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ABSTRACT The Dynamic Partial Reconfiguration function of reconfigurable devices permits tasks to
be performed simultaneously on a single device. Nevertheless, task placement and resource management
problems emerge with the parallelism of reconfigurable devices. Traditional task placement algorithms are
based on the assumption of a homogeneous architecture and simplify the task as a rectangular shape, which
inevitably results in internal unused areas, thereby wasting a significant amount of programmable resources.
To address the resource waste that comes with the assumption of a rectangular task shape and improve
the placement quality, we adopted an interval list set to manage available programmable resources for a
heterogeneous reconfigurable device and proposed an interval-based placement algorithm combined with a
low-fragmentation selection strategy targeting the placement problem of multi-shape tasks. The efficiency
of the proposed approach is proved theoretically, and simulation results demonstrate that the rejection ratio
is decreased by at least 8.9% with an average fragmentation reduction of 18.1%.

INDEX TERMS Multi-shape task, task placement algorithm, dynamic partial reconfiguration,
heterogeneous reconfigurable device.

I. INTRODUCTION
A. BACKGROUND
In recent years, with the increase in transistor integration
and shrink of transistor size, the improvement of chip per-
formance has slowed down [1]–[4]. The advent of the era
of Big Data has forced researchers to urgently explore new
methods to accelerate the analysis and processing of mas-
sive amounts of data [5]. In the high-performance com-
puting field, researchers are driving the development of
multi-core processing platforms to leverage hardware accel-
eration within heterogeneous architectures comprising of
flexible combinations of Central Processing Units (CPUs),
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Graphics Processing Units (GPUs), Application-specific
Integrated Circuits (ASICs), and Field-programmable Gate
Arrays (FPGAs) [6]. An FPGA is a prefabricated recon-
figurable device that is more widely built on the hardware
acceleration platform compared to GPUs and ASICs due
to its performance, flexibility, and scale [7]. For instance,
the Azure Services Platform developed by Microsoft exploits
an FPGA-enabled hardware architecture to support the high-
performance computing of image processing, real-time Arti-
ficial Intelligence (AI) calculations, and so on [8].

Generally, a reconfigurable device is comprised of an array
of programmable resources, including Configurable Logic
Blocks (CLBs), Block Random Access Memories (BRAMs),
and Digital Signal Processors (DSPs), which enables
implementation of different functions based on consumers
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requirements by entirely or partially reconfiguring those pro-
grammable circuits [9]. According to the status of the device
when its circuits are programmed, the partial reconfiguration
scheme is classified into static and dynamic partial reconfig-
urations.

1) Static partial reconfiguration – the reconfigurable
device is shutdown and will be brought up after the
partial reconfiguration is completed;

2) Dynamic partial reconfiguration – the reconfigurable
device is still active during the reconfiguration process
– permits changing part of the reconfigurable device
while the rest parts are still executing.

In a word, the dynamic partial reconfiguration scheme
enables part of device circuits to be reconfigured at run-
time without disturbing the execution of other parts, so that
the flexibility and performance of the reconfigurable device
are fully improved. In this work, our discussion focuses on
Dynamic Partial Reconfigurable (DPR) devices, especially
heterogeneous devices.

FIGURE 1. Application execution process under the cooperation of a
microprocessor and reconfigurable device.

B. MOTIVATION
As shown in Fig. 1, when an application attempts to be
executed on a DPR device in cooperation with a DPR con-
trol system in a microprocessor, the application firstly is
divided into various hardware tasks. Each task is placed on
the DPR device as the smallest execution unit and executed.
Furthermore, the task is removed from the device once it ends
execution so that the programmable resources occupied by
the task can be released and reused by other tasks. Under the
dynamic partial reconfiguration scheme, the task placement
and removal processes have been ongoing at run-time so
the resource status can be changed at any time. Therefore,
the advantage of the DPR device comes with two critical
issues to be solved, which are shown as follows:

1) Task placement - decide where to place each hard-
ware task to ensure the maximum use of limited pro-
grammable resources;

2) Resource management - precisely record and update
the status of programmable resources on the DPR
device efficiently.

FIGURE 2. Example of multi-shape task (T1, T2, and T3) placement on a
2D heterogeneous DPR device with different fragmentation degrees.

Task placement and resource management problems
directly affect the performance of a DPR device. As shown
in Fig. 2, in addition to the black areas that have been
occupied by executing tasks T1 and T2, regions of other
colors indicate feasible resources, which are currently unoc-
cupied by any task. Compared to Fig. 2(b), unoccupied areas
in Fig. 2(a) are isolated (high fragmentation, described in
Section VI-B2 in detail) due to the different placement loca-
tion of T2, it is difficult to accommodate the upcoming new
task T3 in advance. The fragmentation problem caused by the
placement decision of T2 in Fig. 2(a) decreases the resource
utilization of the DPR device. Moreover, during application
execution, the DPR device always spends time monitoring
the status of programmable resources since the placement
and removal of tasks have been ongoing. In order to avoid
the DPR scheme degrading the performance of the recon-
figurable device, the DPR control system has to decide a
better task placement location for each task and update the
programmable resource status efficiently.

Various approaches have been put forward to solve the
task placement and resource management problems for a
2D or 3D DPR device [10]–[17]. However, most existing
algorithms assume that the task is a regular rectangle shape
that results in unnecessary resource waste. On the other hand,
existing resource management methods proposed in previous
research [12] are based on a homogeneous architecture for
a DPR device, which only contains CLB resources on the
device. The simplification of device architecture makes it
impossible to apply the resource management methods to
heterogeneous DPR devices.

C. CONTRIBUTIONS AND ORGANIZATIONS
In this work, we apply a data structure named interval list set
to record and update the status of limited programmable
resources for a 2D heterogeneous DPR device at run-time.
However, in the task placement phase, the proposed resource
management method brings another issue; which is, when a
new task comes, how to search for an unoccupied location for
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the new task to execute based on the interval list set. Notably,
the search process is more complicated for a multi-shape task,
which is needed for the recent DPR device as described later.

In this paper, we propose an interval-based task placement
algorithm (IPAL) to quickly process the interval list set to
find all feasible unoccupied locations to execute the multi-
shape task. Furthermore, a continuous block aware placement
strategy (CBAPS) is proposed to select one proper placement
location with low fragmentation when several available loca-
tions exist. Our contributions are as follows.

1) We outline a novel continuous block list to model a
heterogeneous multi-shape task.

2) An interval list set is applied to manage programmable
resources on the 2D heterogeneous DPR device effi-
ciently.

3) We propose an interval-based placement algorithm
(IPAL) to search for available locations for a targeted
multi-shape task.

4) We propose a placement location selection strat-
egy: CBAPS, to decrease the resource fragmentation
problem.

5) We verify the efficiency of the proposed approach
theoretically.

6) Finally, we demonstrate the effectiveness of the pro-
posed approach by comparing against various state-of-
the-art solutions in terms of runtime overhead, degree
of fragmentation, and placement quality through
simulation studies.

The remainder of this paper is organized as follows.
In Section II, we introduce related works for the task
placement problem and deficiencies of existing algorithms.
Section III presents a brief introduction to the basic models
proposed in this paper. Details of our proposed multi-shape
task placement algorithm, selection strategy, and resource
management method are described in detail in Section IV.
In SectionV, the proposed approach is theoretically analyzed,
and in Section VI, it is evaluated by simulation. Finally,
we conclude in Section VII.

II. RELATED WORKS
The problem of searching for the optimal execution locations
on a DPR device for a series of tasks at run-time is known
to be an NP-hard problem [18]. Based on different resource
management methods, various task placement algorithms
have been proposed for the 2D DPR device [10]–[15].

The most commonly applied resource management
method for the DPR device is to regard programmable
resource arrays as a resource matrix. The status of each
programmable resource is represented through the value of
an element in the matrix. A task can find an available location
by traversing the resource matrix. Furthermore, once a task is
assigned or removed from the DPR device, merely the value
of each element occupied by the task needs to be updated to
record and trace the device resource status at run-time. The
abovementionedmatrix-based resource management method
can be applied to various kinds of DPR device architectures

and task models, thus various placement strategies or algo-
rithms are proposed based on the resource matrix.

For homogeneous DPR device architectures, to keep the
maximum unoccupied area in the center of the 2D DPR
device, Marconi et al. [10] presented a quad-corner (QC) task
placement strategy that tries to place new tasks in the four
corners of the device as much as possible according to the
task size as follows: upper-left corner first (for very large
tasks), upper-right corner first (for large tasks), lower-right
corner first (for medium size tasks), and lower-left corner first
(for small tasks). The QC strategy is highly efficient since
the strategy searches candidates in the corner corresponding
to the size of the new task to find the available location for
the task, rather than traversing the entire resource matrix.
However, the limited search candidates may cause a targeted
task cannot find an unoccupied location even though there is
enough space to accommodate the new task [16]. This is an
algorithm that sacrifices the quality of placement in exchange
for speed.

For heterogeneous DPR device architectures,
Enemali et al. [11] proposed an expanding the un-usable area
strategy (EUAS) that could render portions of the chip unus-
able to future rectangular hardware tasks. For the homoge-
neous multi-shape task model, both Esmaeildoust et al. [19]
andWang et al. [12] proposed approaches which are based on
a best-fit placement strategy, which means that traversing the
resource matrix to select the location with maximal adjacent
value with other tasks or device boundaries to place a targeted
task. Once the targeted task cannot find an available loca-
tion, Esmaeildoust et al. [19] proposed a relocation process,
that selects a placed task to relocate to a new placement
location to create enough available resources for the current
targeted task. However, the relocated task needs to search
for an available location again and restart, which adversely
affects the overall execution time of the entire application.
Wang et al. [12] proposed a best-fit task shape transformation
(BFT) strategy for the homogeneous multi-shape task place-
ment, where an IP core is regarded as the basic unit and the
shape of a non-rectangular task is converted by changing the
relative position between IP cores to obtain better placement
results. Unfortunately, the shape transformation process also
requires additional redundant time cost.

In a word, although it is easy to apply a matrix to manage
programmable resources, the non-negligible time consump-
tion that traversing a part or entire resource matrix to find an
available location for each task brings is disadvantageous for
the whole computing system.

In literature, a maximal empty rectangle (MER) list
[13]–[15] is applied to represent the unoccupied pro-
grammable resources on the 2D homogeneous DPR device.
MER is a rectangle that cannot be fully covered by other
rectangles, so as long as there are sufficient resources, the tar-
geted task can find an available location by traversing the
MER list. Nevertheless, no matter the QC strategy, EUAS,
and MER list, the hardware task is assumed to be rectangu-
lar to simplify the task placement problem, which produces
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FIGURE 3. Waste areas due to the assumption of rectangular hardware
tasks.

some unavoidable internal unused areas (shown in Fig. 3) to
fit the actual logic of the hardware task into a rectangular
area. Programmable resources in the unoccupied internal area
get wasted because they are treated as occupied resources
according to the rectangular task model so that blocking
the possibility of the space being assigned to other tasks.
On the other hand, most existing approaches [10], [12]–[16],
[19] consider that the DPR device only contains one kind
of programmable resource: CLB. However, to improve the
computing performance, the recent DPR device architectures
(e.g., Xilinx 7 Series FPGAs, Zynq-7000 SoC, etc.) are all
heterogeneous, which means that the device is comprised
of multiple programmable resources [20]–[22]. Therefore,
it is necessary to propose a task placement algorithm and
resource management method for multi-shape tasks on the
2D heterogeneous DPR device.

III. PROBLEM FORMULATION
This section describes the 2D heterogeneous DPR device,
multi-shape task, and interval list set models assumed in this
paper.

FIGURE 4. Example of a 2D heterogeneous DPR device F (W , H).
(W : total number of columns; H : total number of rows).

A. TWO-DIMENSIONAL HETEROGENEOUS DYNAMIC
PARTIAL RECONFIGURABLE DEVICE MODEL
In this work, we build a 2D heterogeneous DPR device
model based on the ZC702 FPGA [22] and three kinds of
programmable resources are distributed in row and column.
An example of the device is illustrated in Fig. 4. A DPR
device is denoted as F (W ,H ), which means that there areW
columns for three kinds of resources andH rows for CLBs on
the device. Note that CLB size is fixed to 1×1, while DSP and

BRAM size is 1×2.5. The coordinate of the bottom-leftmost
corner of F (W ,H ) is regarded as (0, 0).

Programmable resources on the DPR device model have
two statuses: unoccupied and occupied . Unoccupied means
that the resource is idle and can be assigned to new tasks for
execution, while the occupied status means that the resource
is already used by an executing task so it prohibits other tasks
from being placed at that occupied location. Black-colored
regions shown in Fig. 4 represent occupied resources.

B. HETEROGENEOUS MULTI-SHAPE TASK MODEL
A heterogeneous multi-shape task T (a, e, d, S) is circuits
executable on a 2D heterogeneous DPR device F (W ,H ),
where a, e and d are the task arrival time, execution time, and
deadline, respectively. If a task cannot be executed until the
time (a+ d), which is the sum of arrival time a and deadline
d , the task cannot be executed anymore. The process is called
rejection and the higher the proportion of rejected tasks is,
the worse the placement quality of the algorithm is.

Based on the proposed 2D heterogeneous DPR device
model, different kinds of programmable resources are
lined up in columns (shown in Fig. 4). Therefore,
a continuous block list S = {s(c,n)|c = 0, 1, . . . and n =
0, 1, . . .} is proposed to represent programmable resources
required by the multi-shape task, which is defined as follows:
Definition 1: In each column, the maximal adjacent

resources required by the multi-shape task T are defined as a
continuous block s(c,n), where c is the column number starting
from 0 on the leftmost position, and n is the consecutive block
stack in the cth column starting from 0 on the bottom. The
nth largest consecutive block in the cth column of the task is
denoted as s(c,n) = [sb, st, sk], where sb and st are the bottom
and top values of s(c,n) on the y-axis respectively. sk is the
type of programmable resource in the cth column: sk = 0 for
CLB; sk = 1 for BRAM; sk = 2 for DSP.

FIGURE 5. Example of heterogeneous multi-shape task model.
(Continuous block s(c,n) = [sb, st, sk] → sb: bottom; st : top; sk : type,
as defined in Definition 1).

Fig. 5 shows an example of the continuous block list rep-
resentation method. Note that, s(0,0) (the zeroth continuous
block in the zeroth column) is considered as a baseline block
within the continuous block list, which means that the
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bottom-leftmost corner coordinate of s(0,0) is always marked
as (0,0). According to the relative position with the baseline
block s(0,0), the information of other continuous blocks in
the coordinate axis can be decided. Thus, the continuous
block list S for the multi-shape task T can be represented as
S = {s(0,0), s(1,0), s(2,0), s(2,1), s(3,0)}, shown in Fig. 5.

Similar to previous studies [10]–[17], the heterogeneous
multi-shape task is able to be placed at arbitrary locations
on the DPR device as long as there are enough unoccupied
programmable resources to be assigned. And it is assumed
that there are no dependency constraints between different
tasks.

C. INTERVAL LIST SET
In order to manage unoccupied programmable resources on
the 2D heterogeneous DPR device, an interval list set List =
{INc|c = 0, 1, . . . ,W −1} [23] is applied in this work, where
INc is the interval list in the cth device column. The definition
of an interval I(c,n) ∈ INc is given as follows:
Definition 2: For an interval I(c,n) = [Ib, It, Ik], c is the

column number starting from 0 on the leftmost position, and
n is the continuous unoccupied rectangles stack in the cth
column starting from 0 on the bottom. Ib and It are the bottom
and top values of I(c,n) on the y-axis, respectively. Ik is the
type of the programmable resource in the cth column, same
as Definition 1: Ik = 0 for CLB; Ik = 1 for BRAM; Ik = 2
for DSP.

FIGURE 6. Example of interval list set on a 2D heterogeneous DPR device
F (8, 5). (Interval I(c,n) = [Ib, It, Ik] → Ib: bottom; It : top; Ik : type,
as defined in Definition 2).

As shown in Fig. 6, the black-colored areas in the DPR
device F(8, 5) are resources occupied by currently executing
tasks, and other areas are unoccupied resources, in which
a targeted task can be placed for execution. Information on
intervals for F(8, 5) in each column is shown in Table 1.
By updating the interval list in each column, unoccupied pro-
grammable resources on the 2D heterogeneous DPR device
is managed at run-time.

Two issues that need to be raised are how to quickly find
a location where a targeted multi-shape task can be executed
based on the interval list set, and how to update the interval list
set once a task is assigned or removed. Next section addresses
these issues in a way that guarantees the interval list set can

TABLE 1. Intervals in each column.

be efficiently used to solve the task placement and resource
management problems.

IV. PROPOSED APPROACH
In this section, we will introduce our proposed approach for
task placement and resource management. An overview of
the proposed DPR control system is shown in Fig. 7, which
consists of three main stages: scheduling, placement, and
resource management. The scheduling stage is responsible
for deciding which task is selected as the next targeted task
to be placed. Our research focuses on the placement and
resource management stages and is responsible for selecting
a proper execution position for the scheduled targeted task.

FIGURE 7. Overview of the proposed DPR control system.

In the scheduling stage, the DPR control system selects
a task closest to its deadline from a new task list and
a waiting task list, as the targeted task to execute. Then,
the system searches for all available locations for the targeted
task based on the interval list set by the proposed method:
IPAL (Section IV-A). If there are not enough programmable
resources to execute the targeted task, add the task into the
waiting task list for the next scheduling. If several locations
can accommodate the target task, select one based on the
proposed CBAPS strategy (Section IV-B) and add the task
into a running task list. If a task on the DPR device ends exe-
cution, it will be removed from the running task list and the
DPR device. If a task cannot be scheduled until its deadline,
it will be rejected by the system. Note that, once a task is
assigned or removed on the DPR device, the interval list set
has to be updated for resource management (Section IV-C).

The main variables used to describe the proposed algo-
rithms are summarized in Table 2.

A. INTERVAL-BASED PLACEMENT ALGORITHM (IPAL)
In this section, the proposed interval-based placement

algorithm (IPAL) is introduced in detail. The IPAL aims to

186366 VOLUME 8, 2020



T. Zhou et al.: Multi-Shape Task Placement Algorithm Based on Low Fragmentation Resource Management

TABLE 2. Variable definitions.

find available locations based on the interval list set, where a
targeted multi-shape task T can be accommodated.

The IPAL consists of twomain steps: 1) Search and Update
of Available Ranges (SUAR) described in Section IV-A1;
and 2) Intersection of Updated Available Ranges (IUAR)
described in Section IV-A2. The pseudo-code of the proposed
IPAL is shown in Algorithm 1.
The search process starts from the zeroth column of the

DPR device and scans from left to the right (line 2). For a
device column i, firstly find and update available range set
R(c,n) (defined in Definition 3 below) for each continuous
block s(c,n) when the baseline block s(0,0) of the task T is
placed in ith column (line 3-11). Once a continuous block
s(c,n) cannot find any available ranges in its corresponding
interval list IN(c+i), the search process is stopped (line 7-10)
and proceeds to the next cycle (line 2).

Next, intersection results of all updated available ranges
for each continuous block are calculated (line 13), which are
the locations that s(0,0) can be placed, and guarantee all con-
tinuous blocks can be accommodated. Once the location of
a baseline block s(0,0) is decided, the assignment information
of the entire task can be determined since the relative position
between baseline block and other continuous blocks are fixed.
Thus, the intersection results are added into the final available
range set AR for the targeted multi-shape task T .

At last, if all interval lists from column 0 to (W -1) are
finished to scan, all available locations for the multi-shape
task T on the 2D heterogeneous DPR device can be obtained.
Next, we will detail the process to obtain updated available
ranges and calculate intersection results.

Algorithm 1 Interval-Based Placement Algorithm (IPAL)
Require:

2D heterogeneous DPR device: F(W ,H );
Interval list set: List = {INc|c = 0, 1, . . . ,W − 1};
Targeted multi-shape task: T (a, e, d, S);
Continuous block: s(c,n) ∈ S;
Available range set R(c,n) for s(c,n): R(c,n) = {ri|λ, i =
0, 1, 2, . . .};
Final available range set for task T : AR = {ri|λ, i =
0, 1, 2, . . .}.

Ensure:
Obtain final available range set AR for the target task T .

1: AR← ∅;
2: for i← 0 to (W -1) /*Baseline block s(0,0) is placed in ith

column.*/ do
3: Flag = 0;
4: for each s(c,n) in S do
5: R(c,n)← ∅;
6: R(c,n) = SUAR(s(c,n), INc+i); /*Section IV-A1*/
7: if R(c,n) = ∅ then
8: Flag = 1;
9: break;
10: end if
11: end for
12: if Flag 6= 1 /*All continuous blocks can find avail-

able ranges.*/ then
13: R(0,0) = IUAR(S); /*Section IV-A2*/
14: add R(0,0) into AR;
15: end if
16: end for

1) SEARCH AND UPDATE OF AVAILABLE RANGES (SUAR)
In the first step, the proposed IPAL takes a continuous block
as the minimum search unit and compares it with intervals
of corresponding column to find available ranges for the
continuous block. Availablemeans that not only the resource
type of the interval is the same with the continuous block, but
also the size of it is enough to accommodate the continuous
block.

In Fig. 8, we assume that the resource type of intervals I(i,0)
and I(i,1) in the ith column is the same as a continuous block
s(c,n). As shown in Fig. 8, interval I(i,1) can accommodate the
continuous block s(c,n), while I(i,0) cannot. Thus, in the ith
column, only I(i,1) is available for s(c,n).

According to the size of I(i,1) and s(c,n), the available range
r0 for s(c,n) in I(i,1) is [y1, y2], which means that the bottom of
s(c,n) can be placed between y1 and y2 in I(i,1). When all inter-
vals that can accommodate the continuous block are checked
in one column, the available range set R(c,n) is obtained,
which is defined as follows.
Definition 3: An available range set R(c,n) = {ri|λ, i =

0, 1, 2, . . .} is the set of available ranges for a continuous
block s(c,n) in the ith device column, where ri = [ymin, ymax]
is the available range in the ith interval. The increment for
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FIGURE 8. Available range set for a continuous block s(c,n) in i th column.

available ranges λ= 1 for CLB, λ= 2.5 for BRAM and DSP.
For an available range ri, not all locations between ymin and
ymax are available for the targeted task T . The y-axis value y′

of an available location has to satisfy the following equation:

y′ = ymin + k × λ, (1)

where k = 0, 1, 2, . . . and y′ ≤ ymax .

FIGURE 9. Place a multi-shape task T on the DPR device F (8, 5) in Fig. 6.

Fig. 9 shows an example to place a multi-shape task T
on the 2D heterogeneous DPR device F(8, 5) in Fig. 6. The
search and update of available ranges process is explained
with the pseudo-code shown in Algorithm 2. When we
search available locations for the multi-shape task T from
the zeroth column of the interval list set, the baseline block
s(0,0) is firstly compared to the intervals in the zeroth column.
Through comparing the size of I(0,0) and s(0,0) (line 6 in
Algorithm 2), s(0,0) can be accommodated by I(0,0). Based
on the pseudo-code shown in lines 7-14 in Algorithm 2,
the new available range is [0, 3] and increment λ is 1, which
means that the bottom of s(0,0) can be placed at locations
with available y-axis value: 0, 1, 2, 3 in the zeroth column.
On the other hand, based on the relative position between the
baseline block s(0,0) and s(1,0), the search process of available

Algorithm2 Search andUpdate of Available Ranges (SUAR)
Require:

Interval list in ith column: INi;
Interval in the interval list INi: I(c,n) = [Ib, It, Ik];
Continuous block: s(c,n) = [sb, st, sk];
Increment: λ.

Ensure:
Obtain available range set R(c,n) for s(c,n) in ith column.

1: if INi 6= ∅ then
2: if sk 6= Ik /*Continuous block and interval are

different resource types.*/ then
3: R(c,n)← ∅;
4: else
5: for each interval I(c,n) = [Ib, It, Ik] in INi do
6: if sb− st ≤ It − Ib then
7: if sk = 1 then
8: /*Type of s(c,n) is CLB.*/
9: λ← 1;
10: else
11: /*Type of s(c,n) is BRAM or DSP.*/
12: λ← 2.5;
13: end if
14: generate rnew = [Ib, It − (st − sb)];
15: update rnew = [Ib− sb, It − (st − sb)− sb];
16: add rnew and λ into R(c,n);
17: end if
18: end for
19: end if
20: end if

ranges for s(1,0) should start from the column 1, where both
I(1,0) and I(1,1) are unavailable. As mentioned in lines 7-10
of Algorithm 1, once one continuous block cannot find any
available ranges in the corresponding column, the search
process returns to the baseline block s(0,0) and starts the next
cycle. In this example, we return the search process to the
baseline block s(0,0) regarding that the s(0,0) is placed in col-
umn 1. It is likely that both interval I(1,0) and I(1,1) in the first
column can accommodate s(0,0). Thus, the available range r0
for I(1,0) is [0, 1] and r1 for I(1,1) is [3, 3]. The available range
set for s(0,0) in the first column is R(0,0) = {1, r0, r1}. Next,
s(1,0) and I(2,0), s(2,0) and I(3,0), s(2,1) and I(3,0), s(3,0) and I(4,0)
are compared respectively, to get available range set for each
continuous block, which is shown in Fig. 10 (a).
It is noteworthy to state that for CLBs, the increment of

available ranges is 1 (lines 7-9 in Algorithm 2). However,
for BRAMs or DSPs, the increment of available ranges is
2.5 due to the different occupied space modeled in Fig. 4
(lines 10-12 in Algorithm 2). Thus, the available range r4
for s(2,1) in Fig. 10 (a) is [0, 4], which means that the bottom
of s(2,1) can be placed in y′ = 0, 1, 2, 3, 4 in I(3,0) since the
resource type of s(2,1) is CLB. In contrast, the resource type of
s(3,0) is BRAM; thus, the available range r5 is [0, 2.5], which
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FIGURE 10. Result of search and update of available range sets when
continuous block s(0,0) is placed in the first column.

means that the bottom of s(3,0) can be placed in y′ = 0, 2.5
in I(4,0).

Before proceeding to the next step, all available range sets
need to be updated since the relative position relationships
between s(0,0) and other continuous blocks have not been
considered yet. In Fig. 9, the s(0,0) is regarded to be a baseline
block and the bottom of s(1,0) is one CLB lower than that
of s(0,0). Therefore, all available ranges in R(1,0) for s(1,0)
have to plus 1 to make the bottom of s(1,0) and the baseline
block s(0,0) on the same y-axis level (line 15 in Algorithm 2).
In contrast, the bottom of s(2,1) is one CLB higher than that of
the baseline block s(0,0) so that all available ranges in R(2,1)
for s(2,1) have to minus 1 (line 15 in Algorithm 2). According
to the relative position with the baseline block, all available
ranges for each continuous block have to be updated, which
are shown in Fig. 10 (b).

2) INTERSECTION OF UPDATED AVAILABLE RANGES (IUAR)
In the previous step, available ranges for each continuous

block have been searched and updated. The final placement
location must ensure that it is available for each continuous
block. Therefore, we try to obtain the intersection range of
all updated available ranges. However, the difference in the
increment of the available range increases the difficulty of
calculating the intersection range. Next, we will summarize
methods for calculating the intersection range in different
situations.

The pseudo-code for the intersection of updated available
ranges ri = [a, b] and rj = [c, d] are shown in Algorithm 3.
For ri and rj, it is evident that if the maximum amount of one
updated available range is smaller than the minimal amount

Algorithm 3 Intersection of Two Updated Available
Ranges (IUAR)
Require:

Updated available ranges: ri = [a, b], rj = [c, d];
Increments of ri and rj: λ1, λ2;
Increment: λ = 0.0;

Ensure:
For ri and rj, obtain intersection range r ′ = [m, n] and its
increment λ′.

1: if a > d or b < c then
2: r ′ is empty;
3: else
4: if λ1 = λ2 /*Increments of ri and rj are the same.*/

then
5: λ← λ1
6: if

{
Max(a, c)−Min(a, c)

}
Mod λ = 0 then

7: m←Max (a, c);
8: n←Min (b, d);
9: λ′← λ;
10: else
11: r ′ is empty;
12: end if
13: else if λ1 6= λ2 /*Increments of ri and rj are different.*/

then
14: λ← getIncrt(a, c, λ1, λ2);
15: if

{
Max(a, c)−Min(a, c)

}
Mod λ z 0 then

16: m←Max (a, c);
17: n←Min (b, d);
18: λ′← 5;
19: if mMod 1.0 6= 0 andm+ 2.5≤n /*m is not an

integer multiple of 1.*/ then
20: m← m+ 2.5;
21: else if mMod 1.0 6= 0 and m+2.5>n then
22: r ′ is empty;
23: end if
24: else
25: m ← Max(a, c) + λ−

{ (
Max(a, c)−Min(a, c)

)
Mod λ

}
26: n←Min (b, d);
27: λ′← 5;
28: if m > n then
29: r ′ is empty;
30: else
31: if m Mod 1.0 6= 0 and m + 2.5 ≤ n /*m is

not an integer multiple of 1.*/ then
32: m← m+ 2.5;
33: else if mMod 1.0 6= 0 and m+ 2.5 > n then
34: r ′ is empty;
35: end if
36: end if
37: end if
38: end if
39: end if
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of another updated available range, it is impossible for ri
and rj to intersect so that the intersection range r ′ is empty
(lines 1−2). Otherwise, two situations need to be considered
in Algorithm 3 as follows:

• Increments of ri and rj: λ1 and λ2 are the same
(lines 4−12).
Lines 6−12: Intersection range r ′ exists when the differ-
ence between a in ri and c in rj is an integer multiple of
its increment λ. Intersection range r ′ is shown in lines
7−9, where function Max and Min are the maximum
and minimum value between two inputs.

• Increments of ri and rj: λ1 and λ2 are different
(lines 13−38).
Note that, all possible increments of the available range
is 1, 2.5, 5. Therefore, the intersection of ri and rj must
be integers, in the case that ri and rj have different
increments.
Line 14: The function getIncrt is used to get the incre-
ment of the updated available range which has the
smaller ymin and store the increment into λ.
Lines 15−23: If the difference between a in ri and c in rj
is an integer multiple of the increment λ, the intersection
range r ′ is shown in lines 16−18. The increment λ′ is set
to 5 because the intersection must be an integer and be
a multiple of 2.5 (line 18). On the other hand, m may be
a decimal, but the intersection must be an integer so that
m should plus 2.5 to become an integer (lines 19−20).
Note that, the intersection range r ′ is nonexistent when
(m+ 2.5) is larger than n (lines 21−23).
Lines 24−35: If the difference between a in ri and
c in rj is not an integer multiple of the increment λ,
the intersection range r ′ and its increment λ′ are shown
in lines 25−27, where the value of m is quite different
from previously mentioned. That is because the remain-
der should be considered when (Max(a, c)−Min(a, c))
is not an integer multiple of the increment λ (line 25).
Furthermore, m is an integer or not that is considered as
lines 19−20, which are shown in lines 31−35.

Fig. 11 shows an example of the intersection process,
where the updated available ranges of each continuous block
are compared and the final intersection range is [3, 3], which
means that the available range for the multi-shape task T is
[3, 3] and the increment is 5. Further, the baseline block s(0,0)
can be placed at (3, 3) in the first column. From this step,
the placement location of multi-shape task T when s(0,0) is
placed in the first column is found.

B. CONTINUOUS BLOCK AWARE PLACEMENT
STRATEGY (CBAPS)
All information of available programmable resources on the
2D heterogeneous DPR device in the current status is stored
in the interval list set. A targeted multi-shape task can find all
available locations by searching the interval list set through
applying IPAL mentioned in Section IV-A. If the targeted
task can be placed in several locations, it is necessary to

FIGURE 11. Intersection range of updated available ranges.

use a proper approach as a selection strategy to choose the
best one. In this section, a continuous block aware placement
strategy (CBAPS) is introduced to be combined with the
proposed IPAL.

To select the best available location to place a multi-shape
task T , we evaluate the Continuity C(x, y) which can avoid
increasing the degree of fragmentation of programmable
resources on the DPR device as much as possible. The more
fragmented available programmable resources are, the more
difficult it is to place subsequent tasks.
Continuity is defined as follows:

C(x, y) =
n

N∑
i=0

Iwi × Ihi

, (2)

where n is the number of intervals generated by placing the
targeted task in the coordinate of (x, y). N is the number
of intervals that the target task occupied, Iw and Ih is the
width and height of the occupied interval. A smaller value
of C(x, y) means that fewer intervals are generated by the per
unit area of the selected intervals after the task assigned. Thus,
the available location with the smaller C(x, y) is selected to
place the target task in this CBAPS strategy.

Fig. 12 shows an example of how to calculate theC(x, y) in
different locations. According to the information of intervals,
the targeted task with black color has two available locations:
p1(0, 1) and p2(2, 2), to place on the DPR device F(5, 5).
Based on the 2, the value of C(0, 1) is 0.14 and larger than
the value of C(2, 2) = 0.25. Therefore, we select the location
p1 to place the targeted task.

C. RESOURCE STATUS UPDATE METHOD (RSUM)
In the placement stage, the proposed interval list set is used
to record the unoccupied 2D heterogeneous DPR resources.
Once a task is placed or removed on the device, the inter-
val list set has to be updated. Furthermore, placement and
removal are two reverse processes, task placement is the
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FIGURE 12. Example of CBAPS.

FIGURE 13. Update of intervals for task placement and removal.

process that occupied available programmable resources and
removal is the process to release the occupied ones.

As shown in Fig. 13, there are four cases based on the size
and relative position of the continuous block s = [sb, st, sk]
and its occupied interval I = [Ib, It, Ik]. We assume that
the placement location of s is (sx, sy) and the location of I
is (Ix, Iy). Four cases can be summarized as follows:

1) If s = I :
Placement: delete I ,
Removal: generate Inew = [sb, st, Ik];

2) If s 6= I and sb = Ib:
Placement: Ib← st , Removal: Ib← sb;

3) If s 6= I and st = It:
Placement: It ← sb, Removal: It ← st;

4) If s 6= I , st 6= It and sb 6= Ib:
Placement: Ib = st and generate Inew = [Ib, sb, Ik],
Removal: combine two intervals into one interval.

Based on different cases, all intervals can be updated when
a task is placed or removed on the 2D heterogeneous DPR
device.

V. THEORETICAL ANALYSIS
In this section, we will evaluate the proposed approach
through theoretical analysis, which includes analysis of time
and space complexity.

A. TIME COMPLEXITY
We assume that there is a multi-shape task T with w columns
that will be placed on a 2D heterogeneous DPR device
F(W ,H ). There are n continuous blocks in each task column
and N intervals in each DPR device column.

For the IPAL, firstly, each continuous block needs to
be compared with intervals in its corresponding column to
search and update the available ranges, the cost is (nwN ).
For each continuous block, the maximal number of available
ranges in one column is N , which means that each inter-
val in this column is available. In the intersection process,
available ranges for two continuous blocks are compared to
obtain the final available locations. Therefore, the intersec-
tion process costs ((nw − 1)N ). In total, the cost of finding
all available locations for the multi-shape task T is ((nwN +
(nw − 1)N ) × W ). Therefore, the total time complexity for
IPAL is O(nwNW ).

FIGURE 14. Number of intervals when 1000 tasks are placed in a DPR
device F (500, 500).

We experiment to explore the number of intervals when
1000 tasks will be placed on the DPR device F(500, 500).
Fig. 14 shows the trend of the number of intervals during
task placement, where the red line represents the maximum
number of intervals N in one column, and the black line is
the total number of intervals. Fig. 14 demonstrates that N
tends to stabilize as the number of tasks increases and is
much smaller than the height of the DPR device. The reason
is that, the maximum number of intervals in one column is
theoretically at mostH/2, based on the definition of the inter-
val, where H is the total number of programmable resources
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in one column.Thus, after the initial increase, the maximum
number of intervals in one column tends to be flat.

B. SPACE COMPLEXITY
Space complexity of the proposed algorithm consists of the
following parts: 1) interval list set List , 2) available range
set R(c,n) for each continuous block. Thus, the total space
complexity is O((W + nw)N ).

VI. SIMULATION AND DISCUSSION
In this section, we do simulations to evaluate the performance
of the proposed approach.

A. SIMULATION SETUP
To evaluate the performance of the proposed approach,
we construct a simulation framework using C language and
run on macOS 10.15.1, GCC 4.8 on 1.4 GHz Quad-Core
Intel Core i5 Processor with 8 GB Memory. Comparison
algorithms are given as follows:
• QC [10]: Quad-corner strategy based on the 2D DPR
device matrix.

• EUAS [11]: Expanding un-used area strategy based on
the 2D DPR device matrix.

• BFT [12]: Adjacency value strategy based on the 2D
DPR device matrix.

• Interval-FF: Proposed IPAL+RSUM combined with
first-fit (FF) strategy based on interval list set.

• Interval-FRAG: Proposed IPAL+RSUM combined
with proposed CBAPS strategy based on interval list set.

Experiments are performed on the 2D heterogeneous DPR
device with 100×100 programmable resources. According to
the task size, four task sets with randomly generated parame-
ters as input data are shown in Table 3. Each task set consists
of 1000 tasks, where wr is the range of task width, hr is
the range of top value on the y-axis for a continuous block,
er represents the range of task execution time.

TABLE 3. Task sets for simulation.

B. SIMULATION RESULTS
Three indicators: average runtime, fragmentation degree, and
rejection ratio, are proposed to evaluate the performance of
the proposed approach. We will introduce these indicators
and show simulation results in detail.

1) EVALUATION OF RUNTIME
Average runtime is measured to evaluate the runtime over-
head of comparison algorithms. Runtime overhead is the sum
of time for search for available locations, select the proper
placement location and resource management.

Table 4 shows the simulation results of the average run-
time. For each algorithm, the ® resource management pro-
cess takes almost negligible time compared to ¬ search and
 selection processes. Therefore, we focus on and analyze
the first two processes in detail.

For all task sets, the QC has the least runtime overhead
in search and selection process. That is because the lim-
ited searching candidates reduce the exploring range of QC.
Furthermore, the QC essentially uses the FF strategy, that is
once an available location is found, stop searching and place
the targeted task.

Both EUAS and BFT are based on using a resource matrix
to find all available locations. Therefore, in the search pro-
cess, EUAS and BFT almost use the same runtime overhead
to traverse the entire resource matrix. As shown in Table 4,
our proposed Interval-FF and Interval-FRAG have better run-
time overhead in search process than that of BFT and EUAS.
The reason is that the proposed IPAL in Interval-FF and
Interval-FRAG considers several continuous programmable
resources as one searching unit to find available ranges,
which has a higher efficiency than traversing the entire DPR
device matrix.

For the Interval-FRAG, the proposed CBAPS selection
strategy has to search for all available locations on the DPR
device to select the best one so additional time is necessary
compared to the FF selection strategy in Interval-FF and QC.
For the CBAPS, the process of calculating C(x, y) is more
complicated than the selection strategy of EUAS and BFT,
so it takes more time in the selection process.

2) EVALUATION OF FRAGMENTATION
Fragmentation is an indicator related to the placement qual-
ity. The degree of fragmentation negatively correlates with
the continuity of available programmable resources on the
device. Otherwise, the more dispersed the available pro-
grammable resources, the less likely subsequent tasks are
assigned on the DPR device. In this work, the fragmentation
degree F is calculated by the following equation [24]:

F =


τ − 1
χ − 1

× 100, for χ > 1;

0, for χ = 1,

(3)

where χ is the number of free programmable resources;
τ is the quantity of connected programmable resource set,
in which any two programmable resources are reachable to
each other. A smaller F value means much more continuity
of available programmable resources.

Fig. 15 shows the results of fragmentation for different
algorithms when TS4 is assigned on the F(100, 100) DPR
device. The x-axis represents the total number of tasks on
the device in the current status. With the increase in the
number of tasks on the DPR device, the fragmentation degree
F is increased due to the reduction in the number of free
programmable resources χ and the increase in the number
of connected programmable resource set τ .
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TABLE 4. Evaluation of average runtime.

FIGURE 15. Evaluation of fragmentation.

As shown in Fig. 15, the proposed Interval-FRAG (red line)
has the smallest fragmentation degree. That is because the
proposed CBAPS select the intervals that generate fewer new
intervals to place the new task. Furthermore, although QC
has the highest speed, it makes the available resources on the
device more fragmented compared to other algorithms.

3) EVALUATION OF PLACEMENT QUALITY
If a task cannot be executed before its deadline, it will be
rejected. Rejection ratio (<) is proposed to evaluate the task
placement quality. The equation to calculate the rejection
ratio is shown as follows [16]:

< =

∑
∀ti∈REJECT

ϑi × ei∑
∀tj∈TOTAL

ϑj × ej
× 100, (4)

where ϑi is the size of rejected task ti, ϑj is the size of task tj
in total task set, and e represents the execution time.

From the results shown in Fig. 16 and Fig. 17, in different
cases, the rejection ratio of QC is the highest. That is because

FIGURE 16. Evaluation of placement quality for different task sizes.

QC searches for available locations quickly by reducing the
number of search candidates, which results in the prob-
lem that even if there are enough programmable resources
assigned to the targeted task, the task still cannot find the
available locations. This is an algorithm that sacrifices the
quality of placement in exchange for speed. In addition,
the rejection ratio of EUAS is lower than that of BFT, since
the expanding un-used area strategy in EUAS tries to avoid
placements that render certain portions of the chip unusable,
which is more efficient than calculating the adjacent value
in the BFT. The rejection ratio of Interval-FF is better than
that of EUAS although Interval-FF adopts the first-fit strat-
egy. The reason is that the runtime overhead of Interval-
FF is much shorter than that of EUAS. Once multiple tasks
are waiting to be placed at the same time, the less time-
consuming algorithm can find the placement location for
the task faster, thereby reducing the waiting time of subse-
quent tasks. At last, the proposed Interval-FRAG has the best
placement quality since the fragmentation degree is much
lower than other algorithms. Lower fragmentation means that
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FIGURE 17. Evaluation of placement quality for different deadline ranges with task set TS1 to TS4.

the programmable resources are more continuous so that the
subsequent task is much easier to be placed, which increases
the placement quality of the system.

Fig. 16 also shows the relationship between the task size
and rejection ratio. The simulation in Fig. 16 is done based on
the same task deadline range [0. . . 5] (ms). With the increase
of task size, the rejection ratio for Interval-FRAG is increased.
That is because the larger task size means the more continu-
ous blocks the task has. Time complexity of IPAL is related
to the number of continuous blocks, which has been proven
in Section V-A.

Fig. 17 shows the rejection ratio with different task dead-
line ranges for each task set. For each task set, the rejection
ratio is decreased with the deadline range increased from
[0. . . 1] to [4. . . 5] (ms), that is because a shorter deadline
means that the task has a higher urgency for execution, and
can easily miss its deadline.

VII. CONCLUSION AND FUTURE WORK
In this paper, to address the task placement and resource
management problems for multi-shape tasks on a 2D het-
erogeneous DPR device, a continuous block list is proposed
to model the multi-shape task in columns, and an interval

list set is applied to manage heterogeneous programmable
resources. Simulation results show that the resource manage-
ment method proposed based on the interval list set decreases
the time for multi-shape tasks to find all available locations
by an average of 62.6% compared to the traditional matrix-
based resource management methods (EUAS and BFT).
Furthermore, the rejection ratio is decreased by at least 8.9%
with an average fragmentation reduction of 18.1%. There-
fore, by applying the proposed task placement algorithm and
resource management method, the performance of 2D het-
erogeneous DPR devices has been greatly improved, allow-
ing such devices to meet the growing demand for real-time
computing systems in the future.

There are three main stages: scheduling, placement, and
resource management in the DPR control system. In this
paper, the task dependency and data transfer are ignored in the
scheduling stage. As a future work, a scheduling algorithm
that considers task size, shape, and task-dependency could
further improve the performance of the 2D heterogeneous
DPR device.
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