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ABSTRACT The extensive video surveillance networks gather an enormous amount of data exponentially
on a daily basis and its management is a challenging task, requiring efficient and effective techniques for
searching, indexing, and retrieval. The employed mainstream techniques are focusing on general category
videos, where the important events in surveillance require fine-grained events retrieval. In this paper,
we introduce an event-oriented feature selection mechanism by utilizing the intermediate convolutional layer
of a pre-trained 3D-CNN model, that is selected after deep investigation of its weights and response to a
particular event. The extracted exclusive features represent an event semantically and effectively eliminate
those neurons which do not respond to an event. Furthermore, the event-oriented convolutional features are
of very high-dimensions, requiring additional storage, and take more time in feature comparison for retrieval.
Therefore, we generate compact binary codes from these features using principle component analysis (PCA)
algorithm. This makes our system more efficient to retrieve videos from large scale database. We evaluated
our approach on the challenging events of UCF101 andHMDB51 datasets for original features and generated
compact codes to achieve reduced execution time and better precision and recall scores.

INDEX TERMS Deep learning, feature selection, video retrieval, video analytics, hash codes, surveillance
event analysis.

I. INTRODUCTION
The amount of videos since the birth of Internet is increasing
on daily basis, where large number of videos are recorded,
uploaded, and downloaded from world wide web. Video
retrieval, since last three decades, particularly after the birth
of Internet has drawn the attention of researchers due to its
wide range of applications and extreme need in multimedia
information processing domain. The automatic technique of
retrieving user’ interest videos is called content-based video
retrieval (CBVR), which ensures the relevancy of both, the
query and the retrieved items [1]. Videos preserve richer
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contents than images, containing huge amount of redundant
contents at the same time. Similarly, the video processing
and analysis require significant computational complexity
for its effective usage including browsing and retrieval [2].
Therefore, compared to image retrieval, extracting similar
videos from a huge repository is challenging from several
aspects. Video retrieval manually for humans is a tedious
and time-consuming task. Alongside, humans are much error
prone, thus there is a chance of incorrect retrieval results.
Automatic techniques for video retrieval are need of the cur-
rent technological era to carry out smooth usage of available
videos for the Internet as well offline videos users. There
are many potential applications of video retrieval systems in
diverse areas of Data Science including news, advertising,
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entertainment, education, video archiving, and most impor-
tantly the medical domain. Another emerging application of
CBVR are recommender systems used in many websites such
as YouTube to provide user with their most relevant contents
such as movies, soccer highlights, etc.

As a video preserves meaningful contents that can be used
to differentiate between two videos and their similarity metric
can lead to proper indexing. The contents of video indicate
different features such as color, intensity, texture, edges,
objects trajectories, motion, shapes of objects, optical flow,
saliency, etc. The videos are compared for similar contents
by matching any of these feature vectors. The features such as
texture, color, and intensity can be extracted through existing
algorithms such as scale invariant feature transform SIFT [3],
speeded up robust features (SURF) [4], and oriented FAST
and rotated BRIEF (ORB), etc. Hence these features are
local low-level and have very limited information about the
actual contents of the video, therefore, they lead to an under-
representation of the input video. Such low-level features
usage for video retrieval from big repositories is not reliable.
The positive point of low-level features usage is its faster
execution which could lead to an efficient video retrieval
system. In contrast, there exists mid-level features which
include motion, saliency, etc. and achieve better results than
low-level for contents representation leading to compara-
tively an enhanced video retrieval system. The best option for
consideration in terms of suitable representation of contents
are high-level features which extract every slight detail from
frames such as edges, shapes, motion information, flow of
objects, events, etc. High-level features lead to satisfactory
representation of video and alternatively yielding a supreme
video retrieval system. The strategies of representative meth-
ods of all the discussed features are given with supported
references in the next paragraphs.

Bag-of-features (BoF) are evaluated by Jiang et al. [5]
using different factors that govern the performance of BoF
to choose the optimal one. The main focus of this research
is to replace the global features through several variants
of BoF for semantic contents representation of an image.
The authors presented comparison over different datasets
using various kernels and highlighted the best performance
of retrieval. Objects’ interest point matching in videos using
SIFT features for objects-based video retrieval is presented by
Huel et al. [6]. Similarly, SURF descriptor is used in [7] for
video retrieval problem. In order to achieve lower dimensions
of SURF descriptors, the authors utilized stochastic dimen-
sionality reductionmethod to have an efficient CBVR system.
The retrieval accuracy is 78%, where the authors also anal-
ysed the comparative performance of lower dimensionality.
Zhu et al. [8] presented a novel technique for large-scale
similar videos retrieval using temporal-concentration SIFT
features. The authors efficiently encoded SIFT features with
temporal information via tracking to generate temporal-
concentration SIFT. These are compressed local features
which reduce visual redundancy. Frame level processing is
used in these methods to retrieve similar videos contents.

A detailed discussion about other similar methods can be
found in this chapter [9]. The low-level features-based meth-
ods have several disadvantages alongside a positive point of
reduced computational complexity. These features are limited
to represent the overall scenario of a scene or a complete
video. The main objective of retrieval techniques is effec-
tive and efficient video contents representation, where the
low-level features for retrieval are not sufficient or accurate
enough for consideration in practical applications. Therefore,
most of the current mainstream methods of the CBVR avoid
the usage of low-level features, until there is an extreme need
of specific system.

A long video caption mechanism advanced to big video
data retrieval is presented in [10]. This technique focuses on
shortening of a video through video segmentation to decrease
the retrieval time via extracting only interesting clip of the
video. Finally, this technique generates video caption through
long short-term memory (LSTM) that is used for retrieval of
similar videos. An image query based video retrieval system
is presented in [11] by utilizing an intelligent fusion of CNNs
and bag of visual word module to design a single model.
The model is capable of video frames information extrac-
tion and their effective representation, where visual weighted
inverted index and its co-algorithms are used to enhance the
retrieval process. The experiments presented for this method
are very limited and the authors only decreased the computa-
tional complexity without any improvement in the accuracy.
Similarly, the authors in [12] proposed a new dataset and
optical character recognition based high-level semantic fea-
tures along with autoencoders for image retrieval. A spatial
and language-temporal tensor fusion based network is pro-
posed in [13] for video moments retrieval. Video retrieval
is used in vast domains of computer vision. For instance,
a deep CNN based framework for surgery videos retrieval
is introduced in [14]. Similarly, there are a lot of matching
techniques based on various types of algorithms including
deep learning and statistical methods to achieve CBVR task
effectively [1], [15]–[17].

The employed literature of CBVR exposes various lim-
itations of the existing techniques from different perspec-
tives. The foremost aspect to be covered in CBVR litera-
ture is the effective representation of events, actions, and
other contents of the input video. It leads to an effective
retrieval system because most of the videos contain events
that happen in sequence of frames. In the existing liter-
ature, frames level processing is utilized to represent the
contents of a video such as actions/events. Frames level
processing is not recommended while dealing with human
actions and events because they occur sequentially. Another
key limitation of employed CBVR techniques is compu-
tational complexity which is very high due to the utiliza-
tion of large number of parameters for features extraction.
As the video retrieval system searches in Big Data repos-
itories to find out similar features and hence consumes a
lot of computational resources. Similarly, the existing tech-
niques utilize complex distance matching algorithms for
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FIGURE 1. The proposed framework for convolutional features selection and compact hash codes generation for event-oriented video
retrieval. The process is shown for both database videos and query video. The final step is the comparison of hash codes of query video
with all videos of database.

high dimension features similarity computation, whichmakes
the retrieval much slower. In order to overcome the men-
tioned limitations, we propose a novel technique for video
retrieval with the following major contributions to the CBVR
literature:

1. The 3D convolutional feature maps of a pre-trained
model are investigated to aim at event-oriented activa-
tions in order to represent an event effectively and to
achieve fine-grained retrieval for surveillance environ-
ments.

2. We present a novel feature selection mechanism that
chooses only those feature maps where neurons are
active for a particular event and eliminate inactive ones.
Our event-oriented features are powerful to present
event regions in a sequence of frames instead of the
background information.

3. The event-oriented convolutional features are very
high-dimensional, requiring additional storage and take
much extra time in feature comparison for retrieval.
Therefore, we propose a unique mechanism to generate
compact binary codes from these features using PCA.
This makes our system more efficient for large scale
video retrieval.

Rest of the paper has three major sections. Section II explains
the working of our proposed framework in details. Section III
is dedicated to experimental results of our framework with
detailed explanation about datasets used for experiments and
retrieval results achieved on those datasets. In Section IV,
we concluded our paper with discussion about future research
works in the CBVR domain.

II. PROPOSED CBVR FRAMEWORK
In this section, we present an event-oriented 3D convolutional
feature selection and compact binary hash codes generation
framework for fine-grained video retrieval from large scale
videos repositories. The proposed framework consists of
training process for features selection, convolutional features
extraction, and binary hash codes generation using PCA for
video indexing and retrieval. Our system can be effectively
fine-tuned for any type of surveillance event representation
for fine-grained searching and indexing. The details about
each step of our framework are provided in the subsequent
sections. The graphical representation of our proposed frame-
work and its input leading to output flow is given in Figure 1.

A. 2D AND 3D FEATURE MAPS ANALYSIS
The 2D-CNNs have been extensively and successfully
applied in many computer vision domains for image
data analysis [18], [19]. However, for video analytics the
2D-CNNs are insufficient because they are limited to rep-
resent the temporal information of the video data. The
3D-CNNs are introduced to cover both spatial and tempo-
ral dimensions for sequential features representation. The
2D-CNNs are also used for video analytics by utilizing some
supporting fusion techniques to find temporal information
in the output of 2D-CNNs [20]–[22]. In these methods they
claimed that it is an efficient way to process high dimen-
sional video data because when they apply 3D filter instead
of 2D then the convolutional operation becomes more com-
plex and takes extra processing time. For instance, in our
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prior work [23], we utilized 2D-CNN and autoencoder for
human action recognition. We first extracted the deep fea-
tures from pretrained VGG-16 CNNmodel from sequence of
frames which are then passed to the optimized deep autoen-
coder for learning sequential patterns. It is proven from the
recent studies [24], that the convolutional and fully con-
nected layer’s features of a pretrained CNNs are rich infor-
mative and can be utilized for pattern representation tasks
of other computer vision applications. The convolutional fea-
tures maps are famous for the local representations in visual
data while the fully connected layer features are the global
representations of visual data. Ahmad. et al. [25] utilized
the convolutional features maps of a 2D-CNN model for the
representation of surveillance objects. They claimed that the
selected feature maps semantically represent the surveillance
objects with minimal background influence. Motivated from
the aforementioned works, we investigated the deeper con-
volutional layer of a 3D-CNN model, known as C3D [26]
for the events in video data. This deep learning architecture
contains eight 3D convolutional, five 3D pooling, and two
fully connected layers. The model is trained on large scale
Sport1M human actions video classification dataset which
contains 487 action categories and more than one million
sample video clips. Its parameters are well trained by achiev-
ing 85.2% accuracy score for Sport1M dataset. We inves-
tigated its deeper 3D pooling layer named as ‘Pool3D_4’
because it has large receptive field to capture the tiny pat-
terns of spatial and temporal dimension from the event
sequence.

B. EVENT-ORIENTED FEATURES SELECTION
The 3D-CNN model comprises of numerous convolutional
feature maps due to the presence of temporal dimensions.
It is evident from several studies mentioned in the analy-
sis section that most of the feature maps are not impor-
tant for the events representation task, which degrades the
overall performance. While addressing the effective 3D
feature maps selection task related to a particular event,
we achieved two major benefits. Firstly, it reduces the fea-
tures dimension for indexing Big Data repositories. Secondly,
it provides the effective discriminative features for event’s
representation which allows us to precisely compare dif-
ferent events for fine-grained video retrieval [27]. Some of
the selected features are given in Figure 2 (a) which shows
that the highly activated areas of feature maps represent
only the location of event in the sequence of frames while
Figure 2 (b) has the discarded feature maps which either have
no response for the event or represent the background of the
event. The important feature maps where neurons are giving
higher attention to the portion of an ongoing event in the
sequence of frames are more suitable for the events repre-
sentation. Contrarily, the feature maps which are active for
the background information in the frames sequence has lower
potentials for ongoing events representation. The proposed
event-oriented feature selection mechanism is mathemati-
cally explained in Algorithm 1 alongside the used parameters.

Algorithm 1 Activated Event-Oriented Feature Maps Selec-
tion
Parameters and abbreviations:

TS = Training set
S = Sample event sequence
EF = Event-oriented feature maps
F = Outputs of 3D-CNN
FC = Number of channels in the Conv layer
FM =Output of Conv layer for features selection
NAM = Neuron’s activation matrix
h, w, d = height, weight, depth of feature maps

‘i’ is representing the iterations of variables and parame-
ters i.e., in TSi, ‘i’ means one element of training set.
Input:

TS = {S1, S2, S3, . . . , Sn}
Output

Event-oriented feature maps (EF )
Preparation:

1. Pretrained C3D CNN
2. Initialize NAM0

Steps:
1. for each sequence TSi in TS

a. F ← Feed TSi to C3D CNN
b. h× w× d× FC ← pool3D_4(F)
c. FM ← Concatenate (d × FC )
∗note: after concatenation the dimensions
will become (h× w× FN )

d. for each Fmi in FM
FNi = global average pooling (Fmi)
end for

e. FA← find (Fmi whose FNi > t1)
f. Activate FA indices with 1 in NAM for TSi

end for
2. Compute histogram of HIST_FAi for each Fmi
3. Return all Fmi as EF whose HIST_FAi > t2

Firstly, our framework inputs a set of training videos TS
that represent a particular event. Next, for each video S of
a training set, we get F output from a pretrained 3D-CNN
model. As each CNN model has multiple Convolutional lay-
ers, therefore, after an in-depth analysis, we employed the
feature maps of pool3D_4 layer. The channels and the depth
of selected layer are concatenated for analysis with h×w×d
dimensions and stored in FM . Following this, for each feature
map Fmi in FM , global average pooling is calculated and
feature maps with Fmi greater than a defined threshold t are
selected in event-oriented feature maps.

To see the activated 3D feature maps of the pretrained
C3D CNN model, we exploited a training process which
learns from the given event sequences of the UCF101 action
recognition dataset [28]. This dataset consists of 101 action
events, where each category has more than 100 video sam-
ples. These video samples are further divided into short
sequences of 16 consecutive frames, forming more than 10
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FIGURE 2. (a) The feature maps selected by the proposed mechanism for events representation from a C3D CNN model, where the feature maps are
drawn on the actual event to know whether it is responding to the underlying event or not. (b) The feature maps discarded by our algorithm because they
are either giving no response or representing the background information of the event.

sequences for each video. It is more suitable for the analysis
of 3D event-oriented features because its videos are captured
in a real-life environment where the performer of the action
is present in the actual locations of happening action. For
instance, a soccer player actions are recoded in the soccer
ground and surfing is performed on the ocean waves, etc.
Thus, in such scenarios it is hard to conclude and analyze the
most active feature maps for foreground or background of the
ongoing event.

During the feature maps selection, training, and analysis
process, we extracted maps of 7 × 7 × 2 × 512 dimensions
from pool3D_4 layer of C3D CNN model for TS = {S1,
S2, S3, . . . , Sn} training samples. The first two dimensions
represent the feature map’s width and height, third is tempo-
ral dimension information, and the fourth is the number of
feature maps in this layer. The N temporal dimensions are
concatenated for analysis which give us total of 7× 7× 1024
feature maps. Next, for each feature map of training sample
i, we calculated the global average pooling. Afterwards, all
the feature maps with pooling value greater than a threshold
are searched and their indices are checked out to be 1 in
our NAM, as shown in Figure 3(b), where the yellow color
represents the feature maps that give high activation for the
underlaying event in sequence of frames and green ones are
the feature maps which do not respond to the event occur-
rence region in the feature map. Each column in the NAM
represents a particular feature map for all the training sam-
ples which indicates that significant amount of feature maps
provide no neurons activation response for any of the training
sample as red box is drawn in Figure 3(b). Thus, features
maps without activations can be discarded without adversely
affecting the overall performance. Finally, we computed the
histogram for the feature maps, NAM, as shown Figure 3(a)
and defined a threshold t for the final feature maps selection.

Our feature selection mechanism effectively removes the
activations which are less responsive for the event in
the sequences and the selected ones effectively repre-
sent the events for fine-grained video retrieval Some of
the selected and discarded feature maps are illustrated
in Figure 2(a) and Figure 2 (b).

C. COMPACT BINARY CODES GENERATION
The big multimedia video data require efficient methods for
searching and retrieval, where the feature-based matching
algorithms such as Euclidean distance has high computa-
tional cost. The most prominent solution for addressing this
issue is to generate binary hash codes from the original
features and measure the distance between the corresponding
bits in hamming space, instead of features. This helps in two
ways: 1) it reduces the feature storage size; and 2) the binary
hash codes matching is very efficient for large scale datasets.
However, the performance is comparatively lowerwhen using
binary hash codes instead of the original features. Therefore,
for precise generation of hash codes, we utilized a multivari-
ate statistical method PCA [29], which is the most prominent
feature of factors assessment, that identifies patterns and
presents the data in such a way to emphasize similarities
and differences inside the given features space. It evaluates
correlation among an enormous number of variables and
streamlines the complexity of high-dimensional data, while
preserving patterns and trends in low-dimensional features
space. The lower dimensionality is achieved by transforming
the variables to a new set of variables, which are known as the
principal components (PCs). The PCA first standardizes the
data to a specified range of values so that each variable con-
tributes equally to the analysis. Next, it computes covariance
matrix of standardized data, which is a M × M symmetric
matrix (whereM is the number of dimensions). For example,
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FIGURE 3. (a) The histogram of the neurons’ activation responses achieved by an event for all feature maps of all the training samples, the red line
indicates the threshold for selecting the feature maps. (b) Neuron’s activation matrix (NAM) which shows how many feature maps are active for a
particular event, the yellow ones are active and selected for event representation while the green ones are not active and discarded for event
representation.

FIGURE 4. Visualization of original convolutional features extracted for a
sequence of frames using pretrained C3D CNN model and squeezed to
1024, 512, and 256-bits hash codes.

for a 3-dimensional dataset with 3 variables x, y, and z, the
covariance matrix is a 3× 3 matrix. Followed by computing
the eigenvectors and eigenvalues of the covariance matrix to
identify the PCs. The dimensions are reduced by selecting
PCs of size of decreasing factor and multiplying it with the
original features. More explanation about PCA is out of scope
of the paper and could be deeply studied in the referenced
paper [29].

The objective of using PCA is its faster and precise
conversion rate. In the proposed framework, we extracted
1024 dimensional features for a sequence of 15 video frames
which are reduced to 512 and 256 features space and then to
binary hash codes, respectively. For retrieval using 1024-bits,
we avoided the PCA usage and directly applied a threshold
to convert the original convolutional features to hash codes.
However, for retrieval using 512-bits and 256-bits, the dimen-
sionality of original features is first reduced using PCA to
512 and 256 features spaces and then we applied a threshold

for hash codes generation. The effects of original features
and hash codes are visualized in Figure 4. The first row
in Figure 4 signifies the original features, where the values
are in floating points. From this 1024-dimensional feature
vector, the high and low activations of the features are clearly
observable. From second row in Figure 4, it is very clear
that the transformation from the original feature to 1024-bits
using proposed method is very precise. The higher values
are converted to 1s and the low values are converted to 0s.
Similarly, for 512 and 256-bits almost similar patterns of bits
have been achieved. For feature conversion to bits, we utilized
different threshold values which we discussed along with
results in the experimental section. The detailed analysis of
hash codes generation and its performance is discussed in the
experimental section.

III. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we explore the comprehensive assess-
ment of our video retrieval algorithm using two bench-
mark event detection datasets including UCF101 [28] and
HMDB51 [30]. We conducted various experiments using
original convolutional features, different level of selected
features, and binary hash code-based features to evaluate
the performance of our framework. Furthermore, we have
provided a detailed analysis of the proposed features selection
mechanism on the performance of video retrieval in terms of
effectiveness and efficiency. The experiments are performed
on 8 cores system which contains RTX 2080ti GPU with
11 GB dedicated RAM. Convolutional features are extracted
using CAFFE [31] deep learning tool and the features selec-
tion and binary hash codes generation mechanisms are imple-
mented in MATLAB 2018.
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FIGURE 5. Retrieval results for a query video given from sky diving category of UCF101 dataset. The frames having red borders are miss-retrieved results
with respect to the input query video.

FIGURE 6. Retrieval results for a query video given from surfing category of UCF101 dataset. The red border frames show incorrectly retrieved results.

A. EVALUATION METRICS
The evaluation of information retrieval task is different from
the classification problem, where methods are evaluated by
crosschecking the prediction and ground truth results. In
retrieval problem, when a query is given and its similar videos
are retrieved, then the ones which are semantically similar to
the query are considered as ‘‘relevant’’ and others as ‘‘not
relevant’’. We utilized precision, recall, cumulative match
characteristic (CMC), and mean average precision (MAP)
value for the evaluation of our proposed video retrieval frame-
work. Precision is the ratio between the accurate retrieved
videos and the total videos user want to retrieve, as calculated
in Eq. 1. It is very effective assessment metric which mea-
sures the positive predictive values of the retrieval systems.
Recall is the ratio between the accurate videos retrieved
and total number of relevant videos in dataset for a par-
ticular query, as given in Eq. 2. It measures the sensitiv-
ity of the retrieval systems, indicating the performance on
different levels of recall [38]. Typically, this evaluation is
presented by precision and recall graph where precision is
calculated for various recall levels as visualized in Figure 7
and Figure 9.

precision =
{relevant videos} ∩ {retrieved videos}

{retrieved videos}
(1)

recall =
{relevant videos} ∩ {retrieved videos}
{relevant videos in dataset}

(2)

The CMC curve is another evaluation metric for the quanti-
tative analysis of CBVR systems. It measures the precision
of CBVR at different ranks level. For example, a required
query is retrieved by system at which position of the obtained
results. In CMC curve, the vertical axis represents the pre-
cision percentage and the horizontal axis shows rank of that
precision. The details about MAP value calculation can be
found from a research in [39].

B. RETRIEVAL RESULTS ACHIEVED ON
UCF101 EVENTS DATASET
UCF101 dataset is a collection of 101 different types of real-
istic human actions videos, gathered from YouTube. It con-
tains 13320 net events videos recorded in different real-life
scenarios such as human interaction with objects i.e. soccer
and baseball or playingmusical instruments, etc.We used this
dataset for evaluation because it offers a broad assortment
of events with a combination of different types of scenarios
such as illumination, object size and pose, camera motion
and viewpoint, and it imposes various challenges for video
retrieval systems. However, the proposed features selection
mechanism is able to deal with the aforementioned challenges
by selecting the feature maps with active neurons. For the
evaluation, we have randomly selected test queries from dif-
ferent classes of the dataset and calculated their precision
values for different recall levels. The performance usingCMC
curves on UCF101 dataset is shown in Figure 8.
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FIGURE 7. Performance of the proposed technique on UCF101 dataset using precision and recall graphs for (a) selected feature maps based retrieval
using different thresholds. Comparison of proposed PCA-based hash codes generation with FFT [32], LSH [33], SH [34], PCAH [35], DSH [36], and
SpH [37] using (b) 1024-bits hash codes (c) 512-bits hash codes and (d) 256-bits hash codes.

FIGURE 8. The CMC curves for UCF101 dataset (a) results of selected
features using different thresholds (b) results achieved using binary
proposed hash codes generation method.

To begin with, it can be seen from Figure 8 (a) that the
selected features using proposed algorithm including 537-,
450, 380-features have similar results compared to using the
whole 1024-features. For 1024 dimensional features Rank-1
retrieval start with 80% precision and on Rank 20 it
reaches 100% precision. For 308-, 245-, and 178-features,
the retrieval performance is lower at initial ranks, because the
number of features are very less, however, its precision value
reached more than 80% at Rank-30. Furthermore, the per-
formance using proposed hash codes is almost similar to
the original features on UCF101 dataset. For instance, the
1024-bits hash codes achieved similar CMC curves as
utilizing the original 1024 features. The competence of
512-bits and 256-bits is slightly reduced at lower rank, how-
ever, it reached to 100% precision after Rank-15. In addition,
it should be kept in mind that time required for bits compar-
ison for finding the similarity is much faster than finding the
similarity using double values. Therefore, if we can get faster
and real-time results, then the 512-bits are very equidistant to
be used for event-oriented video retrieval.

The precision and recall graph for the UCF101 dataset is
given in Figure 7 (a).We tested ourmethod by performing dif-
ferent experiments on feature selectionmechanism via certain
thresholds. The detailed discussion of feature maps selection
is given in Section 2.B. The threshold 0 refers to all feature
maps selection and other thresholds select the neurons which
are active for events in the video. It can be seen from Figure 7
(a) that the features selection at T equals to 20 utilized only
537 dimensions’ features that perform much better than the
total 1024-dimension features for retrieval task. Our proposed

TABLE 1. A comparison of the proposed technique with state-of-the-art
using MAP values for 1024-bits hash codes-based retrieval.

technique removes most of the feature maps that respond
to the background of the underlying event or not active for
the event. For instance, the dataset contains many categories
which are performed in similar background i.e. soccer, base-
ball, cricket, etc., that are played in green grass. So, if we
search for such events using full features then many non-
relevant similar background information events are retrieved.
The results using T equal to 30 are still similar with the total
features results because in this case we discarded only 87
more features maps. The rest of the test thresholds showed
poor results for higher recall level however on 0.2 recall, we
achieved better precision scores of 0.9, 0.86, 0.85, and 0.8,
respectively.

Results for queries from sky diving and surfing class of
UCF101 dataset are visualized in Figure 5 and Figure 6. The
first image in both the figures is the input query and the labels
of the subplot images show their similarity score with the
given query, where 0 means 100% sure that it is the same
event and the near to 0 value indicates best match. From
Figure 5 and Figure 6, it can be seen that the proposed
technique has retrieved very similar events, however, in the
third row of Figure 5 our method retrieved the jumping event
as sky diving. Similarly, in the surfing query it retrieved
skiing and skijet event videos. This is because the 3D-CNN
models capture spatiotemporal features of the event and if
we compare those non-relevant retrieved events to the query,
their spatial and temporal patterns are very much similar to
each other, therefore such non-relevant events are retrieved
as relevant.
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FIGURE 9. Performance graph of the proposed technique on HMDB51 dataset using precision and recall graphs for (a) selected feature maps based
retrieval using different thresholds. Comparison of proposed PCA-based hash codes generation with FFT [32], LSH [33], SH [34], PCAH [35], DSH [36], and
SpH [37] using (b) 1024-bits hash codes (c) 512-bits hash codes (d) 256-bits hash codes.

FIGURE 10. Retrieval results for a query video given from basketball dribbling category of HMDB51 dataset. The frames having red borders are
miss-retrieved results for the input query of basketball category.

FIGURE 11. The CMC curves for HMDB51 dataset; (a) results of selected
features using different thresholds, (b) results achieved using binary
proposed hash codes generation method.

The comparison with state-of-the-art using MAP perfor-
mance for UCF101 dataset is given in column 2 of Table 1.
The MAP values are calculated using randomly selected
50 different queries. The proposed method has achieved
highest MAP value of 83.21%, while FFT [32], LSH [33],
SH [34], PCAH [35], DSH [36], and SpH [37] achieved
82.14%, 70.62%, 74.35%, 75.42%, 76.91%, 74.65% MAP
values, respectively.

C. RETRIEVAL RESULTS ACHIEVED ON HMDB51 DATASET
HMDB51 dataset contains 6474 manually annotated video
clips made of 51 distinct human actions categories along with
some clips included from various sources such as YouTube,
movies, and public databases. This dataset is very challenging
because its inter class data is very diverse in nature, where

each clip is captured in unique scenario, therefore, the results
on this dataset are not that promising as UCF101. The pre-
cision and recall graph for the HMDB51 dataset is given
in Figure 9 (a). We performed the same kind of experiments
on this dataset; however, the selected and total features have
almost the same performance on lower recall values but
on higher recall the selected features have achieved better
results. Some of the visual results for challenging queries
from ‘‘basketball dribbling’’ and ‘‘selfie smiling’’ are shown
in Figure 10 and Figure 12. It can be seen in Figure 10
that for basketball dribbling the incorrect events are mostly
indoor and performing sports activities. For instance, pull-up
events are retrieved, where moment patterns are very simi-
lar to the basketball jumps. Similarly, for the selfie smiling
events in Figure 12 most of the non-relevant facial events
are retrieved. For example, in first row of Figure 12, the 3rd

retrieved video is of kissing event however, the performer
is also smiling at the same time. Our proposed technique
has such kind of non-relevant video retrieval, but the over-
all performance is better, and we achieved higher precision
scores on all recall levels. The performance using CMC
curves on HMDB51 dataset is shown in Figure 11. It is a
very challenging dataset, yet our method has achieved more
than 75% precision values on very low rank for selected
features and reached to 100% on Rank-25 results. Using
proposed binary hash codes, the performance of 1024 and
512-bits is similar to the performance using original features.
However, only 256-bits results are very low because most of
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FIGURE 12. Retrieval results for a query video given from selfie smiling category of HMDB51 dataset. Most of the frames are miss-retrieved, as given in
red borders.

the information is lost while reducing the features and also
due to low bit conversion. Therefore, the retrieval results of
256-bits are comparatively lower. We evaluated our method
using MAP value for 50 randomly selected queries from
HMDB51 dataset and the comparison with state-of-the-art is
given in column 3 of Table 1. As this dataset has verity of
challenging videos, therefore, all the methods have achieved
MAP values under 80%. The proposed method has achieved
highest MAP value of 75.32%, while FFT [32], LSH [33],
SH [34], PCAH [35], DSH [36], and SpH [37] achieved
74.95%, 66.38%, 67.54%, 6712%, 70.53%, 68.85% MAP
values, respectively.

D. PERFORMANCE USING BINARY HASH CODES
The proposed technique is experimentally evaluated using
three levels of binary hash codes including 1024-bits, 512-
bits, and 256-bits. The precision and recall scores achieved
using various lengths of hash codes for UCF101 and
HMDB51 datasets are given in Figure 7-(b, c, and d) and Fig-
ure 9-(b, c, and d) for 1024, 512, and 256-bits, respectively.
The results of the hash codes-based methods are not as better
as the original features however the execution time perfor-
mance is increased exponentially. For instance, for 0.2 recall
level our proposed method achieved 0.99 precision score but
for 1024-bits, 512-bits, and 256-bits it achieved 0.94, 0.9, and
0.81 precision scores, respectively. Furthermore, for higher
recall level 1 the original features achieved 0.4 precision
score, while the 1024-bits, 512-bits, and 256-bits, it achieved
0.3, 0.23, and 0.2 precision scores, correspondingly. Simi-
larly, the storage size for original features of UCF101 dataset
(13320 videos) is 123 MB; however, when features are con-
verted to hash codes it is only 1690 KBs. We compared our
proposed technique with the recent bi-directional fast Fourier
transform (BD-FFT) [32], LSH [33], SH [34], PCAH [35],
DSH [36], and SpH [37] based hash coding schemes in Fig-
ure 7-(b, c, and d) and Figure 9-(b, c, and d). It can be seen
from precision and recall graphs of both datasets that for
higher recall level, our proposed technique achieved better
results as compared to the state-of-the-art techniques and
for lower recall level, our results are higher or overlapped
at some points for 1024, 512, and 256-bits code. Similarly,
the time required to covert original features of one sample to

binary hash codes is faster than BD-FFT, LSH, SH and DSH.
For instance, BD-FFT takes 0.12 seconds for 512-bits code
generation where our proposed technique takes only 0.0082
seconds for its transformation. The experimental results show
encouraging performance of the proposed technique in terms
of accuracy as well runtime for event-oriented video retrieval.

IV. CONCLUSION AND FUTURE WORK
The concept of video retrieval, particularly CBVR is widely
used in different real-life scenarios with applications to med-
ical, surveillance, entertainment, and many other domains.
In this paper, we present an event-oriented 3D-CNN features
based CBVR system that is extremely efficient and effective
for the retrieval of similar contents from huge video data
repositories. We opted middle layer features of a 3D-CNN
model after a deep investigation of its effectiveness for repre-
sentation of sequential frames. The sequential features help in
capturing the overall context of events which has a prominent
role in contents presentation of a video, as it has chunks of
events happening at different time intervals. We exploited the
convolutional features selection mechanism which is able to
select only those features maps from the CNN layer which
are active for the ongoing event in the sequence of frames.
In order to squeeze the size of extracted high dimensional fea-
tures for efficient retrieval and faster storage, we introduced
the concept of hashing in our problem. We represented these
high-dimensional features in compact binary codes via PCA,
which ensures efficient searching and lower storage capacity.
We performed experiments over several action events datasets
and achieved better accuracy. The experimental results con-
firm the faster retrieval of our framework and the fine quality
of exactness in finding video from huge repository. In future,
we aim to use medical and healthcare data [40] for effi-
cient endoscopy video retrieval [41] and its sub-domains,
functional in IoT environments [27].
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