure,
denoted as partition-based complexity, is directly related to
the distribution of the volume of the partitioned blocks and
can be computed using Eq. 7. If the volumes of the partitioned
blocks are diverse, Cp of the model will be higher.

Cp = Entropy(Volume(Blocki)) (7)

The next feature, shape complexity, is simply summed and
denoted as Cf , as expressed in Eq. 8.

Cf =
∑
i

NE(Blocki) (8)

The total number of partitions also reflects the complexity
of a model. Thus, we define the feature block-ratio, which is
denoted as Cr and can be computed using Eq. 9.

Cr =
R
N
,where R=Total number of partitions, N = 643 (9)

Fig. 16 shows the three complexity measures of the two 3D
models. We can observe that different complexity indicators
represent different characteristics of a model.

IV. THE EXPERIMENTAL DESIGN
As mentioned above, we designed two experimental stages,
each with their respective mission. In this section, the details
of the two stages, including dataset collection, expert eval-
uation, and extra field observation, are presented and the
data thus gathered are employed for subsequent qualitative
evaluation and quantitative analysis.

A. THE FIRST STAGE-QMODEL CREATOR WORKSHOPS
We hosted two workshops to introduce Qmodel Creator to
K-12 students and collected user logs for the usability analy-
sis of Qmodel Creator, as well as investigating the learning
patterns of modeling. The finished models and operating
records were used as our dataset.

1) DATASET COLLECTION
a: LANYU PRIMARY AND JUNIOR HIGH SCHOOL
The experiment involved 62 students aged from 9 to 15 years
and was separated into three sessions. Of the 62 students, 49

FIGURE 17. Two versions of the expert evaluation interface for the two
stages respectively. (a) Stage 1: from 0-1 point by each expert (b) Stage 2:
from 0-2 points by each expert.

used Qmodel Creator on an iPad, and 13 did so using an
Android tablet. To motivate students and increase interest,
we prepared 3D printed models as gifts for active partic-
ipants. None of the students had prior experience with 3D
modeling software.

b: SANCHONG HIGH SCHOOL
The experiment involved 8 students aged from 16 to 17
years. All the students used Qmodel Creator on an iPad.
These students had solid training in the arts. They had been
instructed in creating 3D models using Tinkercad and Sculp-
tris. However, this experiment was their first exposure to
Qmodel Creator.

2) EXPERT EVALUATION
To facilitate analysis and comparison of the model features,
we need a model evaluation system informed by expert opin-
ion. To judge the quality of 3D models in the two workshops,
we designed a web interface and asked three experts (our
researchers in the study) to label the models as bad or not.
If more than half of the votes received by amodel were ‘‘bad’’
votes, it was classified as a bad model. If a model was judged
as bad, the students modeling skill was deemed to be at the
novice level. Fig. 17(a) demonstrates the evaluation interface
of the first stage. The degree of mutual agreement of expert
evaluations of 70 models in the dataset was calculated using
Eq. 10, and the reliability was 0.914.

DMAAB =
2×MAB

NA + NB

Reliability =
N × DMAaverage

1+ (N − 1)× DMAaverage
(10)

where DMA is the degree of mutual agreement,MAB is num-
ber of agreements by both A and B, Ni is the number of i
that should agree, and N is the total number of participating
experts.

B. THE SECOND STAGE-INTEGRATED 3D PRINTING
COURSES
We collaborated with Affiliated Experimental Elemen-
tary School (AEES) of National Chengchi University to
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implement our lesson plan for teaching modeling software
and 3D printing for one semester. The details are presented
in Table 1.

TABLE 1. 90-Minute lesson plan incorporated with courses in AEES.

1) DATASET COLLECTION
These experiments involved 15 students (eight girls and
seven boys) aged 11 and 12 years. At the end of the
semester, they were to print their designs out for presenta-
tion on stage. We obtained screen recordings (for Tinkercad
and 123 Design) and log files (for Qmodel Creator) during all
the courses.

2) EXPERT EVALUATION
To assess the quality of the 3D models objectively, we coor-
dinated five researchers of our 3D printing project as experts
to evaluate the models according to the following criteria:
– The model is beautiful and can be printed successfully,
– The model is ordinary but can be printed successfully,

and
– The model looks bad or is impossible to print.
Fig. 17(b) also demonstrates the evaluation interface of

the second stage. The degree of mutual agreement of expert
evaluations of 101 models in the dataset was also calculated
using Eq. 10, and reliability was 0.818.

3) INTERVIEW WITH STUDENTS
For identifying the key factors affecting students’ learning
experiences and performance, we also designed a face-to-
face interview with students. During the interview, we mainly
focused on the following four issues for qualitative analysis,
– Q.1: What modeling software do you prefer to use?
– Q.2: Are you good at drawing?
– Q.3: Do you like art?
– Students were asked to draw a picture of a river, a tree

and a house with a pen on a paper in five minutes,
as depicted in Fig. 18. We also had five experts judge
these hand drawings and assign them into three classes.

To sum up, the proposed indicators could be shared; how-
ever, the dataset, the scale of expert evaluation, and the
experimental objectives were quite different between the two
stages. Therefore, the analytic results for these stages will be
presented and discussed in separate sessions.

V. RESULTS OF THE FIRST STAGE-QMODEL CREATOR
WORKSHOPS
In this session, first, a statistical overview will be provided
to examine our skill acquisition assumption. In addition,
the usability of Qmodel Creator and learning patterns of

FIGURE 18. A hand-drawing example.

K-12 students are specifically evaluated with the following
questions:

1) How long does the user take to finish a modeling task?
2) Which function is used more frequently: intuitive mod-

eling or traditional 3D editing (such as adding and
deleting voxels)?

3) When users create models, is the process smooth? Is
trial-and-error required?

4) For models created with Qmodel Creator, what is the
degree of completion?

In the analysis process, F-test and T-test are both adopted
to examine the usage pattern and model related indicators.

A. OVERALL DISTRIBUTION
Table 2 presents an overview of the dataset of the first stage.
As aforementioned, TEP, IP, and EOP are the indicators of
usage patterns;DoD is the model related indicator; and Score
(ranging from 0 to 3) is the evaluation results of the models
from our three experts.

TABLE 2. Statistics of the first stage.

To examine the skill acquisition assumption in Section I,
we divided the dataset into different skill groups according
to the experts’ evaluations. Based on the scores in Table 2,
we set the threshold as 2. That is, if a model received less
than 2 points, it was judged as a bad model. When their
models were classified as bad, the students’ modeling skills
were deemed to be at novice level. Fig. 19 illustrates some
examples based on the evaluation results.

Of the 62 students from Lanyu Primary and Junior High
School, 20 were novices, while the other 42 had advanced
skill. Of the 8 students from Sanchong High School,
only 1 was categorized as a novice. The other 7 were catego-
rized as advanced. Statistics of the further categorized results
are summarized in Tables 11 and 12 in Appendix VIII.
As an alternative perspective, we also calculated the cor-

relation coefficients with evaluated score of a 3D model,
including indicators of learning pattern and model feature,
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FIGURE 19. Examples of evaluation. According the votes by experts,
we classified (a)(b) as the advanced group, and (c)(d) as the novice group.
(a) 3 points (b) 2 points (c) 1 point (d) 0 points.

TABLE 3. Correlation with scores.

as shown in Table 3. Firstly, we could observe that DoD is
weakly correlated with the score. Moreover, in terms of learn-
ing patterns, the EOP speed of the low-score group of Lanyu
exhibit a higher degree of positive correlation, representing
that the lower the score, the faster the student’s operation.
At last, in Sanchong group, there is a strong positive corre-
lation in the TEP, IP, EOP, and the operation speed of TEP,
indicating that the slower the operation during the trial-and-
error period, the higher the score. Due to the small data size
of Sanchong group, the correlation result is slightly different
from that of Lanyu group. We will conduct further analysis in
next subsections.

B. HOW LONG DOES THE USER TAKE TO FINISH A
MODELING TASK?
Performance was evaluated with TEP, IP, and EOP. In these
two datasets, the longest EOP was 1,748 seconds (nearly 30
minutes), and the shortest EOP was 14 seconds. Detailed
statistics are provided in Tables 11 and 12, from which we
discovered that in all three sessions, the advanced group from
Lanyu students spent slightlymore time to create their models
as compared to the other groups. Table 4 lists the F-test and
T-test results of operation periods from three user groups: the
novice group from Lanyu, the advanced group from Lanyu,
and the advanced group from Sanchong. The results show that
only the advanced group from Lanyu and the novice group
from Lanyu had an almost significant IP gap.

TABLE 4. F and T test results of operation indicators between three
groups of Lanyu and Sanchong datasets.

From the above results, we can conclude that the operation
of the advanced group from Lanyu was significantly slower
than that of the novice group from Lanyu, suggesting that
advanced group from Lanyu was more careful in creating
their models. Furthermore, comparing datasets from Lanyu
and Sanchong, the three periods (TEP, IP and EOP) exhib-
ited no detectable differences. Consequently, we believe that
Qmodel Creator would provide an easy start on 3D model
creation for K-12 students of all ages.

C. WHICH IS USED MORE FREQUENTLY: INTUITIVE
MODELING OR TRADITIONAL 3D EDITING?
One of the objectives of usability analysis is to determine
whether the K-12 students preferred the intuitive modeling
function. By analyzing the commands recorded in the log of
Qmodel Creator, the operation indicators and timespan for
intuitive modeling could be calculated. As the time required
for each operation was different, operation counting was not
employed. Instead, we adopted the operation time span and
observed the ratio of operation time span to total time span.
The two groups of Lanyu Primary and Junior High School
and Sanchong High School, as well as comparisons of the
ratio of those who used the intuitive modeling functions, are
also recorded in Tables 11 and 12 (in the column I-R).

The results indicated that not all the students used the intu-
itive modeling function frequently, so traditional 3D editing
functions are still necessary. However, when comparing TEP
and IP in the Lanyu and advanced Sanchong datasets, we dis-
covered that a considerable proportion of the users reduced
their use of intuitive operation during IP, as illustrated in
Table 5.

TABLE 5. Change in the ratio of intuitive operation between TEP and IP
in Lanyu and Sanchong datasets.

Although they used intuitive modeling less in the Imple-
mentation Period, the average ratios of intuitive operation of
IP in both groups of Lanyu students were higher than 25%,
while the average ratio of intuitive operation of IP in the
advanced group of the Sanchong dataset was almost 40%,
as also can be observed in the Appendix VIII. Therefore, high
school students who had used other modeling software and
understood basic 3D spatial concepts used intuitive modeling
functions more frequently, while primary and junior high
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TABLE 6. Results of significant change in operation speed in Lanyu and
Sanchong datasets.

school students who were creating 3D models for the first
time preferred traditional 3D editing functions.

Regarding this phenomenon, we propose a possible
explanation as follows. Intuitive operations require users to
understand some 3D concepts beforehand in order to gain the
confidence to create models in accordance with their expec-
tations. Because the Lanyu students were willing to try out
unfamiliar functions, the average ratios of intuitive operations
of TEP were higher than 40% in both groups. However, the
main purpose of this event was to submit a finished model,
so the primary and junior high school students preferred
the complicated but controllable operations of adding and
removing voxels incrementally.

D. WHEN USERS CREATE MODELS, IS THE PROCESS
SMOOTH? IS TRIAL-AND-ERROR REQUIRED?
We calculated the means and standard deviations of the TEP
and the IP. Because each series of TEP and IP was retrieved
from the same student, they should be considered as two
distributions having the same variation. Thus, we adopted
the 2-tailed T test to examine if the operation speeds were
consistent during TEP and IP.

The 2-tailed T test results confirmed that the means of the
TEP and IP steps were unequal, as shown in Table 6. The
test results also indicated the direction of shifting means in
the same tables. If the mean of the IP step was sufficiently
less than the mean of the TEP step, then we call this case
‘‘speed up’’, and vice versa. In Table 6, we found that users
in the novice group in the Lanyu dataset tended to speed up
in the Implementation Period. This could have been due to
external reward expectations or deadline pressure to complete
the model-making quickly. It is suggested that these factors
should be considered in the design of lecture plans for 3D
modeling.

In Table 5, it is worth noting that a few users from Lanyu
skipped Trial-and-Error. All cases are listed in Table 7.
We also observed that some students had their own patterns
of Trial-and-Error, such as using ‘‘remove voxels’’ to delete
content entirely. The operation counts are also included in
Table 7. After excluding these cases, the remaining cases
contained models of relatively low degrees of detail and low
Implementation Periods (less than 90 seconds).

Here, we offer several possible reasons for why the stu-
dents skipped Trial-and-Error, irrespective of whether they
were classified as novices or advanced users:

1) They were not familiar with the Clear and Undo func-
tions, so they used other buttons (e.g.,Remove) to purge

TABLE 7. The cases of no Trial-and-Error in Lanyu dataset.

TABLE 8. Tests for detail of degree.

their trial model(s). Such cases, however, still belonged
to the Trial-and-Error Period.

2) They just wanted to finish the model quickly (e.g.,
to get a reward).

3) They had previously used similar 3D modeling appli-
cations or advanced 2D graphics software.

According to the above results, we believe that users
need to be given sufficient time for trial-and-error. The
finished models will contain more details, which means
that users will have better achievements in the learning
process.

E. WHAT IS THE DEGREE OF COMPLETION?
The proportion of the advanced group in Lanyu dataset was
67.7%, while that of the advanced group in the Sanchong
dataset was 87.5%. The degree of achievement using Qmodel
Creator in the two datasets was specified. We then compared
these two groups (novice and advanced) using the Degree of
Detail of the models, as shown in Table 8. After analyzing the
Lanyu dataset with the F test and 1-tailed T test, we found that
the models created by the advanced group possessed higher
degrees of detail.

F. SUMMARY OF THE STAGE
We investigated the usage patterns of a 3D modeling soft-
ware program to understand user behavior and require-
ments. Operation logs of Qmodel Creator were recorded
and analyzed. The characteristics of different user groups
were observed using quantitative measures derived from
the log files. The results showed no significant differ-
ence in operation period between students of Lanyu Pri-
mary and Junior High School and Sanchong High School,
making this software an easy-to-use tool for all K-12
students.

According to the user behavior analysis, the intuitive mod-
eling function of Qmodel Creator greatly eases the learning
curve for K-12 children. If complemented by suitable lesson
plans, this software could be widely adopted by elementary
school students. The quantitative indicators developed in this
stage could be applied to the evaluation of other 3D model-
ing software and serve as a reference for designing lecture
cases.
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FIGURE 20. Boxplot of distribution of model features and scores.

VI. RESULTS OF THE SECOND STAGE-INTEGRATED 3D
PRINTING COURSES
To begin with, an overall analysis of models was con-
ducted. We investigated which factors were related to
the scores of the models. Because we found the vari-
ance of the effective operating period between users
as too large (as shown in Table 13), we considered
only model-related features and qualitative factors of
interviews.

In addition, we conducted statistical tests on the high-score
and low-score groups (according to the results of the scores in
Table 13, we set the threshold as 7) for the features proposed
in this paper, to examine the skill acquisition assumption as
same as the first stage.

Finally, based on usage pattern metrics, we roughly cat-
egorized users into the following four categories so that
the eligible cases in the dataset could be compared using
model-related features as well as usage-pattern-related fea-
tures:

1) Novice with little interest: Mean of trial-and-error
period (TEP) steps is large, and mean of implementa-
tion period (IP) steps is also large.

2) Novice with caution: Mean of TEP steps is small, but
mean of IP steps is large.

3) Intermediate: Mean of TEP steps is large, but mean of
IP steps is small.

4) Advanced: Mean of TEP steps and mean of IP steps are
both small.

In Appendix VIII, statistics of the further categorized
results are summarized in Table 13. Moreover, detailed per-
formance (such as learning patterns, model indicators, score,
etc.) of the four eligible cases are also presented in Table 14.
Additionally, the three-point-scale Likert results and basic
information of all students (with labelled eligible cases) are
shown in Table 15.

A. OVERALL DISTRIBUTION
In the beginning, we analyzed the models in the dataset and
compared the results of model features as well as expert
scores for each model, as shown in Fig. 20.

FIGURE 21. Models with extreme values.

We can observe that the indicators of Cf , Cr , and DoD had
a larger interquartile range, which implies that these indica-
tors had higher sensitivity to the differences between models.
Moreover, we found a wide range of extreme values for each
indicator.We then checked these models with extreme values.
Some of them received low scores. An example is shown in
Fig. 21(a). This model was not only structurally separated but
also had the lowest largest component ratio (LCR), and the
three complexity indicators were low as well.

However, an extreme value of one indicator or two does
not necessarily lead to a low score. Fig. 21(b) and (c) are
examples of works that received high scores in the extreme
value area, whereas Fig. 21(d) and (e) are examples of the
low-scoring group. We confirmed that there was still a huge
range of distribution of model complexity, even in the group
with similar scores. In addition, the quantitative values did
indeed reflect the appearance of the model.

We can conclude that a model can be judged as having a
low degree of completeness when the number of connected
components is large, and the largest component ratio, Cp, Cf ,
and Cr are small, a rule that can be applied for fast filtering
in practice.

B. CORRELATION WITH SCORE
To investigate what factors were related to the scores of the
models, we conducted three correlation analyses. We com-
puted correlation coefficients including each model feature
and measure of interviews. In the second trial, we divided the
model data into three groups according to the software used to
create them, while in the third trial we divided data according
to groups of the score. If the score was greater than or equal
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TABLE 9. Correlation with scores.

to 7, the work was assigned to the high-score group, and vice
versa. The results are summarized in Table 9.

As labeled in Table 9, the number of connected com-
ponents was negatively correlated with the scores, and the
largest component ratio of a model was positively correlated
with scores. But the correlation in the high-score group was
not the same as that in the low-score group. A plausible expla-
nation is that a low-score model usually cannot be printed.
If a model has been ruled out of key factors that lead to
failed printing, such as controlling the number of connected
components to a minimum, the model will obtain a higher
score.

In addition, the aforementioned widely-distributed Cf , Cr ,
and DoD showed an inconsistent degree of correlation in
Trial 2. This inconsistency may have been related to the
functions and properties of the modeling software. In Qmodel
Creator, for example, the models made with this software
are cubic style, so it is difficult to create as much detail as
could be created in other software within the same period.
This difference is reflected in the lower correlation with the
score in the group of Qmodel Creator.

Question 1 of the interview, ‘‘What modeling software do
you prefer to use?’’, yielded weak correlation results in all
trials. After excluding the possibility of bias factors in inter-
views, we think that students’ preferences andmotivation are,
at least most of the time, the keys to learning.

C. DIFFERENCES BETWEEN GROUPS OF SCORES
Because we divided works according to their evaluated
scores, we wondered if there were any differences in the
proposed features between the two groups. The results of the
tests are listed in Table 10.

TABLE 10. Tests for high-score and low-score groups.

As labeled in the table, Cr had a significant difference in
the T-test. Cf of the two groups had a great gap, but it was
not significant. Because in the previous summary, Cr and Cf

FIGURE 22. Comparison among four user categories.

were both sensitive to the difference between models, we can
conclude that the two features are appropriate for representing
model complexity.

D. USER CATEGORIES COMPARISON
According to the definition of the 4 user categories, we iden-
tified one eligible case for each category and retrieved mod-
els and usage pattern features of users, and we averaged
and compared these quantitative values, as presented in
Fig. 22. Further detailed results are available in Table 14 in
Appendix VIII.
Mean of TEPS and mean of IPS were the criteria for user

classification, so the two items were in line with expectations.
However, averaging the results shortened the gap between
them. In addition, the advanced students’ models were the
highest on the Cf item. It is interesting to note that the works
by novices with caution had the highest Cr , while those of
the intermediate students had the lowest Cr . The novices
with little interest made the works with the largest number
of connected components, which had the smallest ratios of
largest component.

Although we used usage patterns to select students, the
features of the model partially reflect its creator’s characteris-
tics. We believe that teachers can better monitor the learning
status of students by inspecting bothmodel features and usage
patterns.

E. SUMMARY OF THE STAGE
We proposed measures to quantify the complexity of a 3D
model that are better than those in the previous stage, as well
as the generalized procedure for computing usage pattern fea-
tures, to judge students’ work and evaluate their performance
regardless of the type of software used. In the workflow of
model analysis, we defined the steps for computing model
complexity, namely shape, partition, and block-ratio com-
plexity. Meanwhile, we implemented an adjustable threshold
on a hierarchical video segmentation system to make these
features extractable and applicable to general cases in the
work-flow of usage pattern analysis.

We confirmed that the number of connected components
is negatively correlated with the evaluated score of a model,
while the largest component ratio is positively correlated with
the score. The two indicators can be used to automatically
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TABLE 11. Statistics of Lanyu dataset.

TABLE 12. Statistics of Sanchong dataset.

TABLE 13. Statistics of AEES dataset.

detect who needs more instruction. We also conducted sta-
tistical tests on the high-score and low-score groups for the
proposed features. The results showed that the two features
are appropriate for representing model complexity. Finally,
we divided works into four categories according to the char-
acteristics of usage patterns, and representative data of stu-
dents were retrieved and compared. The results showed that
the model-related features can be partially related to the
learning patterns or the characteristics of the students (the
creators).

VII. LIMITATIONS
Due to the resource limitation and the challenge in col-
lecting/processing operation logs, we can only perform
case-study rather than modeling the learning patterns. Even
so, the analysis shows that we can retrieve a comprehen-
sive perspective of students’ learning conditions using both
model-related features and usage-pattern features.

VIII. CONCLUSION
To employ integrated STEAM courses in K-12 classrooms,
we developed modeling software, Qmodel Creator, and pro-
posed appropriate indicators for the purpose of observation
and evaluation of learning behaviors as well as STEAM les-
son plans. Designing suitable 3D modeling software for chil-
dren is a challenging mission. Evaluation with an integrated
lesson plan is another difficult task. Based on the features
we propose in this paper, we built an analysis system with
more automatic processes and fewer human interventions,
and we also collected more data to contribute to research

on learning behaviors associated with various 3D modeling
software packages.

According to the above summaries of our two stages, the
results were remarkable when the trial-and-error patterns
was employed as an indicator for the operation sequence,
suggesting that it is reasonable and significant to analyze
the learning behavior of trial-and-error. We confirm that in
all cases, model-related features or usage-pattern features
should be considered together, as doing so could highlight
the deficiencies of students. We believe that teachers can gain
a comprehensive understanding of their students’ learning
conditions and statuses by referencing the proposed features.

Since learning behavior is a continuously interactive pro-
cess between human beings and the environment, which
may result in diligent or stagnant, what is the key factor?
Combined with the analysis of user operation records as
primary sources or field evidence, we believe, the trial-and-
error approach (defined as untargeted attempts in the paper)
is a kind of concrete action representing people are interested
and focusing in the learning task. In the future work, we will
investigate different tasks, and further verify the qualitative
meaning of measuring the trial-and-error behavior at each
skill level.
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TABLE 14. Mean performance of the four eligible cases.

TABLE 15. Participants’ profiling and questionnaire(Three-Point scales).

STATISTICS OF TEP, IP, EOP, DoD, AND INTUITIVE
OPERATION RATIO IN THE FIRST STAGE
See Tables 11 and 12.

STATISTICS OF FEATURES AND FACE-TO-FACE
INTERVIEW IN THE SECOND STAGE
See Tables 13–15.
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