
Received September 23, 2020, accepted October 6, 2020, date of publication October 9, 2020, date of current version October 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029868

Research on Adaptive Job Shop Scheduling
Problems Based on Dueling Double DQN
BAO-AN HAN AND JIAN-JUN YANG
Department of Industrial and Manufacturing Systems Engineering, Beihang University, Beijing 100191, China

Corresponding author: Bao-An Han (hanbaoan@buaa.edu.cn)

This work was supported in part by the Beijing Key Laboratory of Digital Design and Manufacturing; in part by the National High
Technology Research and Development Program(863) of China under Grant 2012AA040907; and in part by the postgraduate innovation
practice base of the modern design and advanced manufacturing technology for complex products in Beihang University.

ABSTRACT Traditional approaches for job shop scheduling problems are ill-suited to deal with complex
and changeable production environments due to their limited real-time responsiveness. Based on disjunctive
graph dispatching, this work proposes a deep reinforcement learning (DRL) framework, that combines
the advantages of real-time response and flexibility of a deep convolutional neural network (CNN) and
reinforcement learning (RL), and learns behavior strategies directly according to the input manufacturing
states, thus is more appropriate for practical order-oriented manufacturing problems. In this framework,
a scheduling process using a disjunction graph is viewed as a multi-stage sequential decision-making
problem and a deep CNN is used to approximate the state-action value. The manufacturing states are
expressed as multi-channel images and input into the network. Various heuristic rules are used as available
actions. By adopting the dueling double Deep Q-network with prioritized replay (DDDQNPR), the RL
agent continually interacts with the scheduling environment through trial and error to obtain the best policy
of combined actions for each decision step. Static computational experiments are performed on 85 JSSP
instances from the well-known OR-Library. The results indicate that the proposed algorithm can obtain
optimal solutions for small scale problems, and performs better than any single heuristic rule for large scale
problems, with performances comparable to genetic algorithms. To prove the generalization and robustness
of our algorithm, the instances with random initial states are used as validation sets during training to select
the model with the best generalization ability, and then the performance of the trained policy on scheduling
instances with different initial states is tested. The results show that the agent is able to get better solutions
adaptively. Meanwhile, some studies on dynamic instances with random processing time are performed and
experiment results indicate that out method can achieve comparable performances in dynamic environment
in the short run.

INDEX TERMS Adaptive scheduling, convolutional neural network, deep reinforcement learning, dueling
double DQN, job shop scheduling problem (JSSP).

I. INTRODUCTION
With economic globalization, manufacturing enterprises are
facing fierce market competition and unpredictable produc-
tion environment changes. At the same time, information
technologies such as cloud computing [1], Internet of things
[2], big data technology [3], [4] and other technologies,
have become key to advancedmanufacturing. Cyber-Physical
Systems (CPS) [5], Industry 4.0 [6] and Made in China
2025 [7] strongly promote the transformation and upgrading

The associate editor coordinating the review of this manuscript and

approving it for publication was Nagarajan Raghavan .

of China’s manufacturing industries. Production scheduling,
which plays a core role in the manufacturing process, is
a particularly important aspect this advancement. The abil-
ity to locate potential knowledge, improve response speed,
and promote self-learning and sustainable development of
scheduling system are important issues that need to be solved
urgently.

In the past few decades, there has been a lot of research
on job shop scheduling, but most of them are for standard
problems in static environments. Along with the develop-
ment of data acquisition hardware, and the advancement of
data processing technology, dynamic events in the workshop

186474 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3573-4955
https://orcid.org/0000-0001-6735-3108


B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

can be captured in real time, which puts forward a higher
requirement for the real-time response of job shop schedul-
ing. Accordingly, the scheduling system should deal with all
kinds of variabilities in production requirements, processing
times and available machines, making it challenging to obtain
high-quality schedules within the time limit for large-scale
job shop scheduling.

At present, the most commonly used approximate algo-
rithms in the scheduling field are heuristic [8], [9], meta-
heuristic [10], [11] and other approximation algorithms [12].
Meta-heuristic algorithms provide higher quality solutions,
but are infeasible for real-time scheduling, especially when
solving large-scale problems, because the solution time
increases exponentially and is strongly related to the problem
structure. If the problem structure changes, the meta-heuristic
algorithms need to be redesigned with poor generalization.
In this case, heuristic algorithms are more practical, and
are widely used because of their simplicity and rapidity.
However, their solution quality is not ideal and their per-
formance varies greatly depending on the problems and the
objectives [8].

Various studies that addressed scheduling problems based
on machine learning have been carried out to overcome the
drawback of rule-based methods [13]. Foo and Takefuji [14]
first proposed to use Hopfield model to solve job shop
scheduling problem, and then a large number of researchers
conducted improvement studies. Remus and Hill [15] was
the first to use backpropagation (BP) model for schedul-
ing. Akyol and Bayhan [16] gave a comprehensive overview
on artificial neural network (ANN) approaches for solution
of production scheduling problems, discussed both theoret-
ical developments and practical experiences, and identified
research trends. Weckman et al. [17] used a NN to capture the
predictive knowledge regarding the assignment of operation’s
position in a sequence generated by genetic algorithm (GA).
Lim et al. [18] proposed a case-based reasoning approach
to find the best decision for the state expressed in a Petri
net. At present, this approach can only solve small-scale
scheduling problems, and it cannot effectively obtain high-
quality scheduling that are required as training data sets, so it
may not be satisfactory in real-world scheduling systems.

Reinforcement learning [19] is a learning and decision-
making algorithm directly oriented to long-term goals based
on state or state-action pair. It does not require a com-
plete mathematical model of the learning environment, but
can imitate human experience, learn and accumulate expe-
rience from previous examples or simulation experiments,
and adjust the learning strategy through the immediate
reward obtained through the interaction with environment,
to optimally respond to different system states. At the same
time, learned knowledge can be stored for reuse to achieve
‘‘offline learning and online application’’. As mentioned
above, heuristic rules have variable scheduling performances
for different problems. Are there methods that can lead to
adaptive selections? Naturally, heuristic rules can be regarded
as optional actions of RL. Each time an operation is scheduled

according to the action, the scheduling system enters a new
state, and an immediate reward is given as the evaluation.
RL-based scheduling rule selection enables the agent to find
an optimal strategy π∗, and to maximize the expected cumu-
lative return when starting in any state and following the
scheduling strategy. This optimal strategy is inherently a set
of rules executed sequentially, and its scheduling result is not
worse than that of any single rule.

The contributions of this work are as follows. (1) We
proposed a double Deep Q-network (DDQN) model to con-
struct a deep reinforcement learning framework for schedul-
ing problems, which includes a target network and an online
network to deal with the overestimation problem that exists
in general DQN. In this framework, both static and dynamic
instances can be optimized. (2) An RL environment based on
disjunctive graph was established for the first time, and the
process of a scheduling solution based on disjunctive graph
was transformed into a sequential decision process which
had not been tried in previous studies. In this environment,
scheduling may start from a non-zero state, that is, some
operations could be interactively dispatched first and then the
remaining operations were scheduled by an algorithm. (3) At
each discrete time step, the scheduling state was creatively
represented as a multi-channel image to avoid handcrafted
features as used in traditional RL. According to the input
state, a CNN selected one heuristic rule to determine the job
with the highest priority from the current set of schedulable
tasks. (4) A novel reward function equivalent to the Cmax was
designed to evaluate the impact of each dispatch on schedul-
ing objective. (5) An improved epsilon-decreasing strategy
considering an elitist mechanism was proposed, which would
select the optimal rule of the current best solution with
a certain probability at the later stage of training. Experi-
mental results showed that the scheduling performance was
improved by 5.92% on average in all instances. (6) A large
number of experiments have been carried out to analyze the
sensitivity of different hyperparameters and verify the effec-
tiveness on static problems and its generalization on dynamic
problems with reactive scheduling and uncertain processing
time.

To evaluate the proposed algorithm, the DRL agent was
trained on several job shop scheduling problems (JSSPs)
benchmarks from the OR-Library, where each benchmark
was formulated as a decision-making problem and its cor-
responding RL environment was built based on disjunctive
graph. In order to determine the optimal hyperparameters, the
sensitivity of different parameters to the verification results
was analyzed. The advantage of the proposed algorithm lies
in that, once the off-line training process is over, the optimal
strategy can be directly used online to obtain scheduling
results with a running time approximately equal to that of
simple rules, which can be equivalent to or even better than
the performance of the GA, so as to ensure the schedul-
ing accuracy and improve the solving efficiency. Different
from themeta-heuristic algorithms, high quality solutions can
be obtained without time-consuming iterative optimization

VOLUME 8, 2020 186475



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

when new problems are encountered or the original problem
structure changes. The static experimental results show that
the scheduling results of this algorithm are not worse than any
heuristic rule in all instances, with an average performance
improvement of 11.56%, and the scheduling performance in
only two instances is slightly worse than that of the two GAs,
but the overall average performance is improved by 5.6%
and 6.17% respectively. In addition to the strong optimization
ability, the generalization and robustness of this method are
more significant. The instances with random initial states
were used as validation sets during training to select the
model with the best generalization ability, and then the perfor-
mance of the trained policy on scheduling instances with dif-
ferent initial states was tested. The results show that the agent
has good generalization ability on unknown situations. At the
same time, random instances with disturbance information
were tested in dynamic environment, and the results show
that this method can still obtain robust solutions adaptively
in dynamic environment.

The rest of this paper is organized as follows. Section II
presents related surveys and techniques. In section III,
an adaptive scheduling framework that combines values-
based DRL and disjunctive graph is proposed. Section IV
describes the job shop scheduling model based on disjunctive
graph to establish RL environment. Section V introduces the
proposed DRL scheduling algorithm and describes how to
transform scheduling problems into Markov or semi-Markov
decision problems. Section VI shows the experimental results
both in static and dynamic environments. The conclusions
and future work are presented in Section VII.

II. LITERATURE REVIEW
This work mainly focuses on adaptive JSSP, and proposes
to use DRL to cope with this problem. Thus, this section
briefly introduces adaptive scheduling and the application of
RL and DRL in production scheduling. A summary of studies
involved is provided in Table 1.

A. ADAPTIVE SCHEDULING
A scheduling strategy that can make decisions dynamically
with different system states is called adaptive scheduling
strategy, and the scheduling method based on this strategy
is called adaptive scheduling [9]. The essence of adaptive
scheduling is to select the most suitable scheduling rules
according to the optimization objective and system state in
the production environment to ensure optimal or sub-optimal
scheduling performance, in order to deal with the unexpected
events that may happen in the job shop, such as variations
in process times and machine breaking down. Rescheduling
[20], [21], real-time scheduling [22], [23], online scheduling
[24], [25] and random scheduling [26] are all types of adap-
tive scheduling.

In recent years, the adaptive production scheduling prob-
lem with an uncertain environment has been an active
research area [27]–[32]. Yang and Wang [33] presented
a new adaptive neural network and heuristics hybrid

approach for job-shop scheduling. Aiming at the job-
shop scheduling problem with bottlenecks, Varela et al. [34]
designed a probabilistic-based heuristic method to guide
backtracking search. To balance efficiency and stabil-
ity, Rangsaritratsamee et al. [35] proposed a rescheduling
methodology to generate schedules at each rescheduling
point using a genetic local search algorithm. Lee [36] pro-
posed an adaptive scheduling system based on fuzzy rules.
Kundakci and Kulak [37] summarized the dynamic events in
dynamic job shop scheduling and introduced hybrid GA to
minimize makespan. Ning et al. [38] proposed an improved
hybrid multi-phase quantum particle swarm algorithm to
solve the dynamic scheduling of flexible job-shop problems.
To deal with the dynamic flexible job shop scheduling prob-
lem considering machine failure, urgent job arrival, and job
damage as disruptions, Wang et al. [39] adopted a modi-
fied GA to construct rescheduling strategy. Xiong et al. [40]
simulated and analyzed dispatching rules for dynamic job
shop scheduling. To achieve the real-time data-driven opti-
mization decision, Zhang et al. [41] proposed a dynamic
optimization model for flexible job shop scheduling based on
game theory. Eachmachine actively requests processing tasks
and the processing tasks will choose the optimal machines
according to their real-time state. Piroozfard et al. [42] pro-
posed an improved multi-objective GA to minimize the total
carbon footprint and total late work. For distributed JSSP,
Chaouch et al. [43] used a hybrid ant colony algorithm com-
bined with a local search to minimize the global makespan
over all the factories.

B. REINFORCEMENT LEARNING FOR SCHEDULING
RL does not search directly in the solution space, but fully
reflects the characteristics of sequential decision problem
through state or action value. In this way, the structure of a
decision problem is fully utilized to search a strategy while
the full exploration of neighborhood search algorithm using
random mechanisms is reserved. This feature is expected to
improve search effectiveness in solving large-scale problems.
RL has been widely used in the field of scheduling. Aydin and
Öztemel [44] used the Q-III learning algorithm for training
an agent to dynamically select job shop dynamic scheduling
rules, to minimize average tardiness. Experiments showed
that in most cases the learned scheduling results were better
than any rule in SPT, EDD and COVERT. Wang and Usher
[45], [46] applied Q-learning to select dispatching rules for
single machine scheduling problem with different objectives.
Paternina-Arboleda and Das [47] obtained a dynamic con-
trol policy for stochastic lot-scheduling problem, which opti-
mized the WIP inventory, the backorder penalty costs and
the setup costs, while meeting the productivity constraints
for the products. All these results showed the potential of
RL in production scheduling, but they only focused on single
machine scheduling.

To deal with multi-machine scheduling problems, Csaji
and Monostori [48] studied a stochastic production schedul-
ing problem with non-identical parallel machines. They

186476 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

TABLE 1. Summary of relevant studies.

expressed the scheduling problem as a Markov decision-
making process, and calculated a near-optimal control
policy through multi-agents. Zhang et al. [49], [50] inves-
tigated unrelated parallel machine scheduling with Q and
R learning in order to minimize the mean weighted tardi-
ness. Yang and Yan [51] proposed an improved Q-learning
algorithm to obtain an adaptive scheduling control strat-
egy. Wei et al. [52] used RL to select composite rules for
dynamic job shop scheduling to minimize mean system tar-
diness. Qu et al. [53] developed a centralized RL approach
for scheduling a manufacturing system of multi-state pro-
cesses and multiple machines from a data-driven perspec-
tive. They [54] also proposed a scheduling method based
on RL, which can adaptively update production plans by
using real-time product and process events information dur-
ing executions.Wang andYan [55] designed a knowledgeable
dynamic schedule based on multi-agents, and put forward an
adaptive scheduling strategy based on weighted Q-learning.
Shahrabi et al. [56] adopted a Q-factor algorithm for param-
eter estimation to improve the scheduling performance of
dynamic JSSPs which considered random job arrivals and
machine breakdowns. In order to adapt to changes of
various production factors in dynamic and uncertain job

shops, Wang [57] constructed a dynamic scheduling sys-
tem model based on multi-agents, and adopted a weighted
Q-learning based on clustering and dynamic search to opti-
mize production.

C. DRL FOR SCHEDULING
Traditional RL is often used in small-scale problems with a
discrete state space. Nevertheless, the state space faced by
real RL tasks is often continuous, with an infinite number
of states, such as operation slack and machine utilization in
scheduling problem, which are all continuous values. In this
case, it is necessary to consider approximating the value func-
tion. DRL [58], [59] is a new algorithm which combines deep
learning with RL and realizes the end-to-end learning from
perception to action. In brief, just like human beings, it can
directly output actions through the deep neural network by
inputted sensory information, such as vision without artificial
feature extraction. DRL has the potential to enable agents
to learn one or more skills completely and autonomously.
Its purpose is to use a deep neural network to automatically
learn the characteristics of dynamic scenes and then to use
RL to learn the decision action sequence corresponding to
the scene features. With the extensive application of DRL in

VOLUME 8, 2020 186477



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

games [60], image processing [61], video [62], natural lan-
guage [63], etc., it has gradually attracted prominence in the
field of scheduling. Palombarini and Martinez [64] adopted a
DRL approach which stored the rescheduling knowledge in a
deep Q-network to learn schedule repairing policies directly
from high-dimensional sensory inputs. After that, they [65]
modelled the real-time rescheduling task as a closed-loop
control problem and trained a deepQ-network to select repair
actions in response to unexpected events and disturbances.
Waschneck et al. [66] applied a deep Q-network to semicon-
ductor manufacturing scheduling and trained a deep neural
network with flexible user-defined objectives. Lin et al. [67]
proposed an edge computing-based smart manufacturing fac-
tory framework, based on which the DQN was adjusted to
solve the JSP. Liu et al. [68] viewed the JSSP as a sequential
decision making problem and proposed to adopt DRL to
deal with it. To speed up model training, they also proposed
a parallel training method which combined asynchronous
updates with deep deterministic policy gradient.

III. DRL SCHEDULING FRAMEWORK
Our contribution is to propose an adaptive scheduling frame-
work that combines values-based DRL and disjunctive graph.
The scheduling problem is transformed into a sequential
decision-making problem by defining the environment, state,
action, reward, and strategy. The DDDQNPR is then used
to train the scheduling policy offline whenever an operation
is assigned to a machine. Finally, the optimal scheduling
policy can be used for online solving of different problems
to obtain the optimal solutions. The proposed framework
includes three parts: scheduling environment, offline learn-
ing, and online application (Fig. 1).

The scheduling environment is modelled with disjunctive
graph. Compared with the simulation model used in most
literatures, the principle of disjunctive graph model is not in
the way of simulation clock advance, but divides discreate
time step from the perspective of operation assignment. Thus,
it can be convenient to add interactive constraints, so as to
make the scheduling process closer to the actual production
environment. Disjunctive graph-based scheduling solution is
to first initialize the ready task set, from which the job with
the highest priority is dispatched to machine. Then the job
is removed from the constraint network and its subsequent
task is added in the ready task set. This process is repeated
until the ready task set is empty and the scheduling result is
obtained. Such a complete process is called an episode, so the
length of an episode is the total number of operations. At the
same time, in order to verify that the process is generaliz-
able and adaptive, dynamic events are also considered in the
scheduling environment. When the scheduling events occur,
the scheduling problem changes and rescheduling is required.
The policy obtained from the trainingwith the DRL algorithm
can intelligently deal with these accidents.

In the offline learning phase, the DDDQNPR is adopted
to train the samples generated during each allocation in the
scheduling environment. The samples are first stored in the

replay memory and importance sampling is performed based
on TD errors with a minibatch. On one hand the sampled
transitions are input in the online network Q to estimate its
Q value, on the other hand, they are also input in the target
network Q̂ to calculate the target value. Stochastic gradient
descent is applied to the loss function between estimated Q
value and targetQ value to update the parameters of the online
network Q. The parameters of the target network are copied
every C steps from the online network, and kept fixed on all
other steps. After obtaining the estimated Q value, based on
the exploration and exploitation strategy such as the ε-greedy
strategy, the scheduling action, i.e. heuristic rule is selected
to dispatch task.

Although it takes a long time to train during the learning
phase, once the optimal strategy is learned, it can be applied to
new scheduling problems, and optimal results can be obtained
in a short time. In the online application phase, the first step
is to synchronize dynamic scheduling events and update job
and machine states, which are mapped into the optimal rule
with the optimal policy. At the next time step a new job will
be scheduled based on new states until the ready task set is
empty.

IV. SCHEDULING ENVIRONMENT SETUP
The formulation of a JSSP is given first, where lowercase
letters represent indexes, and bold uppercase letters represent
sets. Suppose there are NJ jobs and NM machines in the job
shop scheduling problem Each job ji contains an operation set
Oi consisting of multiple operationsOih. The job has a prede-
termined processing order, and the uninterrupted processing
time of each operation is Pih. Each machine can process only
one job at a time, and each job can be processed by only one
machine at the same time. Precedence constraints between
different jobs do not exist. A schedule is an allocation of all
the operations to time intervals on the machines. The opti-
mization problem is to find a feasible schedule of minimum
length.

In the classical job shop scheduling problem, the solution is
usually expressed by a disjunctive graph model [69], which is
a directed graph G = (V ,C ∪ D). V denotes a set of vertices
corresponding to all operations of jobs. This set contains
two virtual vertices: a source and a sink, which represent
the start and the end of a schedule. Both dummy tasks have
zero processing time. C is a set of conjunctive arcs which
represent the precedence constraints between every two con-
secutive operations of the same job determined by process.D
consists of undirected disjunctive edges connecting mutually
unordered tasks which can be executed on the same machine.
A simple disjunctive graph is shown in Fig. 2, where each
circle represents an operation, its content is the operation
name, and the weight on each arc equals to processing time of
the operation where the arc begins. For example, O11 is the
first operation of job one. Operation vertices with the same
color indicate that the operations are processed on the same
machine. The solid and dotted arrows represent conjunctive
and disjunctive arcs respectively.

186478 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

FIGURE 1. Scheduling framework with DRL including scheduling environment, offline learning and online application.

FIGURE 2. Disjunctive graph.

The disjunctive graph shown in Fig. 2 is in unsolved state.
The scheduling process based on a disjunctive graph is to
turn each undirected disjunctive edge into a directed conjunc-
tive one. By picking directions for all disjunctive edges, the
processed order of all competitive tasks requiring the same
machine is determined and a feasible schedule is obtained
if the resulting graph is acyclic. A directed acyclic graph is
shown in Fig. 3.

After obtaining a directed acyclic graph that can describe a
feasible solution, we need a more intuitive way to arrange all
the vertices in G into a linear sequence through topological
sorting, so that any pair of vertices in the directed acyclic
graph has a clear sequence. Topological sorting is obviously

not unique, but the final scheduling results corresponding to
all topological sorts of a directed acyclic graph will be the
same. Fig. 4 shows the topological sorting result of Fig. 3.

FIGURE 3. Disjunctive graph instantiation.

Therefore, to express the solution of scheduling problems
through a disjunction graph is to determine the order of each
operation subject to the precedence constraints and capa-
bility constraints, which is essentially a sequential decision
problem and can be solved by RL, so combining disjunctive
graph and DRL is an effective and direct way, and it has not
been tried in previous studies. In the next section we will
describe in detail how to express a scheduling problem as a
RL problem and how to solve it.

VOLUME 8, 2020 186479



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

FIGURE 4. Topological sorting.

V. DRL FOR SCHEDULING
A. FUNDAMENTALS OF RL AND DRL
The Markov property refers to the fact that the next system
state is only related to the current state and has no relation
to the previous state. The multi-stage decision problem with
state transition satisfying the Markov property is a Markov
decision processes (MDPs). MDPs can be described as a
5-tuple as follows:

E =
{
Z+, S,A(s),P,R

}
(1)

where the agent is in environment E , Z+ = {0, 1, 2, · · ·}
denotes a collection of decision stages, each s ∈ S in state
space S describes the environment’s state, A is the action
space and denotes a set of all actions available in state s,P rep-
resents probability distributions of state transitions, P(s, a, s′)
and R(s, a, s′) are the probability of transition to state s′ and
immediate reward respectively, from state s taking action a.
In standard RL, an agent interacts with environment E at

multiple discrete time steps. At each time step t , the agent
perceives the environment’s state st and selects an action at
from all possible actions A following its policy π . Afterthat,
the agent perceives the next state st+1 and receives a scalar
reward rt . The above process is repeated until the agent

reaches a terminal state. The return Rt =
∞∑
k=0

γ krt+k is the

total accumulated reward from time step t with discount fac-
tor γ ∈ (0, 1]. The agent’s goal is to maximize the expected
return from each state st .
The action value Qπ (s, a) = E [Rt |st = s, a] =

Es′,a′
[
r + γQπ (s′, a′)|s, a

]
is the expected return for

selecting action a in state s and following policy π . The
second equation is the Bellman equation, describing the
iterative form of the action value. The optimal value function
Q∗(s, a) = maxπ Qπ (s, a) gives the maximum action value
for state s and action a under any policy. Once Q∗ is learned
the optimal policy π∗(s) = argmax

a
Q∗(s, a) is obtained.

The optimal action value satisfies the following Bellman
optimality equation:

Q∗(s, a) = Es′
[
r + γ max

a′
Q∗(s′, a′)|s, a

]
(2)

It has been proved that the action value function converges
to Q∗ with tabular solution methods. However, when solving
problems with large state spaces, the difficulty is not just
the memory needed for large tables, but also the time and
data needed to fill them accurately if each state is stored in
a table. In value-based model-free RL methods, the action
value function is represented with a function approximator,

such as a neural network. Let Q(s, a; θ ) be an approximate
action-value function with parameters θ , the updates to which
can be derived from various RL algorithms. A common
example of this type of algorithms is Q-learning, whose goal
is to directly approximate the optimal action value function
Q∗(s, a) ≈ Q(s, a; θ ). In one-step Q-learning, the parameters
θ are updated by iteratively minimizing a sequence of loss
functions, where the ith loss function is defined as:

Li (θi)=E
(
r + γ max

a′
Q
(
s′, a′; θi−1

)
−Q (s, a; θi)

)2

(3)

where s′ is the subsequent state of s.
When a neural network is used for an action-value (also

known as Q) function approximation, RL is likely to be
unstable or even to diverge. This instability can be caused
by several factors: the correlations between sampled tran-
sitions, the fact that small updates to Q may significantly
change the policy and therefore change the data distribution,
the interdependence between the Q updates and the target
values r + γ maxa′ Q

(
s′, a′

)
calculation. To address these

instabilities, DQN introduced experience replay and a second
network to randomize over the data and fix target values for
some steps, thereby removing correlations in the observation
sequence and stabilizing the training process. The target is
updated by:

YDQN
t ≡ rt+1 + γ max

a
Q̂
(
st+1, a; θ−t

)
(4)

Although the max operator used in the above formula can
quickly bring the Q values closer to possible targets, it can
be easily overestimated because the same values are used to
select and to evaluate an action. To avoid this, DDQN decou-
ples the selection from evaluation. Although not completely
decoupled, the target network in the DQN architecture can
be used for value function evaluation without introducing
additional networks. Therefore, the online network is used
to evaluate the greedy strategy, while the target network is
used to evaluate its value. The update target for DDQN is as
follows:

YDoubleDQN
t ≡ rt+1

+γ Q̂
(
st+1, argmax

a
Q (st+1, a; θt) , θ−t

)
(5)

DQN and DDQN both use experience replay, which samples
uniformly from replay memory. However, different samples
have different TD errors. The greater the TD error, the greater
the influence on the backpropagation, and vice versa. In Q-
network, the TD error is the difference between the target Q
value of the target network and the estimated Q of the online
network. Prioritized Replay DQN calculates each sample’s
priority based on its TD error, and the loss function consider-
ing sample priority is defined as:

Li (θi) = E
(
ωi

(
YDoubleDQN
t − Q (s, a; θi)

))2
(6)

where ωi is a scaled weight.
In Prioritized Replay DQN, the algorithm is optimized

by calculating the samples’ priority, whereas Dueling DQN

186480 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

tries to optimize the algorithm by changing the structure of
the neural network. Two subnetwork structures are added
before the output layer, and used to learn value function and
advantage function. The model’s output combines the two to
produce a state-action value Q (s; a) with:

Q(s, a; θ, α, β) = V (s; θ, β)

+

(
A(s, a; θ, α)−

1
|A|

∑
a′
A
(
s, a′; θ, α

))
(7)

where θ denotes the parameters of the layers before the output
layer, while α and β are the parameters of the two streams of
fully-connected layers.

In this study, DDQN was used to estimate the action value
function in scheduling in combinationwith prioritized experi-
ence replay and dueling network, and themixed form is called
dueling double DQN with prioritized replay (DDDQNPR).
The following section describes in detail how this algorithm
can be used to solve scheduling problems.

B. SCHEDULING PROBLEM TRANSFORMATION
Disjunctive graph-based scheduling dispatching is used to
choose the preferred job from the ready tasks set for process-
ing until all jobs are scheduled. It is essentially a sequential
decision-making process. The key to the application of RL
in solving scheduling problems is to transform scheduling
problems into Markov or semi-Markov decision problems,
that is, defining states, actions, and reward function.

1) STATE FEATURE EXPRESSION
State describes the scheduling environment characteristics
including the global and local characteristics. The state space
is a collection of all possible states. The state in which an
agent needs to make a decision is called a decision state. For
problems with small-scale state space, each state or state-
action pair can be explicitly represented as arrays or tables.
In this case, the RL is called tabular RL. However, practi-
cal problems often have a large or continuous state space,
and RL algorithms cannot traverse all the states. Therefore,
tabular RL algorithms will face the "dimension disaster"
problem. One common way to do this is to generalize value
functions, which can generalize from previous encounters
with different states that are in some sense similar to the
current one with a good approximation. The most important
basis for approximation is to select suitable features. Here
we describe the characteristic attributes that can be used to
describe the scheduling system, and then construct the state
features for RL.

In general, the selection of state features should follow the
following principles:

a. The state features can describe the main features and
changes of the scheduling environment, including global
and local information.

FIGURE 5. Scheduling state transition after scheduling the first three
operations.

b. The selection of state features should be related to
the scheduling objective, otherwise it will cause feature
redundancy.

c. All states of different scheduling problems are represented
by a common feature set.

d. The state features are numerical representation of the state
attribute, which should be easy to calculate, and be nor-
malized to ensure scale uniformity.

To make full use of deep learning to extract features from
a raw input, a novel way of state expression is proposed,
by which different scheduling features are used as different
channels of an image with a height of job number and a width
of operation number of each job. The scheduling features used
here include processing time, scheduling result at current time
step, and machine utilization.

Processing time channel is a matrix consisting of the pro-
cessing time of each operation. Each element is normalized
by the maximum processing time. The value will be zero if
the operation has been assigned to a machine.

Scheduling result channel is a matrix composed of the
finish time of each operation. Each element is normalized by
the current makespan and initialized to zero.

Machine utilization channel represents the utilization of
the machine required for each operation. Each element is
initialized to zero and does not need to be normalized because
its value is between 0 and 1.

Fig. 5 illustrates the scheduling state transition process
with the example of ft06. At the initial state s0, each value
in the processing time channel is the processing time defined
in the scheduling instance, and the values in both scheduling
result channel and machine utilization channel are all zeros.
Assuming that topological sorting is obtained according to
one rule, the scheduling environment enters a new state after
each operation is scheduled. When the first three operations

VOLUME 8, 2020 186481



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

are scheduled, the scheduling environment now is in state s3,
and the state values at the corresponding position (red area)
of the three operations in each layer are updated. After that
normalization will be performed.

2) ACTION DEFINITION
In a scheduling problem, the action is to select the preferred
job to dispatch according to the scheduling rule, and the
action space consists of a variety of different heuristic rules.
To overcome the short-sighted nature of any single rule,
the suitable scheduling rules at different states for different
scheduling problems are selected through RL. The following
principles should be followed when determining heuristic
rules.
a. The sorting attributes used in heuristic rules should be

diversified, which can be related to or irrelevant to the
state. For example, there should be rules designed accord-
ing to processing time and due date. However, in the state
expression, features about processing time exist, but the
ones about due date do not exist.

b. Different rules can be created by sorting an attribute in a
different order. For example, two different rules, SPT and
LPT, can be generated according to the processing time.
In this work, eighteen heuristic rules commonly used for

minimizing scheduling makespan are listed in Table 2.

3) REWARD FUNCTION
The reward function definition is closely related to the
scheduling objective. The immediate reward obtained by each
state transition reflects the immediate effect of the action
performed and represents the short-term influence of the
action on the scheduling scheme. Cumulative reward reflects
the long-term effects, which is RL’s goal to maximize.

This study focuses on minimizing the makespan, the scale
of which is different for different scheduling problems.
In order to evaluate the immediate action uniformly, the
following transformation is applied.

U =
1
NM

NM∑
m=1

NJ∑
i=1

NOi∑
h=1

Pihm

Cmax
=

P
NM · Cmax

(8)

where U is average machine utilization, P is total working
time, NOi is the operation number of job i. P and NM are
both constant, so minimizing the makespan is equivalent to
maximizing the averagemachine utilization. Let rk = U (k)−
U (k − 1), then the cumulative reward R can be calculated as
follows:

R =
K∑
k=1

rk =
K∑
k=1

U (k)− U (k − 1)

= U (1)− U (0)+ U (2)− U (1)

+ · · · + U (k)− U (k − 1)

= U (k)− U (0) = U (k)

=
P

NM · Cmax(k)
(9)

TABLE 2. Job actions.

where k is the counter for operations assigned, which can be
viewed as a discrete time step in RL. U (k) and Cmax(k) are
average machine utilization and makespan at time step k as
shown in Fig. 6.

C. DRL SCHEDULING ALGORITHM
1) EXPLORATION AND EXPLOITATION
Exploration and exploitation are two important problems to
be solved when applying a RL algorithm. Exploration is to
select actions that are not currently optimal, and to explore
new actions. This may increase the action value to find better
actions and gain a larger reward in the long run. Exploita-
tion consists in performing the optimal action at present
to make full use of the learned empirical knowledge and
get more rewards in the short term. Common methods to
balance "exploration" and ‘‘exploitation’’ [19] include the
greedy method, epsilon-greedy, epsilon-decreasing strategy,
SoftMax, etc.

186482 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

Algorithm 1 Dueling Double DQN With Proportional Prioritization for Job Shop Scheduling
1:Initialize minibatch k , step-size η, replay memory D, replay period K and capacity N , exponents α and β, budget T , 1 =
0, p1 = 1
2:Initialize action-value function Q with random weights θ
3:Initialize target action-value function Q̂ with weights θ− = θ
4:for e = 1 to M do
5: Reset schedule scheme and clear schedule results. Observe state s1
6: for t = 1 to T do
7: Select action at based on modified epsilon-decreasing strategy (Refer to (12))
8: Execute action at in scheduling environment and schedule the job with the highest priority. Remove it from ready task set
and add in its subsequent task
9: Observe reward rt and next state st+1
9: Store transition (st , at , rt , st+1) in D with maximal priority pt = maxi<t pi
10: if t ≡0 mod K then
11: for j = 1 to k do
12: Sample transition j ∼ P(j) = pαj /

∑
i
pαi

13: Compute importance-sampling weight wj = (N · P(j))−β/maxi wi
14: Set

yj =

{
rj if episode terminates at step j+ 1
rj + γ Q̂

(
sj+1, argmaxa Q

(
sj+1, a; θ

)
, θ−

)
otherwise

15: Compute TD-error δj =
(
yj − Q

(
sj, aj; θ

))2
16: Update transition priority pj←

∣∣δj∣∣
17: Accumulate weight-change 1← 1+ wj · δj · ∇θQ

(
sj, aj

)
18: end for
19: Update weights θ ← θ + η ·1, reset 1 =0
20: Every C steps reset Q̂ = Q
21: end if
22: end for
23:end for

The epsilon-decreasing strategy is used in most RL algo-
rithms, in which the probability epsilon decreases over time
and exploration is transferred to exploitation gradually.When
epsilon becomes 0, it becomes a greedy method and selects
the optimal action. The action selection rule based on this
strategy is as follows:

a =

{
argmaxa′ Q(a′) with probability 1− ε
random with probability ε

(10)

where ε is the probability of selecting an action randomly and
is updated by the following equation.

ε = ε0 − εmin ∗min(1, n−iter/Nexplore) (11)

where ε0 is the initial value of ε, εmin is the minimum of
ε, n−iter is the current step counter, and Nexplore is the total
exploring steps.

In job shop scheduling problems, the elitist mechanism is
introduced to ensure that the training process can converge
to the optimal solution accurately and quickly. At the end
of the training phase, the action is determined with the same
probability (1 − ε)∗0.5 according to the trained strategy and

FIGURE 6. Cmax at time step k.

the best-known policy respectively.

a =


{
argmaxa′ Q(a′) with probability (1− ε) ∗ 0.5
πbest (s) with probability (1− ε) ∗ 0.5

random with probability ε
(12)

where πbest is the best-known policy so far.

2) TRAINING AND TESTING BASED ON DRL
In the training phase, a deep convolutional neural network
architecture is employed for the Q-network. Specifically, the

VOLUME 8, 2020 186483



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

input and output of the Q-network are the three-channel
image which describe the processing time, scheduling results
and machine utilization by each channel, and the predicted
Q-values of the individual actions. Algorithm 1 describes the
training phase of the proposed method. Given a scheduling
instance for training the Q-network, lines 5-22 represent the
complete process of scheduling all operations. The comple-
tion of one scheduling process is called as an episode, and e
indicates the index of the episode currently being performed.
Lines 5-22 continue until e reaches the maximum training
episodeM . At the starting time of an episode, the scheduling
scheme is reset and the initial state s1 is obtained (line 5).
At any time t < T and T equals to the total operation

number, the agent executes an action at according to the
observed state. The action selection is based on the proposed
ε-decreasing strategy with elitist (Equation 11). After the
action at is executed, the job with the highest priority is
scheduled and its current operation is removed from the
ready task set. If the job has not been finished, its succes-
sive operation is added to the ready task set (line 8). Then
the reward rt and the next state st+1 are observed and the
transition (st , at , rt , st+1)is stored in the replay buffer (line
9 and 10). In line 10, it is also checked whether the number
of stored transitions equals toN or not. If it is equal toN , new
transitions replace the oldest ones.

Every period K , k transitions are sampled based on differ-
ent probability and the importance-sampling weight for each
transition is calculated (line 13 and 14). Given the sampled
transitions, a loss is calculated from a Q-value and target
value (line 15 and 16), and its absolute value is taken as the
priority (line 17). In line 18, the learning algorithm performs
a gradient descent step with respect to θ on the loss. The
network parameter is updated by the accumulated weight-
change on all the sampled transitions (line 20). To ensure
the stable convergence of the training process, the weights
of the target Q-network are periodically replaced to those
for the Q-network. Finally, the trained Q-network is returned
(line 25). Fig. 7 illustrates the above process more clearly in
the form of a flow diagram.

The test phase is basically the same as the training process,
but at this point only the optimal action is required to perform
greedily (line 7), and the training process for the Q-network
is no longer required (line 10-21).

VI. EXPERIMENTS
We evaluated the proposed algorithm on static benchmark
problems and dynamic random problems.

A. ENVIRONMENT AND MODEL SETUP
In this study, some standard instances from the OR-Library
were selected to initialize the scheduling environment.
Table 3. lists the instances used in the experiment. All the
benchmarks are static, namely it is assumed that all jobs are
ready at time 0 and random factors are not considered, so each
benchmark is both a training sample and a test sample. The
goal of RL is to learn an optimal strategy that maximizes

FIGURE 7. Scheduling process based on DRL

TABLE 3. Benchmarks.

the cumulative expected rewards from each state. RL agent
should have certain generalization, and not just return an
optimal solution. In order to achieve this, thirty instances with
different initial states are randomly generated as a validation
set, and in each instance δ = 30% of the number of total
operations are scheduled. δ is the scheduled ratio.

In order to verify the generalization of the proposed algo-
rithm, random instances with different scheduled ratios, i.e.,
different initial states, were selected as the test sets. At the
same time, to verify the robustness of the proposed algorithm,
the random processing time disturbance was added into the
environment. The processing time of each process follows a
normal distribution N (pij, σ 2), where pij is the predefined
processing time, σ is the standard deviation.

B. TRAINING DETAILS
The deep architecture applied in the experiments was the
dueling double DQN with prioritized replay, in which the

186484 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

target network and the online network have the same con-
figuration. The optimizer of the neural network is Adam. The
dueling network splits into two streams of fully-connected
layers. The value and advantage streams both have a fully-
connected layer with 512 units. The final hidden layers of
the value and advantage streams are both fully- connected
with the value stream having one output and the advantage
as many outputs as there are valid actions. The network has
the rectifier linear unit [78] as an activation function and
adopts batch normalization [79] in all convolutional layers
and fully-connected layers except for the output layers of the
two streams. The proposed algorithm is implemented by Ten-
sorflow2.0 and run on a PC platform equipped withWindows
10 64 operating systems, 16G RAM, Intel i7 1.60GHz CPU.

In RL, determining the values of hyperparameters is cru-
cial for the performance of the Q-network. Unfortunately,
it is challenging to find the optimal values due to the large
search space of hyperparameters. Therefore, by performing
the random search [80], we found the values that yielded the
best performance, and they are presented in Table 4. For the
instance la16(10 × 10), the validation results under differ-
ent network structure, learning rate, εmin, buffer size, target
network updating frequency and batch size are analyzed to
investigate their sensitivities. As shown in Fig. 8, the x and y
coordinates of each point indicate the number of training and
the average Cmax, respectively.
In Fig. 8(a), five different network structures are com-

pared, in which each line represents a convolutional layer and
comma symbols are used to separate the number of filters, the
kernel size and the stride. It can be observed that the second
network structure can achieve the optimal performance on
the verification set. Note that no pooling layers are added
between the convolutional layers. On the one hand, each
pixel in the adopted state expression represents an operation,
so pooling will remove some pixels, resulting in incomplete
scheduling information. On the other hand, for the problems
to be studied, the maximum size is 100×20, which is smaller
than 84 × 84 in DQN, and the image size can be reduced
only by the convolution kernels. In addition, the processing
of the scheduling image is not the same as the general image
processing, which first extracts rough features and then uses
detailed features. This is because the scheduling image is
not continuous, each pixel represents an operation, so local
information should be retained as much as possible first, and
then a wider range of information should be mined. This
is proved by the comparison between the second and third
network structures.

Fig. 8(b) indicates that too high or too low learning rate
will cause a performance deterioration.

As shown in Fig. 8(c), the curve ofCmax has the same trend
under all εmin, but on the other hand, with the increase of εmin,
the performance also decreases slightly.

Fig. 8(d) summaries the impact of buffer size on the
Cmax, and it can be seen that the validation results
are more stable when the buffer size is 100000 and
1000000.

FIGURE 8. Verification results of each hyperparameter in la16.

Fig. 8(e) shows that the target network updating frequency
has little influence on the learning process, but the conver-
gence speed is faster when the frequency is 200.

VOLUME 8, 2020 186485



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

TABLE 4. Hyperparameters.

FIGURE 9. Scheduling scores and running time per episode under
different skip ratios.

Fig. 8(f) means that the convergence speed is faster when
the batch is 256.

In DQN, the agent sees and selects actions on every kth
frame instead of every frame, and its last action is repeated
on skipped frames. Inspired by this, the frame-skipping tech-
nique was also introduced into the scheduling problem, and
several operations were scheduled based on the same rule
after each selection. On the one hand, after an operation is
scheduled, the state changing is too slight to affect the action
selection. On the other hand, compared with training on every
step, this technique allows the agent to train roughly k times
more episodes without significantly increasing the runtime.
Consequently, the number of skipped frame k is also studied
as a hyperparameter to achieve a balance between scheduling
accuracy and scheduling efficiency. Scheduling problems of
different sizes have different episode length, so k is defined as
in the form of the percentage of total number of operations,
i.e. k = NO∗skip ratio, where the skip ratio is 0.005, 0.01,
0.02, 0.05, 0.1, 0.5 or 1.

To evaluate the performance of different skip ratios,
scheduling problems of different sizes were studied. The
results are shown in Figure 9, in which the solid line rep-
resents the scheduling score and the dashed line represents
the running time. It can be seen that with the increase of skip
ratio, the running time per episode is gradually decrease, but
the scheduling score tends to first rise and then fall. That
is to say, training in each discrete time step cannot get the
best solution, which is probably because the state transition

in each scheduling step will lead to a huge state space, and
it is difficult to find an optimal rule sequence from it, let
alonemake the agent converge to that sequence. However, it is
obvious that the skip ratio cannot be too high. For example,
if the skip ratio is 100%, then the scheduling ends when
only one rule is executed, and this is the scheduling process
same with simple rules. Meanwhile, the training process of
RL is equivalent to supervised learning, in which only the
initial state is input and the results of the 18 scheduling rules
are obtained. Therefore, in order to balance the scheduling
quality and training speed, generally, the skip ratio is valued
within [0.02,0.05], and here let the skip ratio be equal to 0.02.

C. COMPARATION OF EXPERIMENTAL RESULTS
In the proposed DRL framework, eighteen heuristic dispatch-
ing rules were taken as the actions of the agent, and then
the decision sequences of these rules are trained to obtain a
scheduling result superior to any single rule. Therefore, the
scheduling results of the proposed algorithm on all testing
instances were first compared with those of heuristic rules.
Simultaneously, to further illustrate the optimization perfor-
mance, the proposed algorithm was also compared with GA.
Two different encoding methods were used in GA, i.e. prior-
ity encoding, called GA_PRIORITY_CODE, and encoding
using a rule number, calledGA_RULE_CODE. The complete
results are shown in Table 7 to Table 10 in the Appendix,
where LB and UB in bold represent the lower bound and the
upper bound respectively, and the numerical value in red is
the solution corresponding to the optimal rule. Scheduling
score = CLB/Calg, where CLB is the Cmax corresponding to
the lower bound and Calg is the Cmax corresponding to the
algorithm alg. The results demonstrate that the scheduling
results of this algorithm are not worse than any heuristic
rule in all instances, with an average performance improve-
ment of 11.56%, and the scheduling performance in only
two instances is slightly worse than that of the two genetic
algorithms, but the overall average performance is improved
by 5.6% and 6.17% respectively. The average scheduling
score of DDDQNPR in all instances was 90.79%, higher than
81.82% of the best rule, 86.29% of GA_PRIORITY_CODE
and 85.87% of GA_RULE_CODE.

The training process of instance ft06 is visualized in
Fig. 10. The episode reward eventually converged to the
maximum as the training progressed as shown in Fig. 10(a).
The reason for the oscillation is that there was still a small
probability of random action selection in the later stage of
the training. Fig. 10(b) shows the training process of the
makespan to be minimized, which has the opposite trend
to the episode reward. The training curve of start Q value
is shown in Fig. 10(c) and its significance is to predict the
maximum reward from the initial state with the current neural
network. After 1000 training episodes, the start Q value was
basically stable and close to the true value. In Fig. 10(d) the
variation of the errors in the training process is shown, and
the final training error was close to 0.

186486 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

FIGURE 10. Training process of ft06.

In order to explain the disjunctive graph-based RL schedul-
ing training process more clearly, the transition process of
state, action and reward in each step was explained in detail

FIGURE 11. Scheduling state transition visualization for ft06 with the first
three gray-scale images representing each channel, and the last one
showing a color image that stacks three channels.

with an example of an episode during ft06 training, as shown
in Fig. 11. Before the scheduling starts, we first initialized
the ready task set Oready = {O11,O21,O31,O41,O51,O61},
which consists of the first operation of each job.
In the initial state s0, the output of the neural net-
work was [0.571401, 0.570248, 0.5685107, 0.5676666,
0.5711227, 0.57040733, 0.5690914, 0.56730187, 0.5695888,
0.570531, 0.5735151, 0.57267135, 0.57359517, 0.57441396,
0.5734492, 0.57007927, 0.5694101, 0.57226104]. Accord-
ing to the exploration and exploitation strategy, supposing
that the greedy behavior was selected, that is, the rule
SPT∗TWKR (a0) corresponding to the index 13 of the max-
imum Q value was executed to select the operation with
the minimum product of current processing time and total
working time remaining. It can be calculated that the sorting
value of each operation in the ready task set is {1∗26 =
26, 3∗25 = 75, 6∗22 = 132, 7∗16 = 112, 3∗9 = 27, 6∗6
= 36}. Therefore, the operation O11 was first scheduled to
the machine M3 with the starting time of 0 and the ending
time of 1. According to the reward function, the immediate
reward r1 = U (1)-U (0) = 1/6-0≈0.1667. At the moment,
the scheduling environment entered into a new state s1.
Finally, O11 was removed from the ready task set, and its
successive operation O12 was added. This is the end of one-
step scheduling. In the same way, we can get the transition
of the following time step. Figure 11 also visualizes the state
images after 10 and 20 operations are scheduled and at the end
of the schedule, in which each state corresponds to 4 images.
The first three are gray-scale images of each channel, and
the last one is a color image stacking three channels. It can
be seen that with the progress of scheduling, the system has
undergone a significant state change. However, such images
are not as easy to be recognized and understood as the images

VOLUME 8, 2020 186487



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

FIGURE 12. Comparison of different exploration vs. exploitation strategies.

FIGURE 13. Curve of scheduling score between different algorithms.

taken at ordinary times. Therefore, we will try to inter-
pret these images and their feature maps in future
works.

The effect of the elitist strategy on the scheduling per-
formance was also verified. The results of each scheduling
instance under two different exploration and exploitation

186488 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

strategies are summarized in Fig. 12, which shows that the
exploration and exploitation strategy with elitist mechanism
can further improve the solution quality. In the later stage
of training, the ε decreasing strategy chooses greedy actions
with a large probability, while the RL may fall into the
local optimum. The exploration and exploitation strategy
considering the elitist mechanism selects the optimal action
of the global optimum solution with the same probability, the
algorithm can jump out of local extreme points and approach
to the global optimum.

Some interesting things can be found if arranging all the
instances from Table 7 to Table 10 in order of problem size
from small to large and drawing the scheduling score curve
of each algorithm as shown in Fig. 13. First, the score curve
of DDDQNPR has a similar trend with that of the optimal
rule, which indicates that the performance of the proposed
method is related to the quality of the rules. When the rule set
contains better rules, RL is more likely to get high scheduling
scores, and vice versa. Therefore, when selecting discrete
rules using RL, an important task is to design better rules.
Second, our method can obtain scheduling results that are not
inferior to any single rule. At the same time, the performance
of DDDQNPR is close to that of the two different GAs on
the instances with the total number of operations dos not
exceeding 150, but for the instances with a larger scale (total
number of operations ≥200), DDDQNPR has significantly
better performance. Finally, in general, the ability of this
method to solve large-scale problems is somewhat lower than
that of solving small-scale problems, because the scheduling
state space of large-scale problems is huge, the learning error
of using the same network structure is large, and more itera-
tion times and more optimized network structure are needed
to reduce the training error.

D. GENERALIZATION
Uncertain factors in real shop floor, such as insertion of a new
job, machine breakdown, and delivery changes, may cause
deviations from the predictive schedule over the course of
its execution, and rescheduling is needed to adapt to the new
environment. When rescheduling is performed, one job may
have been finished or be being processed by a machine, so the
scheme starts from a non-zero state at the rescheduling time.
Moreover, in actual production environment, it is not to get
an optimal solution, but to get a reasonable and feasible one
quickly. Because the execution of a scheduling scheme is
subject to many actual production factors, such as cutting
tools, fixtures, measuring tools, special machines and even
operators, all of which may lead the optimal solution to be an
infeasible one. However, if all these limitations are modeled
as constraints in the mathematical model, the mathematical
model is bound to be huge, and the solution logic is very
complex. Furthermore, the factors existing in the large-scale
discrete manufacturing shop are far more than those listed
above, and holographic modeling is also impossible. There-
fore, in a complex production environment, the dispatcher
will subjectively arrange some tasks that currently meet the

FIGURE 14. Scheduling results of each algorithm under different δ.

processing conditions or are urgent, and then the remaining
tasks will be sorted by an optimization algorithm. At this

VOLUME 8, 2020 186489



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

FIGURE 15. Scheduling results of each algorithm under different
perturbation randomness.

time, the scheduling is also based on the scheme with non-
zero state.

The scheduling scheme is updated in real-time when
rescheduling is performed. The dispatchers are more

TABLE 5. Test time comparation in different initial states.

TABLE 6. Comparison of test time under stochastic processing time.

concerned about the feasibility of the scheduling results, but
not about the optimality. Therefore, the solution quality in the
rescheduling case is not as important as the computation time.
For non-zero state scheduling problems, the meta-heuristic
algorithms require a large number of iterations to reschedule,
and heuristic algorithms cannot be adapted to the changed
environment. On the contrary, the DRL model proposed in
this study can be trained in a random environment and quickly
respond to new problems that have never been experienced
before.

In order to verify the generalization performance of
DDDQNPR, ft06(6 × 6), la16(10 × 10), dmu06(20 × 20)
and ta61(50 × 20) were selected for the study. Some oper-
ations are scheduled randomly to establish non-zero state.
The scheduled ratio δ was set to 20%, 40% and 60%, and
50 random instances were generated for each scheduled ratio
as test sets. The results are displayed in Fig. 14, and the
following conclusions can be summarized. (1) DDDQNPR
is evidently superior to the simple rule. (2) The performance
of DDDQNPR is close to that of the two GAs. Although the
variance is larger on ta61, DDDQNPR has smaller minimum
and median values. (3) With the increase of the scheduled
ratio, each algorithm has a tendency to deteriorate, because
the more operations are randomly scheduled, the less opti-
mization space is left for algorithm. (4) The average test
time of each algorithm is summarized in Table 5. It can be
seen that the scheduling time increases with the increase of
scheduling scale. Compared with GA (Since the running time
of the GAs with different coding is basically the same, the
GA here stands for either one), the test time of DDDQNPR
is 2790 times and 114 times shorter respectively in the best
and worst cases. At the same time, although it is 20-288
times longer than that of simple rules, the longest test time
is also in seconds. DDDQNPR is perfectly acceptable to
scheduler in terms of the calculation time taken to obtain a

186490 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

TABLE 7. Static experiment results.

schedule in seconds since rescheduling is usually conducted
daily or hourly in many real-world production environments.
(5) Since the scheduled ratio (δ = 30%) used to generate
the validation set in the training scheduling policy is different
from that used in the test, the generalization of the algorithm
can be proved.

Finally, to evaluate the robustness of the proposed algo-
rithm, further experiments were carried out on the problems
with stochastic processing time, and a disturbance factor was
added to the time of scheduling instances to simulate the
scheduling environment with uncertain processing time. For
each instance (ft06, la16, dmu06, ta61), the normal distribu-
tion N (pij, σ 2) obeyed by the processing time was defined,
where pij was theoretical value given in the original defini-
tion, and σ was the standard deviation which could be 1,2
or 3 to produce varying degrees of random disturbance. The
RL agent interacted continuously with the dynamic environ-
ment and learned the optimal scheduling policy, which was
stored locally in the form of parameters of each layer of the
neural network, so that the backup could be restored when
applied online.

For each instance size, test scheduling problems were
solved 100 times with the learned model restored from the
policy parameters. Besides, the rules and GA were evalu-
ated with the same seeds. Fig. 15 depicts the average, min-
imum, and maximum Cmax results of DDDQNPR, GA, and
the best rule whose average Cmax was the lowest among
the eighteen simple rules, where N1, N2 and N3 in the
x-coordinate respectively represent the normal distributions
obeyed by processing time with variance of 1, 2 and 3.
The following conclusions can be drawn. (1) On small-scale
problems (ft06 and la16), DDDQNPR had the same perfor-
mance as GA, while on larger-scale problems (dmu06 and
ta61), DDDQNPR showed better performance than GA. In all
instances, DDDQNPR was significantly better than the best
rule, which means that the proposed algorithm learned the
correct strategy to determine the proper heuristic rules in
different scheduling states. (2) With the increase of variance,
the difference between themaximum and theminimumCmaxs

calculated by each algorithm becomes larger, because the
stronger the disturbance to the time, the greater the uncer-
tainty of the problem. (3) The difference between the maxi-
mum and minimum Cmaxs becomes larger as instance scale
increases. This observation can be attributed to the fact that
the influence of uncertainty on the processing time increases
as the sizes of state and action spaces grow. (4) The average
test time of each algorithm on different scale instances was
shown in Table 6. Since different disturbances and two kinds
of GAs have little influence on the test time, there is no
separate statistics here. It can be seen that DDDQNPR can
still get better scheduling results in seconds in practical scale
instances, but GA takesmore than 1000 seconds. In a real pro-
duction environment, the scale of the scheduling problem is
often larger, and a rescheduling time that is too long will lead
to an inability of catching up with the real-time production
status.

VII. CONCLUSION
In this study we proposed an adaptive scheduling framework
to deal with job shop scheduling problems based on DRL and
disjunctive graph, which combines a dueling network, dou-
ble DQN and prioritized experience replay. In the schedul-
ing environment, based on the disjunctive graph model, the
scheduling state at each time step is expressed as a multi-
channel image, and the scheduling problem is transformed
into a sequence decision problem through topological sorting.
The action space of RL is a combination of heuristic rules that
are easy to execute in a complex environment. The traditional
ε decreasing strategy is improved by introducing the elitist
mechanism to avoid algorithm falling into the local optimum.

Static environments are initialized by the benchmarks in
the OR-Library, and the uncertain processing time is taken
into account in dynamic environments. Experimental results
show that the proposed algorithm can obtain better scheduling
results than heuristic rules in all static instances, with an
average scheduling score of 90.79%. Our algorithm outper-
forms traditional dispatching rules and executes almost as fast

VOLUME 8, 2020 186491



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

TABLE 8. Static experiment results.

as heuristic dispatching rules in dynamic environments with
uncertain processing time.

Future research will mainly focus on the following aspects.
First, the reward function in this study adopted the aver-
age machine utilization difference between two successive
time steps. We will evaluate whether there is a more effi-
cient setup method. Second, this study only focused on the
JSSP. In real life workshops, flexible JSSPs are more com-
mon due to the existence of multiple replaceable machines.
Therefore, in future work we will apply the proposed DRL
framework to solve flexible JSSPs. Third, our neural net-
works have different input sizes for scheduling problems

of different sizes, and can only be used online to calcu-
late scheduling problems of the same size. In the schedul-
ing field, it is challenging to integrate domain and expert
knowledge. Last, the DDDQNPR used in this study is inher-
ently a value-based method, which cannot directly opti-
mize over the scheduling policy. On this account, we will
investigate other advanced policy-based methods including
PG, AC, A3C, TRPO and compare their performances with
DDDQNPR.

APPENDDIX
See Tables 7–10.

186492 VOLUME 8, 2020



B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

TABLE 9. Static experiment results.

TABLE 10. Static experiment results.

REFERENCES
[1] Y. Wang, K. Hong, J. Zou, T. Peng, and H. Yang, ‘‘A CNN-based visual

sorting system with cloud-edge computing for flexible manufacturing sys-
tems,’’ IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4726–4735, Jul. 2020,
doi: 10.1109/tii.2019.2947539.

[2] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010, doi: 10.1016/
j.comnet.2010.05.010.

[3] D. Boyd and K. Crawford, ‘‘Critical questions for big data: Provo-
cations for a cultural, technological, and scholarly phenomenon,’’ Inf.,
Commun. Soc., vol. 15, no. 5, pp. 662–679, Jun. 2012, doi: 10.1080/
1369118x.2012.678878.

[4] S. John Walker, ‘‘Big data: A revolution that will transform how we live,
work, and think,’’ Int. J. Advertising, vol. 33, no. 1, pp. 181–183, Jan. 2014,
doi: 10.2501/ija-33-1-181-183.

[5] E. A. Lee, ‘‘Cyber physical systems: Design challenges,’’ in Proc. 11th
IEEE Symp. Object/Component/Service-Oriented Real-TimeDistrib. Com-
put., Los Alamitos, CA, USA, 2008, pp. 363–369.

[6] S. Wang, J. Wan, D. Li, and C. Zhang, ‘‘Implementing smart factory of
industrie 4.0: An outlook,’’ Int. J. Distrib. Sensor Netw., vol. 12, no. 1,
Jan. 2016, Art. no. 3159805, doi: 10.1155/2016/3159805.

[7] L. Li, ‘‘China’s manufacturing locus in 2025: With a comparison of made-
in-China 2025 and Industry 4.0,’’ Technol. Forecasting Social Change,
vol. 135, pp. 66–74, Oct. 2018, doi: 10.1016/j.techfore.2017.05.028.

[8] K. R. Baker, ‘‘Sequencing rules and due-date assignments in a job
shop,’’ Manage. Sci., vol. 30, no. 9, pp. 1093–1104, Sep. 1984,
doi: 10.1287/mnsc.30.9.1093.

[9] S. Chan Park, N. Raman, andM. J. Shaw, ‘‘Adaptive scheduling in dynamic
flexible manufacturing systems: A dynamic rule selection approach,’’
IEEE Trans. Robot. Autom., vol. 13, no. 4, pp. 486–502, Dec. 1997,
doi: 10.1109/70.611301.

[10] A. Janiak, E. Kozan, M. Lichtenstein, and C. Oäuz, ‘‘Metaheuristic
approaches to the hybrid flow shop scheduling problem with a cost-related
criterion,’’ Int. J. Prod. Econ., vol. 105, no. 2, pp. 407–424, Feb. 2007,
doi: 10.1016/j.ijpe.2004.05.027.

[11] G. I. Zobolas, C. D. Tarantilis, and G. Ioannou, ‘‘Minimizing makespan in
permutation flow shop scheduling problems using a hybrid Metaheuristic
algorithm,’’ Comput. Oper. Res., vol. 36, no. 4, pp. 1249–1267, Apr. 2009,
doi: 10.1016/j.cor.2008.01.007.

[12] Y. Huo and J. Y.-T. Leung, ‘‘Fast approximation algorithms for
job scheduling with processing set restrictions,’’ Theor. Comput.
Sci., vol. 411, nos. 44–46, pp. 3947–3955, Oct. 2010, doi: 10.1016/
j.tcs.2010.08.008.

[13] M. H. Fazel Zarandi, A. A. Sadat Asl, S. Sotudian, and O. Castillo,
‘‘A state of the art review of intelligent scheduling,’’ Artif.
Intell. Rev., vol. 53, no. 1, pp. 501–593, Jan. 2020, doi: 10.1007/
s10462-018-9667-6.

VOLUME 8, 2020 186493

http://dx.doi.org/10.1109/tii.2019.2947539
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1080/1369118x.2012.678878
http://dx.doi.org/10.1080/1369118x.2012.678878
http://dx.doi.org/10.2501/ija-33-1-181-183
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1016/j.techfore.2017.05.028
http://dx.doi.org/10.1287/mnsc.30.9.1093
http://dx.doi.org/10.1109/70.611301
http://dx.doi.org/10.1016/j.ijpe.2004.05.027
http://dx.doi.org/10.1016/j.cor.2008.01.007
http://dx.doi.org/10.1016/j.tcs.2010.08.008
http://dx.doi.org/10.1016/j.tcs.2010.08.008
http://dx.doi.org/10.1007/s10462-018-9667-6
http://dx.doi.org/10.1007/s10462-018-9667-6


B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

[14] F. Yoon-Pin Simon and Takefuji, ‘‘Stochastic neural networks for
solving job-shop scheduling. II. architecture and simulations,’’
in Proc. IEEE Int. Conf. Neural Netw., Jul. 1988, pp. 283–290,
doi: 10.1109/ICNN.1988.23940.

[15] W. Remus and T. Hill, ‘‘Neural network models of managerial judgment,’’
in Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 4, Jan. 1990, pp. 340–344,
doi: 10.1109/HICSS.1990.205276.

[16] D. E. Akyol and G. M. Bayhan, ‘‘A review on evolution of production
scheduling with neural networks,’’ Comput. Ind. Eng., vol. 53, no. 1,
pp. 95–122, Aug. 2007, doi: 10.1016/j.cie.2007.04.006.

[17] G. R. Weckman, C. V. Ganduri, and D. A. Koonce, ‘‘A neural network job-
shop scheduler,’’ J. Intell. Manuf., vol. 19, no. 2, pp. 191–201, Apr. 2008,
doi: 10.1007/s10845-008-0073-9.

[18] J. Lim,M.-J. Chae, Y.Yang, I.-B. Park, J. Lee, and J. Park, ‘‘Fast scheduling
of semiconductor manufacturing facilities using case-based reasoning,’’
IEEE Trans. Semicond. Manuf., vol. 29, no. 1, pp. 22–32, Feb. 2016, doi:
10.1109/tsm.2015.2511798.

[19] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[20] Y.-H. Dong and J. Jang, ‘‘Production rescheduling for machine breakdown
at a job shop,’’ Int. J. Prod. Res., vol. 50, no. 10, pp. 2681–2691,May 2012,
doi: 10.1080/00207543.2011.579637.

[21] X. Li, Z. Peng, B. Du, J. Guo, W. Xu, and K. Zhuang, ‘‘Hybrid artificia
l bee colony algorithm with a rescheduling strategy for solving flexible
job shop scheduling problems,’’ Comput. Ind. Eng., vol. 113, pp. 10–26,
Nov. 2017, doi: 10.1016/j.cie.2017.09.005.

[22] H.-S. Choi, J.-S. Kim, and D.-H. Lee, ‘‘Real-time scheduling for reentrant
hybrid flow shops: A decision tree based mechanism and its application
to a TFT-LCD line,’’ Expert Syst. Appl., vol. 38, no. 4, pp. 3514–3521,
Apr. 2011, doi: 10.1016/j.eswa.2010.08.139.

[23] K. Yanai, M. Yooa, and T. Yokoyama, ‘‘A proposal of real-time scheduling
algorithm based on RMZL and schedulability analysis,’’Procedia Comput.
Sci., vol. 24, pp. 9–14, 2013.

[24] E. J. Anderson and C. N. Potts, ‘‘Online scheduling of a single machine
to minimize total weighted completion time,’’ Math. Oper. Res., vol. 29,
no. 3, pp. 686–697, Aug. 2004, doi: 10.1287/moor.1040.0092.

[25] J. Tian, Q. Wang, R. Fu, and J. Yuan, ‘‘Online scheduling on the
unbounded drop-line batch machines to minimize the maximum delivery
completion time,’’ Theor. Comput. Sci., vol. 617, pp. 65–68, Feb. 2016,
doi: 10.1016/j.tcs.2016.01.001.

[26] K. R. Baker, ‘‘Minimizing earliness and tardiness costs in stochastic
scheduling,’’ Eur. J. Oper. Res., vol. 236, no. 2, pp. 445–452, Jul. 2014,
doi: 10.1016/j.ejor.2013.12.011.

[27] B. Liu, Y. Fan, and Y. Liu, ‘‘A fast estimation of distribution algorithm for
dynamic fuzzy flexible job-shop scheduling problem,’’ Comput. Ind. Eng.,
vol. 87, pp. 193–201, Sep. 2015, doi: 10.1016/j.cie.2015.04.029.

[28] X.-N. Shen and X. Yao, ‘‘Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible job shop schedul-
ing problems,’’ Inf. Sci., vol. 298, pp. 198–224, Mar. 2015, doi:
10.1016/j.ins.2014.11.036.

[29] Z. Dong,M.Y. Jiang, and Z. L. Pei, ‘‘Research on dynamic shop scheduling
problem based on genetic algorithm,’’ Basic Clin. Pharmacol. Toxicol.,
vol. 124, p. 50, Dec. 2018. [Online]. Available: WOS:000452533800080

[30] J. Park, Y. Mei, S. Nguyen, G. Chen, and M. Zhang, ‘‘An investigation
of ensemble combination schemes for genetic programming based hyper-
heuristic approaches to dynamic job shop scheduling,’’ Appl. Soft Comput.,
vol. 63, pp. 72–86, Feb. 2018, doi: 10.1016/j.asoc.2017.11.020.

[31] W. Chen, H. Yang, and Y. Hao, ‘‘Scheduling of dynamic multi-
objective flexible enterprise job-shop problem based on hybrid
QPSO,’’ IEEE Access, vol. 7, pp. 127090–127097, 2019, doi: 10.1109/
access.2019.2938773.

[32] M. Shahgholi Zadeh, Y. Katebi, and A. Doniavi, ‘‘A heuristic model
for dynamic flexible job shop scheduling problem considering variable
processing times,’’ Int. J. Prod. Res., vol. 57, no. 10, pp. 3020–3035,
May 2019, doi: 10.1080/00207543.2018.1524165.

[33] S. X. Yang andD.W.Wang, ‘‘A new adaptive neural network and heuristics
hybrid approach for job-shop scheduling,’’ Comput. Oper. Res., vol. 28,
no. 10, pp. 955–971, Sep. 2001, doi: 10.1016/s0305-0548(00)00018-6.

[34] R. Varela, C. R. Vela, J. Puente, and A. Gomez, ‘‘A knowledge-based
evolutionary strategy for scheduling problems with bottlenecks,’’ Eur.
J. Oper. Res., vol. 145, no. 1, pp. 57–71, Feb. 2003, doi: 10.1016/s0377-
2217(02)00205-9.

[35] R. Rangsaritratsamee,W. G. Ferrell, andM. B. Kurz, ‘‘Dynamic reschedul-
ing that simultaneously considers efficiency and stability,’’ Comput. Ind.
Eng., vol. 46, no. 1, pp. 1–15, Mar. 2004, doi: 10.1016/j.cie.2003.09.007.

[36] K. K. Lee, ‘‘Fuzzy rule generation for adaptive scheduling in a
dynamic manufacturing environment,’’ Appl. Soft Comput., vol. 8, no. 4,
pp. 1295–1304, Sep. 2008, doi: 10.1016/j.asoc.2007.11.005.

[37] N. Kundakc and O. Kulak, ‘‘Hybrid genetic algorithms for minimizing
makespan in dynamic job shop scheduling problem,’’ Comput. Ind. Eng.,
vol. 96, pp. 31–51, Jun. 2016, doi: 10.1016/j.cie.2016.03.011.

[38] T. Ning, M. Huang, X. Liang, and H. Jin, ‘‘A novel dynamic scheduling
strategy for solving flexible job-shop problems,’’ J. Ambient Intell. Hum.
Comput., vol. 7, no. 5, pp. 721–729, Oct. 2016, doi: 10.1007/s12652-016-
0370-7.

[39] L. Wang, C. Luo, and J. Cai, ‘‘A variable interval rescheduling strategy
for dynamic flexible job shop scheduling problem by improved
genetic algorithm,’’ J. Adv. Transp., vol. 2017, pp. 1–12, 2017,
doi: 10.1155/2017/1527858.

[40] H. Xiong, H. Fan, G. Jiang, and G. Li, ‘‘A simulation-based study of
dispatching rules in a dynamic job shop scheduling problem with batch
release and extended technical precedence constraints,’’ Eur. J. Oper. Res.,
vol. 257, no. 1, pp. 13–24, Feb. 2017, doi: 10.1016/j.ejor.2016.07.030.

[41] Y. Zhang, J. Wang, S. Liu, and C. Qian, ‘‘Game theory based real-time
shop floor scheduling strategy and method for cloud manufacturing,’’ Int.
J. Intell. Syst., vol. 32, no. 4, pp. 437–463, Apr. 2017, doi: 10.1002/
int.21868.

[42] H. Piroozfard, K. Y. Wong, and W. P. Wong, ‘‘Minimizing total
carbon footprint and total late work criterion in flexible job shop
scheduling by using an improved multi-objective genetic algorithm,’’
Resour., Conservation Recycling, vol. 128, pp. 267–283, Jan. 2018,
doi: 10.1016/j.resconrec.2016.12.001.

[43] I. Chaouch, O. B. Driss, and K. Ghedira, ‘‘A novel dynamic assignment
rule for the distributed job shop scheduling problem using a hybrid ant-
based algorithm,’’ Int. J. Speech Technol., vol. 49, no. 5, pp. 1903–1924,
May 2019, doi: 10.1007/s10489-018-1343-7.

[44] M. E. Aydin and E. Öztemel, ‘‘Dynamic job-shop scheduling using rein-
forcement learning agents,’’ Robot. Auto. Syst., vol. 33, no. 2, pp. 169–178,
Nov. 2000, doi: 10.1016/S0921-8890(00)00087-7.

[45] Y.-C. Wang and J. M. Usher, ‘‘Learning policies for single machine
job dispatching,’’ Robot. Computer-Integrated Manuf., vol. 20, no. 6,
pp. 553–562, Dec. 2004, doi: 10.1016/j.rcim.2004.07.003.

[46] Y.-C. Wang and J. M. Usher, ‘‘Application of reinforcement learning for
agent-based production scheduling,’’ Eng. Appl. Artif. Intell., vol. 18, no. 1,
pp. 73–82, Feb. 2005, doi: 10.1016/j.engappai.2004.08.018.

[47] C. D. Paternina-Arboleda and T. K. Das, ‘‘A multi-agent reinforcement
learning approach to obtaining dynamic control policies for stochastic
lot scheduling problem,’’ Simul. Model. Pract. Theory, vol. 13, no. 5,
pp. 389–406, Jul. 2005, doi: 10.1016/j.simpat.2004.12.003.

[48] B. C. Csaji and L. Monostori, ‘‘Stochastic reactive production scheduling
by multi-agent based asynchronous approximate dynamic programming,’’
inMulti-Agent Systems and Applications (Lecture Notes in Artificial Intel-
ligence), vol. 3690, M. Pechoucek, P. Petta, and L. Z. Varga Eds. Berlin,
Germany: Springer-Verlag, 2005, pp. 388–397.

[49] Z. Zhang, L. Zheng, and M. X. Weng, ‘‘Dynamic parallel machine
scheduling with mean weighted tardiness objective by Q-Learning,’’ Int.
J. Adv. Manuf. Technol., vol. 34, nos. 9–10, pp. 968–980, Sep. 2007,
doi: 10.1007/s00170-006-0662-8.

[50] Z. Zhang, L. Zheng, N. Li, W. Wang, S. Zhong, and K. Hu, ‘‘Mini-
mizing mean weighted tardiness in unrelated parallel machine schedul-
ing with reinforcement learning,’’ Comput. Oper. Res., vol. 39, no. 7,
pp. 1315–1324, Jul. 2012, doi: 10.1016/j.cor.2011.07.019.

[51] H.-B. Yang and H.-S. Yan, ‘‘An adaptive approach to dynamic scheduling
in knowledgeablemanufacturing cell,’’ Int. J. Adv.Manuf. Technol., vol. 42,
nos. 3–4, pp. 312–320, May 2009, doi: 10.1007/s00170-008-1588-0.

[52] Y. Z. Wei and M. Y. Zhao, ‘‘Composite rules selection using reinforce-
ment learning for dynamic job-shop scheduling,’’ in Proc. Conf. Robot.,
Automat.Mechatronics, NewYork, NY,USA, vol. 1, 2004, pp. 1083–1088.

[53] S. Qu, T. Chu, J. Wang, J. Leckie, and W. Jian, ‘‘A centralized reinforce-
ment learning approach for proactive scheduling in manufacturing,’’ in
Proc. IEEE 20th Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2015,
pp. 1–5.

[54] S. Qu, J. Wang, and G. Shivani, ‘‘Learning adaptive dispatching rules for a
manufacturing process system by using reinforcement learning approach,’’
in Proc. IEEE 21st Int. Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2016, pp. 1–5.

186494 VOLUME 8, 2020

http://dx.doi.org/10.1109/ICNN.1988.23940
http://dx.doi.org/10.1109/HICSS.1990.205276
http://dx.doi.org/10.1016/j.cie.2007.04.006
http://dx.doi.org/10.1007/s10845-008-0073-9
http://dx.doi.org/10.1109/tsm.2015.2511798
http://dx.doi.org/10.1080/00207543.2011.579637
http://dx.doi.org/10.1016/j.cie.2017.09.005
http://dx.doi.org/10.1016/j.eswa.2010.08.139
http://dx.doi.org/10.1287/moor.1040.0092
http://dx.doi.org/10.1016/j.tcs.2016.01.001
http://dx.doi.org/10.1016/j.ejor.2013.12.011
http://dx.doi.org/10.1016/j.cie.2015.04.029
http://dx.doi.org/10.1016/j.ins.2014.11.036
http://dx.doi.org/10.1016/j.asoc.2017.11.020
http://dx.doi.org/10.1109/access.2019.2938773
http://dx.doi.org/10.1109/access.2019.2938773
http://dx.doi.org/10.1080/00207543.2018.1524165
http://dx.doi.org/10.1016/s0305-0548(00)00018-6
http://dx.doi.org/10.1016/s0377-2217(02)00205-9
http://dx.doi.org/10.1016/s0377-2217(02)00205-9
http://dx.doi.org/10.1016/j.cie.2003.09.007
http://dx.doi.org/10.1016/j.asoc.2007.11.005
http://dx.doi.org/10.1016/j.cie.2016.03.011
http://dx.doi.org/10.1007/s12652-016-0370-7
http://dx.doi.org/10.1007/s12652-016-0370-7
http://dx.doi.org/10.1155/2017/1527858
http://dx.doi.org/10.1016/j.ejor.2016.07.030
http://dx.doi.org/10.1002/int.21868
http://dx.doi.org/10.1002/int.21868
http://dx.doi.org/10.1016/j.resconrec.2016.12.001
http://dx.doi.org/10.1007/s10489-018-1343-7
http://dx.doi.org/10.1016/S0921-8890(00)00087-7
http://dx.doi.org/10.1016/j.rcim.2004.07.003
http://dx.doi.org/10.1016/j.engappai.2004.08.018
http://dx.doi.org/10.1016/j.simpat.2004.12.003
http://dx.doi.org/10.1007/s00170-006-0662-8
http://dx.doi.org/10.1016/j.cor.2011.07.019
http://dx.doi.org/10.1007/s00170-008-1588-0


B.-A. Han, J.-J. Yang: Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN

[55] H.-X.Wang and H.-S. Yan, ‘‘An interoperable adaptive scheduling strategy
for knowledgeable manufacturing based on SMGWQ-learning,’’ J. Intell.
Manuf., vol. 27, no. 5, pp. 1085–1095, Oct. 2016, doi: 10.1007/s10845-
014-0936-1.

[56] J. Shahrabi, M. A. Adibi, and M. Mahootchi, ‘‘A reinforcement learn-
ing approach to parameter estimation in dynamic job shop schedul-
ing,’’ Comput. Ind. Eng., vol. 110, pp. 75–82, Aug. 2017, doi: 10.1016/j.
cie.2017.05.026.

[57] Y.-F. Wang, ‘‘Adaptive job shop scheduling strategy based on weighted
Q-learning algorithm,’’ J. Intell. Manuf., vol. 31, no. 2, pp. 417–432,
Feb. 2020, doi: 10.1007/s10845-018-1454-3.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep
reinforcement learning,’’ 2013, arXiv:1312.5602. [Online]. Available:
http://arxiv.org/abs/1312.5602

[59] V. Mnih, ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, no. 7540, pp. 33–529, Feb. 26 2015,
doi: 10.1038/nature14236.

[60] H. vanHasselt, A. Guez, D. Silver, andAaai, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. Conf. Artif. Intell., Palo Alto, CA, USA,
2016, pp. 2094–2100.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017, doi: 10.1145/3065386.

[62] J. C. Caicedo and S. Lazebnik, ‘‘Active object localization with deep
reinforcement learning,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 2488–2496.

[63] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky, ‘‘Deep
reinforcement learning for dialogue generation,’’ 2016, arXiv:1606.01541.
[Online]. Available: http://arxiv.org/abs/1606.01541

[64] J. A. Palombarini and E. C. Martinez, ‘‘Automatic generation of reschedul-
ing knowledge in socio-technical manufacturing systems using deep rein-
forcement learning,’’ in Proc. Biennial Congr. Argentina, New York, NY,
USA, 2018, pp. 1–5.

[65] J. A. Palombarini and E. C. Martínez, ‘‘Closed-loop rescheduling
using deep reinforcement learning,’’ IFAC-PapersOnLine, vol. 52, no. 1,
pp. 231–236, 2019, doi: 10.1016/j.ifacol.2019.06.067.

[66] B.Waschneck, A. Reichstaller, L. Belzner, T. Altenmuller, T. Bauernhansl,
A. Knapp, and A. Kyek, ‘‘Deep reinforcement learning for semiconductor
production scheduling,’’ in Proc. 29th Annu. SEMI Adv. Semiconductor
Manuf. Conf. (ASMC), Apr. 2018, pp. 301–306.

[67] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, ‘‘Smart manufactur-
ing scheduling with edge computing using multiclass deep q network,’’
IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 4276–4284, Jul. 2019,
doi: 10.1109/tii.2019.2908210.

[68] C.-L. Liu, C.-C. Chang, and C.-J. Tseng, ‘‘Actor-critic deep reinforcement
learning for solving job shop scheduling problems,’’ IEEE Access, vol. 8,
pp. 71752–71762, 2020, doi: 10.1109/ACCESS.2020.2987820.

[69] E. Balas, ‘‘Machine sequencing via disjunctive graphs: An implicit
enumeration algorithm,’’ Operations Res., vol. 17, no. 6, pp. 941–957,
Dec. 1969, doi: 10.1287/opre.17.6.941.

[70] H. Fisher and G. Thompson, ‘‘Probabilistic Learning Combinations of
Local Job-Shop Scheduling Rules,’’ in Industrial Scheduling, J. F. Muth
and G. L. Thompson Eds. Upper Saddle River, NJ, USA: Prentice-Hall,
vol. 1963, pp. 225–251.

[71] J. Adams, E. Balas, and D. Zawack, ‘‘The shifting bottleneck procedure for
job shop scheduling,’’Manage. Sci., vol. 34, no. 3, pp. 391–401,Mar. 1988,
doi: 10.1287/mnsc.34.3.391.

[72] L. S. Li, ‘‘Resouce constrained project scheduling: An experimen-
tal investigation of heuristic scheduling techniques (supplement),’’
School of Ind. Admin., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. ORNL/Sub-7654/1, 1984.

[73] D. Applegate and W. Cook, ‘‘A computational study of the job-shop
scheduling problem,’’ ORSA J. Comput., vol. 3, no. 2, pp. 149–156,
May 1991, doi: 10.1287/ijoc.3.2.149.

[74] Y. T. Li, ‘‘A genetic algorithm applicable to large-scale job-shop
instances,’’ in Parallel Problem Solving from Nature, R. Manner and
B. Manderick Eds. Brussels, Belgium: North-Holland, 1992, pp. 281–290.

[75] E. Demirkol, S. Mehta, and R. Uzsoy, ‘‘Benchmarks for shop schedul-
ing problems,’’ Eur. J. Oper. Res., vol. 109, no. 1, pp. 137–141, 1998,
doi: 10.1016/s0377-2217(97)00019-2.

[76] R. H. Storer, S. D. Wu, and R. Vaccari, ‘‘New search spaces for sequencing
problems with application to job shop scheduling,’’ Manage. Sci., vol. 38,
no. 10, pp. 1495–1509, Oct. 1992, doi: 10.1287/mnsc.38.10.1495.

[77] E. Taillard, ‘‘Benchmarks for basic scheduling problems,’’ Eur. J. Oper.
Res., vol. 64, no. 2, pp. 278–285, 1993.

[78] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in ICML Workshop Deep Learn. Audio,
Speech Lang. Process., 2013, pp. 1–5.

[79] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

[80] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

BAO-AN HAN was born in Qingdao, Shandong,
China, in 1988. He received the B.S. and M.S.
degrees from the School of Material Science
and Mechanical Engineering, Beijing Technol-
ogy and Business University, Beijing, China,
in 2011 and 2014, respectively. He is currently
pursuing the Ph.D. degree with the Labora-
tory of the Intelligent Manufacturing Technol-
ogy and Systems, Department of Industrial and
Manufacturing Systems Engineering, School of

Mechanical Engineering and Automation, Beihang University, Beijing.
His research interests include production scheduling, deep reinforcement

learning, as well as intelligent manufacturing and optimization.

JIAN-JUN YANG was born in Fuzhou, Jiangxi,
China, in 1960. He received the B.S. and
M.S. degrees in manufacturing engineering from
Beihang University, Beijing, China, in 1986 and
1989, respectively.

From 1993 to 2002, he was an Associate Pro-
fessor with the Institute of Manufacturing Sys-
tems. Since 2003, he has been a Professor with the
School of Mechanical Engineering and Automa-
tion, Beihang University, where he has served as

the Vice President of the College and the Director of the Department of
Industrial and Manufacturing Systems Engineering. He is the author of one
book, more than 100 articles. His research interests include manufacturing
resource planning and intelligent optimization, production scheduling and
hyper-heuristic algorithm, manufacturing process information integration,
and control technology.

VOLUME 8, 2020 186495

http://dx.doi.org/10.1007/s10845-014-0936-1
http://dx.doi.org/10.1007/s10845-014-0936-1
http://dx.doi.org/10.1016/j.cie.2017.05.026
http://dx.doi.org/10.1016/j.cie.2017.05.026
http://dx.doi.org/10.1007/s10845-018-1454-3
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.ifacol.2019.06.067
http://dx.doi.org/10.1109/tii.2019.2908210
http://dx.doi.org/10.1109/ACCESS.2020.2987820
http://dx.doi.org/10.1287/opre.17.6.941
http://dx.doi.org/10.1287/mnsc.34.3.391
http://dx.doi.org/10.1287/ijoc.3.2.149
http://dx.doi.org/10.1016/s0377-2217(97)00019-2
http://dx.doi.org/10.1287/mnsc.38.10.1495

