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ABSTRACT Language deficiency is evident in the onset of several neurodegenerative disorders yet has
barely been investigated when first occurs on the continuum of cognitive impairment for the purpose of early
diagnoses. Alzheimer’s disease (AD) is a neurodegenerative pathology that develops years prior to clinical
manifestations and typically preceded by prodromal stages such as Mild Cognitive Impairment (MCI).
Currently, the manual diagnostic procedures of both types are time consuming, following certain clinical
criteria and neuropsychological examinations. Our study aims to establish state-of-the-art performance in the
automatic identification of different dementia etiologies, including AD, MCI, and Possible AD (PoAD), and
to determine whether patients with initial cognitive declines exhibit language deficits through the analysis of
language samples deduced with the cookie theft picture description task. Data was derived from the cookie
theft picture corpus of DementiaBank, from which all language samples of the identified etiologies were
used, with a random subsampling technique that handles the skewness of the classes. Several original lexical
and syntactic (i.e., lexicosyntactic) features were introduced and used alongside previously established
lexicosyntactics to train machine learning (ML) classifiers against these etiologies. Further, a statistical
analysis was conducted to uncover the deficiency across these etiologies. Our models resulted in benchmarks
for differentiating all the identified classes with accuracies ranging between 95 to 98% and corresponding
F1 values falling between 94 and 98%. The statistical analysis of our lexicosyntactic biomarkers shows that
linguistic deviations are associated with prodromal as well as advanced neurodegenerative pathologies, being
greatly impacted as cognitive decline increases and suggesting that language biomarkers may aid the early
diagnosis of these pathologies.

INDEX TERMS Alzheimer’s disease, prodromal dementia, cognitive decline, clinical diagnosis, neurolin-
guistics, machine learning, prediction, feature selection.

I. INTRODUCTION AND MOTIVATION
The rising elderly population is a prominent demographic
attribute of developed countries [1], [2]. Alzheimer’s dis-
ease (AD) along with other related neurodegenerative
pathologies are considered one of the most common persis-
tent issues facing an aging population due to their nature
of being incurable [3]. Without medical breakthrough, early
diagnosis is the only hope for people with, or likely to
develop, dementia. Therefore, a timely diagnosis of demen-
tia is fundamental for decelerating its progression as well
as allowing maximized benefits of pharmaceutical interven-
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tions that can mitigate the side effects in certain types of
dementia [4]–[6]. On the other hand, it may stabilize or
even curtail the decline in some prodromal dementia cases
[7]–[10]. However, clinical examinations of dementia typ-
ically involve multiple diagnostic procedures, which may
be highly stressful and costly thus a major cause of late
diagnosis.

The diagnosis of prodromal dementia is currently chal-
lenging [11], [12]. Normally, prodromal dementia is diag-
nosed via traditional pen-and-paper screening tests such as
the Montreal Cognitive Assessment (MoCA), which involve
a series of questions to assess different cognitive skills (e.g.,
short memory, attention, repetition, and orientation) [13].
Some of these traditional screening tests are simple to use;
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however, they have certain limitations such as relying on the
neurologist’s level of expertise, being affected by the age
and level of education as well as being insensitive to early
dementia thus are usually followed by further comprehensive
tests [14], [15]. Consequently, there has been a demand for
further effective clinical techniques to diagnose prodromal
dementia by concerned associations [16].

Awell-established literature shows various early-disrupted
characteristics of language and speech in patients with
prodromal stages of dementia as well as patients with
Alzheimer’s disease (AD) [17]. Early opening analytical
studies of language and speech have underlined devia-
tions in naming and verbal fluency tasks [18]–[21]. More
recently, studies using automatic or semiautomatic methods
for language and speech analysis have asserted that linguis-
tic analysis can characterize early AD and MCI [22]–[24].
Specifically, as stated by Ball et al. [25] and asserted by Ren-
toumim et al. [26], lexical and syntactic (i.e., lexicosyntactic)
processing in people with language disorders has revealed
promising outcomes, highlighting the necessity of additional
investigations for more effective lexicosyntactic biomarkers.

On the basis thereof, this study investigates computa-
tional diagnostic models for foreseeing prodromal demen-
tia through linguistic patterns and deficits. It also explores
and illustrates the gradual deterioration of lexicosyntactic in
patients with different stages of dementia. A potential value
of this investigation would be the ability to automatically
diagnose preclinical stages of dementia, allowing for early
intervention prior to developing irreversible dementia. Addi-
tionally, it supports previous related studies on exploring
language deficiency caused by cognitive decline.

Using Natural Language Processing (NLP) fused with
Machine Learning (ML) algorithms, we propose multiple
diagnostic models to predict prodromal dementia. These
computational models employ different sets of essential lan-
guage components extracted from transcripts belonging to
Healthy Control (HC), AD, MCI, and PoAD participants
from DementiaBank dataset. Firstly, lexicosyntactic repre-
sentations are investigated to understand the linguistic devia-
tions associated with different stages of dementia, where we
introduce original lexicosyntactic features and exploratorily
analyze them alongside previously established lexicosyn-
tactics. We then propose a statistical-based feature selec-
tion method that handles both normally and non-normally
distributed features for selecting the most predictive sub-
set among our lexicosyntactic features. We also introduce
n-gram language models to seize the sequence of words in
the language samples. Our diagnostic models establish new
independent benchmarks for pairwise classifications across
all the identified classes.

II. RELATED WORK
As reported in various studies, it is possible to identify lan-
guage changes years prior to developing dementia, which
highlights the importance of linguistic analysis for dementia
detection [27]–[36]. While most of these studies focused

on connected speech of people with developed AD, a rel-
atively small number of computational linguistics studies
have attempted to explore early AD and other prodromal
dementias. For instance, Orimaye et al. [37] carried out
a study to distinguish 19 patients diagnosed with MCI
from 19 healthy adults from DementiaBank dataset. They
introduced a few skip-gram models with different spaces,
where word tokens are intermittently skipped when form-
ing n-grams. For instance, the one-skip-three-grams of the
sentence ‘‘the jar is falling’’ are ‘‘the-is-falling’’ and ‘‘the-
jar-falling’’. With different top skip-gram spaces, they con-
ducted several experiments to train a few classifiers, where
the top 200 compound skip grams resulted in 98%, 97%,
97% and 99% of precision, recall, F1 score, and AUC,
consecutively, when fused with Support Vector Machine
(SVM), Logistic Regression (LR), and Naïve Bayes (NB)
classifiers.

Later on, the same authors conducted a study using
242 transcripts of patients with probable and possible AD and
242 transcripts of HC, where a SVM classifier was trained
with syntactic features and obtained an F1 score of 74% [38].
This work was extended in another study to classify the same
classes of AD and HC using n-grams combined with lexi-
cal and syntactic features. They experimented with different
combinations of these features and reported their best model
with an Area Under the ROC Curve (AUC) of 93%, using the
top 1000 combined features [39]. Similarly, Fraser et al. [23]
carried out a binary classification study using 240 AD and
233 HC transcripts, where a LR classifier was trained with
the top 35 features selected out of 370 acoustic and syntactic
features using Pearson’s correlation. They reported an accu-
racy of 81%.

Al-Hameed et al. [40] showed that acoustic features could
optimally differentiate AD patients from healthy adults in a
study involved a total of 264 individuals (i.e., 167 AD and
97 HC). They extracted 263 acoustic features from these
transcripts, where the top 20 features led to their highest accu-
racy of 94.7% and recall of 97% when fused with Bayesian
networks. In a subsequent work [41], they focused on differ-
entiatingAD andMCI patients from healthy adults, extending
the acoustic features to over 811 features in total. An SVM
classifier was employed in their experiments that resulted in
accuracies failing between 95 and 97%. Similarly, acoustic
features were recently investigated by Haider et al. [42],
where the authors experimented with different sets of acous-
tic features extracted from transcripts belonging to 82 AD
patients and 82 healthy adults. They reported the highest
accuracy of 78.7%, which was achieved by applying a ‘‘hard
fusion’’ technique to these sets of features and fusing them
with a Decision Tree classifier.

In a similar study, Ammar and Ayed [43] proposed a model
for classifying AD and HC groups, utilizing 242 transcripts
per each group. They extracted syntactic, semantic, and prag-
matic features then used three feature selection methods
(i.e., Information Gain (IG), K-nearest neighbors (KNN),
and SVM Recursive Feature Elimination (SVM-RFE)).

VOLUME 8, 2020 193857



A. H. Alkenani et al.: Predicting Prodromal Dementia Using Linguistic Patterns and Deficits

The set of features selected using KNN resulted in an accu-
racy of 79% when used with SVM, as the best model in
their study. Contrarily, Yancheva and Rudzicz [44] used topic
modeling to classify these two groups (i.e., AD and HC).
They formed 10 clusters of verbs and nouns such as C0: win-
dow, curtain, kitchen, plate; and D0: baking, cookies, apple.
Afterwards, a set of 12 semantic features was extracted and
fused with a Random Forest (RF) classifier, resulting in 74%
F1 score. However, when combining this set of features with
syntactic features, the F1 score increased to 80%. Budhkar
and Rudzicz [45] also used topic modeling for the same pur-
pose, where they augmented topic-models with ‘‘pre-trained’’
wrod2vec for classifying 167 AD patients (with 240 samples)
from 97 healthy adults (with 233 samples). They reported
the highest F1 score of 77.5% when fusing 25 topic-induced
word2vec with a linear-kernel SVM.

Hernández-Domínguez et al. [46] extracted Information
Content Units (ICU) from 25 transcripts belonging to healthy
adults to form a reference of the main units in the picture.
These ICUs were then used to assess how informative the
transcripts of AD patients are, where more ICUs coverage
means more informativeness. More linguistic and phonetic
features were also extracted alongside the ICUs, where they
preselected the statistically significant features (i.e., with
p-value <.001) among these features and used them to the
train two classifiers, namely SVM and RF. They reported
their best averaged results of a 79% accuracy and AUC as
well as 81% precision, recall, and F1 score.

Neural network, on the other side, are seen to perform
well in detecting prodromal dementia. An instance is the
work of Orimaye et al. [24], where they investigated the
diagnosis ofMCI through newly proposedDeep-DeepNeural
Networks Language Model (D2NNLM). They carried out
experiments to distinguish betweenMCI andHC participants,
using 43 transcripts per each group, by extracting higher
order n-grams and skip-grams and then fusing them with the
D2NNLM. Their model scored an accuracy of 87.5%.

Karlekar et al. [47] also presented similar models using
Convolutional Neural Networks (CNNs), Long Short-Term
Memory-Recurrent Neural Networks (LSTM-RNNs), and an
integration of them (CNN-LSTM) as an attempt to optimize
the automatic classification of patients with AD from HC.
They utilized all transcripts from the Cookie Theft Picture
description corpus from DementiaBank dataset, belonging
to people with different stages of dementia, along with the
accompanying Part of Speech (POS) tags that were originally
annotated by the dataset custodians. Instead of using these
transcripts in their original format, they divided them into sin-
gle utterances to make utterances-based classification as an
attempt to enlarge the samples. As a result, they achieved an
accuracy of 91.1%. Later on, their workwas reproduced byDi
Palo and Parde [48], wherein they attempted to overcome the
imbalanced samples resulting from the Karlekar’s proposed
technique of dividing transcripts into utterances by adding
an attention mechanism and class weights. Nonetheless, their
approach dropped the performance to 88% accuracy as the

best performing model on this metric. They also reported and
F1 score of 93.05% and AUC of 95.03%.

Another recent attempt to address the use of neural
networks for detecting dementia is the recent work of
Pan et al. [49]. They have proposed a hierarchical bidi-
rectional neural network induced with an attention mech-
anism for extracting different levels of features. A total
of 255 recordings of AD patients and 222 of healthy adults
were employed in their study, where they firstly used the
original manually transcribed transcripts then applied an
automatic speech recognition to transcribe these recordings.
Their model could reach the best performance of 84.02%,
84.97%, and 84.43% precision, recall, and F1 score, respec-
tively. Similarly, Chen et al. [50] have recently introduced
a hybrid attention-based neural model for classifying AD
and HC groups. They used a total number of 498 transcripts
in the development of their model, with 256 transscripts
belonging to the AD group and the remaining to the HC
group. The hybrid model was formed by integrating a CNN
with a bidirectional Gated Recurrent Units (BiGRU) fused
with an attention layer, to capture both the semantics and pat-
terns from these transcripts. Interestingly, their model could
optimally classify these groups with an accuracy of 97.42%.
Table 1 summarizes the existing methods.

III. METHODS AND MATERIALS
In this section, we firstly describe the dataset and groups of
participants involved in this study followed by the details of
the engineering and selection of diagnostic features, where
we introduce our proposed statistical-based feature selec-
tion technique. Afterwards, we discuss the employed ML
algorithms and present the subsampling technique employed
against the skewed classes before concluding the section with
the evaluation method.

A. DATASET
DementiaBank1 dataset is currently considered the largest
publicly available dataset for assessing language of AD and
related dementia. This dataset was collected through a longi-
tudinal study carried out at the University of Pittsburgh [51].
A subset of this datasets contains recordings, with corre-
sponding transcripts, from English-speaking individuals per-
forming the Cookie Theft Picture description task as a part of
the Boston Diagnostic Aphasia Examination ‘‘BDAE’’ [27].
These interviews were carried out through multiple visits for
a duration of five years from 1983 to 1988 with participants
aged from 45 to 90-year old. Those participants were encour-
aged to thoroughly describe what is happening in the cookie
theft picture and were audio-recorded while performing this
task. Afterwards, recordings were manually transcribed using
the CHAT transcription protocol [52].

The Cookie Theft Picture description task corpus includes
243 language samples from 98 healthy controls, 236 language
samples from 189 patients diagnosed with AD, 43 samples

1https://dementia.talkbank.org/
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TABLE 1. Survey of related studies on DementiaBank dataset.
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TABLE 2. Number of participants and their language samples.

from 19 patients with MCI, 21 samples from patient with
possible AD (PoAD), and 5 samples of patients with Vas-
cular dementia, with all of them received extensive neuro-
logical and neuropsychological assessments. As illustrated
in Table 2, our study investigated the first four identified
etiologies, namely AD, MCI, PoAD, and HC.

We extracted the transcribed word-level sentences from the
CHAT files and discarded the annotations as a part of the
preprocessing step prior to feature extraction. In addition,
we ignored the participants’ demographic data included in
this dataset since our approach is solely based on linguistic
patterns.

B. FEATURE ENGINEERING AND MACHINE
LEARNING ALGORITHMS
The designed approach in this study provides a balanced
performance and learning speed, resulting in an optimal per-
formance for classifying all the investigated classes. Our
approach is described in detail in the next sub-sections.

1) FEATURE ENGINEERING
Our study investigates and combines two types of connected
speech measures, namely linguistic features and n-gram
vocabulary spaces, as an attempt to optimize the automatic
identification of different dementia etiologies. Linguistic fea-
tures have widely been employed to reveal dementia stages
in previous studies [23], [30], [38], [53]–[56]; nevertheless,
our study focused on one linguistic perspective that is lexi-
cosyntactic features as being recommended for further inves-
tigations by other researchers for their established association
with early cognitive decline [25], [26]. N -gram vocabulary
spaces, on the other hand, have recently attracted several
NLP studies on dementia detection [24], [38], [39], [57].
We explored different spaces of n-gram vocabularies and used
them in combinationwith lexicosyntactic features to trainML
classifiers for binary classifications of the involved groups.
The description and analysis of these features are provided in
the following subsections.
LexicoSyntactic: Our lexicosyntactic processing investi-

gated several features, among which a few features were
explored previously and seen to deteriorate in people with
dementia (PwD), including the word count from Ori-
maye et al. [39], type-token ratio (TTR) evaluated by Kave
and Dassa [58] as well as content density evaluated by
Roark et al. [30]. Besides, we proposed and investigated
new lexicosyntactic features, namely open and closed class
ratios, noun to verb index, verb to noun index, active
proposition density, and passive proposition density. Another

aspect we examined is the ratio of functional words (i.e.,
stopwords). In contrary to previous studies, we explored
these lexicosyntactic features with an additional analysis
among different etiologies. Subsequently, our study may
reveal the language changes associated with different stages
of dementia. Our lexicosyntactic features are described as
follows:
• Word count: We calculated the total number of terms,
including the repeated terms.

• Type-token ratio: Type-token ratio (TTR) is the total
number of unique POS tagged tokens to the total spoken
words. It is a widely used measure for language assess-
ment, to provide insight on the language production and
reveal language disabilities.

• Content density: Content density is a measurement of
language complexity, explored by Roark et al. [30],
which is the quantity of expressed propositions to the
total spoken words.

• Stopwords ratio: Stopwords (i.e., functional words)
refer to a set of words, typically considered uninforma-
tive in NLP tasks, that occur in most documents. How-
ever, these words might be useful to our task, given the
fact that language production is generally deteriorated as
dementia progresses. Therefore, we calculated the count
of these words to the total spoken words and named it
stopwords ratio.

• Open and closed classes ratios: At a higher level of
word classes, POS tags form two classes; open and
closed classes. Open class refers to an infinite number of
new words to be created and added such as nouns, verbs,
adjectives, adverbs, and interjection; whereas closed
class includes a relatively small fixed sets such as con-
junction, determiners, modals, particles, prepositions,
ad-positions, auxiliary verbs, and pronoun [59], [60].
We measured the open class ratio by calculating open
class words to the total spoken words. Similarly, closed
class ratio was measured by calculating the closed class
words to the total spoken words.

• Noun to verb index: We calculated the noun to verb
ratios and name this feature as noun to verb index.

• Verb to noun index:Likewise, we calculated the verb to
noun ratios and name this feature as verb to noun index.

• Active proposition density: Motivated by findings
from previous studies that PwD lean towards using less
nouns but more verbs and propositions compared to
healthy adults [28], [30], [61], [62], we measured verbs,
adjective, and adverbs ratios to noun ratio and name this
feature as active proposition density.

• Passive proposition density: Likewise, we measured
the noun ratio to verbs, adjective, and adverbs ratios and
term this feature as passive proposition density.

For syntactic annotations of transcripts, we followed the
annotation conventions of Penn Treebank represented in
the NLTK suite2, of which POS tagger was trained on the

2http://www.nltk.org/
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TABLE 3. Steps of our feature selection and evaluation method.

Penn Treebank corpus with the maximum entropy [63].
NLTK POS tagger revealed 30 unique tags in the Cookie
Theft Picture description corpus (highlighted in Supplemen-
tary Table 11), with a total of 59480 tagged words and
1808 vocabularies in the corpus, resulted from 543 transcripts
in total.
N-gram vocabulary spaces: The use of n-gram vocabulary

spaces is predominant in many NLP tasks [64]. An n-gram
is a sequence of n tokens that may be either a character or
word, with the latter being our concern in this paper. Conse-
quently, and unless specified otherwise, we refer to n-gram
as a sequence of words where n represents the word count
in the sequence. For example, it is named ‘‘unigram’’ when
n equals to 1, which consists of only one word. Likewise,
when n equals to 2 and 3, they are called ‘‘bigram’’ and
‘‘trigram’’, respectively. Our n-gram vocabulary spaces in this
study include bigrams and trigrams as 1 < n ≤ N , where N
equals to 3, which were seen to perform optimally in other
NLP tasks [65]. We left high order spaces of n-grams for
future investigations.

Due to the enormous nature of n-gram features, we would
only see how they contributed to the proposed models for
classifying the identified groups. It is also worth mentioning
that stopwords were removed prior to n-grams extraction to
capture low-level vocabulary spaces.

2) FEATURE SELECTION
Feature selection is concerned with the extraction of the most
relevant features from a set of features. It is considered a
critical step to enhancing the efficiency of machine learn-
ing models by eliminating redundancy and irrelevant data,

especially in the field of text mining where numerical rep-
resentation of texts leads to high dimensionality that in turn
affects the efficacy of learning algorithms. Although, there
are filter, wrapper, as well as embedded methods for selecting
relevant features [66], filter methods are preferred in text
classification tasks due to their independency of the learning
algorithms and the associated low computational complex-
ity [67]. Accordingly, we selected filter methods and left the
investigation of other methods to future work. Besides, given
the nature of the explored features, our feature selection setup
bears a close resemblance to the work of Orimaye et al. [39].
Our feature selection method is demonstrated in Table 3 and
described as follows:
Lexicosyntactic: Intuitively, it is anticipated that lex-

icosyntactic features deteriorate as cognitive decline
increases. As such, we conducted an independent statisti-
cal analysis to individually examine these features among
pairwise classes of the involved groups (i.e., AD, MCI,
PoAD, and HC) and to estimate the deficiency of our lex-
icosyntactic features across people with different stages of
dementia as to reveal the most discriminatory features. It is
also our anticipation that linguistic features may differ across
participants given the presence and severity of dementia,
which may lead to abnormal distributions across the explored
transcripts. Consequently, we chose two different two-sample
statistical tests: The Student’s t-test as a parametric test and
Kolmogorov-Smirnov test (KS) as a non-parametric test.
These two ‘‘goodness-of-fit’’ tests assess whether feature val-
ues of transcripts belonging to classes C1andC2, respectively,
are drawn from different distributions, with the main differ-
ence between them being the assumptions they make. While
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TABLE 4. Significant features across pairwise classes through non-parametric ‘‘KS’’ and parametric ‘‘t’’ tests (p<0.05).

the t-test presumes an identical variation of both distributions
without further assumptions of whether they are discrete or
continuous, the KS test is distribution-free but supposes that
both distributions are continuous (e.g., ratio level).

The two-sample t-test is widely used to assess the differ-
ence between the means of two distributions [68]. It starts
with a null hypothesis (H0) that both distributions have
identical means and its p-value within a specific confidence
interval can be used to reveal the statistical significance. It is
calculated by Eq. (1).

t =
fC1 − fC2

Sp
√

1
nC1
+

1
nC2

(1)

In Eq. (1), fC1 and fC2 are the two means of the same feature
f in the classes C1 and C2, with nC1 and nC2 representing the
size of samples in C1 and C2, respectively. Sp is an estimator
of the pooled standard deviation of the two features.

On the other side, the two-sample KS test assesses the vari-
ation between two cumulative distribution functions (CDFs)
of the distributions (i.e., of a feature f in our case) over the set
(X ) belonging to the classes C1 and C2, respectively [69]. Its
initial null hypothesis (H0) is that both of the C1 and C2 share
the same cumulative distribution. The two-sided KS statistic
applies the maximum absolute variation between the two
cumulative distribution functions CDFs of the distributions
which can be calculated by Eq. (2).

KS = Max
∣∣FC1 (X)− FC2 (X)

∣∣ (2)

where FC1 and FC2 are the distribution functions of a fea-
ture f over the set (X ) belonging to the classes C1 and C2,
respectively. The KS value represents the maximum differ-
ence between the two distributions and the associated p-value
is used to find the statistical significance.

We found that both tests returned similar significance at a
degree of freedom equals toN -2, whereN represents the total

instances of pairwise classes. Given the binary classification
task in this study, we select features that independently violet
H0 of both tests at alpha α < 0.05 for our experiments
as the statistically significant features (Table 4). Besides,
we chose the parametric t-test for a further statistical analysis
of lexicosyntactic features. All conducted tests are two-tailed
using Python version 3.7.3, specifically researchpy and scipy
libraries.

Algorithm 1 The proposed statistical-based feature selection
method
Input: D← training dataset

M← lexicosyntactic features,M={f 1, . . . f n}inD
C ← the set of Classes, C = {c1, c2}
L ← Significance level (0.05)

Output: SLF← significant lexicosyntactic features in M
1: initialize a vector S and let Si = 0 for each fi in M ,

t_testp−value = 0, KSp−value = 0
2: for each feature fi ∈ M do
3: get the weight of fi in D for c1 and c2
4: calculate t_testp−value
5: calculate KSp−value
6: if (t_testp−value < L) and (KSp−value < L) then
7: Si = Si + 1
8: endif
9: endfor
10: SLF = {f ∈ S|Si > 0}
11: Return SLF

N-gram vocabulary spaces: In terms of selecting the most
informative vocabulary spaces, we employed the chi-square
(X2) test owing to being one of the most widely used and
effective methods for feature selection [70]–[72]. The X2

formula is applicable to data that are not on a numerical
scale and its formula is associated with information-theoretic
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TABLE 5. A contingency table of feature t and class c.

feature selection methods, which anticipates that the top
terms (i.e., n-grams in our case) tp for the class ci are those
differently distributed in positive and negative documents of
class ci. It measures the dependency between a term t and
a class c where the higher X2 score, the higher association
between these two factors t and c. For feature selection in text
classification tasks, X2 is used to rank terms based on how
informative they are. It calculates the score for a term t and
a specific class c as illustrated in the following contingency
table (Table 5), where each cell represents an observed value
and these observed values are used to calculate the expected
value ‘‘E’’ as E = (total t ∗ total c)/grand total N . Eq. (3)
demonstrates the X2 statistic for this contingency table.

X2
(
tp, ci

)
=

N (ab− cd)2

(a+ c) (d + b) (a+ d) (c+ b)
(3)

where N equals to the entire documents in the dataset, a
equals to the number of documents in class ci that covers
the term tp; d equals to the number of documents related to
other classes that cover the term tp ; c equals to the number
of documents in class ci that do not cover the term tp ; and
b equals to the number of documents related to other classes
which do not cover the term tp. For each feature in each class,
a score is assigned as explained in Eq. (3). All given scores
are then formulated in a final score X2

(
tp, ci

)
.

3) CLASSIFICATION ALGORITHMS
The core task of this study is binary classification to dis-
tinguish patients with different stages of prodromal demen-
tia. A few machine learning algorithms were employed in
developing our models for classifying the identified groups,
namely Gaussian Naive Bayes (GNB), SVM, and Multi-
layer Perceptron neural networks (MLP). We selected these
machine learning algorithms as seen to perform well in
related studies [37], [55]. The implementation of these algo-
rithms was performed in Python version 3.7.3, using Scikit-
Learn3 library. We experimented with different settings of
hyper-parameters per each of the employed algorithms in the
optimization process of our models and found that default
settings had led to the best performance. This, however, was
not applicable to SVM, where a linear kernel with enabled
probability led to the best performance among other hyper-
parameters, which was seen to perform well in a similar
task [73].

Since our hyper-parameters tuning process included two
search strategies (i.e., grid search and manual search), it is

3https://scikit-learn.org/stable/

worth highlighting that grid search performed poorly com-
pared to manual search despite assembling every possible
combination of parameters [74].

4) TECHNIQUES FOR HANDLING IMBALANCED CLASSES
As indicated earlier, the cookie theft picture corpus includes
heavily imbalanced classes, especially for MCI and PoAD
groups against HC and AD groups, which typically biases
the classification model towards the more common class.
We tackled this issue with a subsampling technique, whereby
we performed a random selection of a subset of the majority
with a matching size to that of the minority. This proce-
dure was repeated 10 times with a different subset from the
majority each time to avoid bias. Finally, the mean of these
iterations is reported. The followed technique is illustrated
in Fig. 1. For PoAD against HC and AD, we had to increase
the iterations to 20 times for better handling of the high skew-
ness of the transcripts (i.e., 21 against 236 and 243 samples
for PoAD, AD, and HC, respectively).

5) EVALUATION
An extensive evaluation of our proposed models was
performed using the common metrics typically used for eval-
uating text mining and NLP systems, namely Accuracy, Pre-
cision, Recall, and F1 score. Besides, we use AUC as seen
to be effective in summarizing the overall performance of
diagnostic models [75].

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

(TP+ FN )
(6)

F1 = 2 ∗
(precision ∗ recall)
(precision+ recall)

(7)

AUC =
(sp − np (nn + 1) /2

npnn
(8)

Above equations represent the metrics used for the perfor-
mance evaluation in this study, where the number of samples
that have been recognized correctly as positive referred to as
the True Positives (TP). Similarly, the number of samples that
have been incorrectly recognized as positive represents the
False Positives (FP) whereas the False Negative (FN) is the
number of samples that have been incorrectly recognized as
negative. Eq. (8) is used to calculate the AUC, where: sp is
the sum of all positive samples, np and nn correspond to the
number of positive and negative samples respectively.

Each subsampling iteration was evaluated using cross val-
idation, where a unique random subset of the transcripts is
selected in each iteration, with fixed seed to ensure a direct
comparison of results as well as reproducibility. With n-folds,
the StratifiedKFold technique uses n−1 for training themodel
and then performs the testing on the held set, then scores the
average of all folds as illustrated in Fig. 2. We selected the

VOLUME 8, 2020 193863



A. H. Alkenani et al.: Predicting Prodromal Dementia Using Linguistic Patterns and Deficits

FIGURE 1. High level depiction of the experimental technique.

FIGURE 2. The dataset splitting process during cross validation of
classifiers evaluation. The dark grey represents the testing set and the
lighter grey represents the training set in each fold.

n-fold value as n= 10 for maximum reduction of the dif-
ference between true and estimated values of performance,
which in turn reduces the bias [76]. Each iteration was
assessed using different metrics in-parallel, whereby the final
reported results are the average over all iterations. For Preci-
sion, Recall and F-Score, we reported the weighted results.

IV. RESULTS AND DISCUSSION
A. INTRODUCTORY ANALYSIS OF
LEXICOSYNTACTIC FEATURES
As a part of our lexicosyntactic investigation, we con-
ducted an intuitive exploratory data analysis to understand
the correlations between these features with different stages
of dementia. As illustrated in Fig. 3, we observed strong
correlations between content density and two of our newly
proposed features (i.e., open and closed ratios). For example,
open class ratio and content density were shown to decrease
in tandem as the disease progresses which suggests that while
the language samples of PwD may lack an informative con-
tent, the usage of nouns, verbs, and other words that forms
the open-class domain could be deteriorated. This is closely
mirrored in noun ratio with passive proposition density and
noun to verb index, where they seemed to decrease jointly
as the cognitive decline increases. This strong correlation
feasibly shows a concurrent validity between some of the
previously validated features (e.g., content density) and that
we introduced in our study.

Moreover, it was interesting to see a negative linear
association between the number of spoken words and the

ratio of functional words. Despite being moderate (i.e., -
0.50 to -0.70 [77]), this correlation suggests that PwD lean
towards using more functional than content words as the dis-
ease advances. This could possibly indicate increased word
finding difficulties that leads to less informative or ‘‘empty’’
speech which is, the later, associated with semantic impair-
ment [6], [78]. A close noteworthy observation was the
moderate positive correlation between pronoun ratio and
active proposition density, which implies that PwD may
overuse pronouns alongside other propositions as the disease
evolves [6].

On the other side, the low correlations of the remaining fea-
tures suggest that they may complement each other towards
enhancing the diagnostic ML models. As such, we extended
our data analysis in the next section to reveal the statistically
significant lexicosyntactic features for each pairwise groups.

B. STATISTICAL ANALYSIS OF LEXICOSYNTACTIC FEATURES
We performed an independent analysis of our lexicosyntactic
features to draw a conclusion of their changes crosswise
different etiologies of dementia. The challenge of an uneven
distribution of some features was encountered in our eval-
uation, which is explicable as each participant would give
specific characteristics corresponding to the existence and
severity of the disease. Consequently, we initiated the anal-
ysis with the non-parametric test, which does not assume
specific distribution of features across classes, followed
by the parametric test that contrarily presumes a normally
distributed features, where both tests resulted in similar
statistical significance as highlighted in Table 4. It is notewor-
thy that we performed the statistical analysis of these features
based on equal subsamples selected from majority classes
with matching individuals’ demographic attributes to those
of minority classes such as age and education, motivated by
the work of Orimaye et al. [39].

Our evaluation of the AD and HC groups revealed a total
of 11 statistically significant features with alpha α < 0.05,
among which we observed that the AD group had smaller
ratios of nouns, determiners and open-class compared to that
of the HC group. This was also extended to the noun-to-verb
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FIGURE 3. Correlations between lexicosyntactic features across all classes (HC, AD, MCI and PoAD) Pearson’s correlation coefficient is
shown along with direction (blue = negative and red = positive). R, Ratio; D, Density; I, Index. Noun R, Verb R, Pronoun R, Adverb R,
Adjective R, Determiner R, Conjunction R, and Interjection R = Type Token Ratios.

index as well as passive-proposition densities. In contrast,
more usage of pronouns, adverbs, and a higher verb-to-noun
index, and active proposition density was noted in the AD
group. Besides, we noticed more intense of functional words
(i.e., stopwords) in the AD group. We also observed higher
standard deviation (SD) values of all statistically significant
features in the AD group than that of the HC group, which
indicate that AD samples are more dispersed than that of the
HC group.

In a different manner, only a few features were statistically
significant for distinguishing healthy adults from people with
prodromal dementia. For instance, the HC and MCI groups
had ratios of verbs and conjunctions as well as noun-to-verb
and verb-to-noun indexes as the only significant features,
whereas functional words, ratios of pronouns and adverbs
were significant for the HC group alongside the PoAD group.
This was mirrored in differentiating AD from PoAD patients,
with the intense of functional words being the only significant
feature. On the other hand, the AD and MCI groups had

eight significant features wherein the AD group had higher
ratios of pronouns and adverbs, verb index as well as idea and
active proposition densities, and lesser ratios of nouns and
determiners along with a lower passive proposition density
compared to the MCI group. This makes sense since PwD
tend to use more propositions than healthy adults, which has
been noted in previous studies [28], [61], [62]. For instance,
the AD group showed higher ratios of adverbs and pro-
nouns compared to the HC and MCI groups. It also was our
expectation to observe higher values of content density in the
HC group compared to that of cognitively impaired groups,
which was shown to be the case, with higher means in the
former. We, thus, suggest that content density decreases in
all stages of dementia, which is coherent with the findings
of Roark et al. [30].

C. DIAGNOSTIC MODELS
Given the multiple classes and combinations of different fea-
tures in this study, we carried out extensive experiments with
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TABLE 6. Top models for classifying HC - AD groups.

TABLE 7. Top models for classifying HC - MCI groups.

each set of our explored features then with combinations of
them across pairwise classes, employing the aforementioned
algorithms (i.e., GNB, MLP, and SVM).

While we followedOrimaye et al. [37], [39] in selecting the
top 1000 features to discriminate AD patients from healthy
participants and the top 200 features for distinguishing MCI
patients from other groups, we randomly selected the top
100 features for PoAD patients against other groups. Our
experiments yielded improved performance with combined
features across all pairwise classes. Specifically, with the top
combined 1000 statistically significant lexicosyntactic fea-
tures and bigrams, the GNBmodel could classify the AD and
HC groups with 97.25%, 97.55%, and 97.21% accuracy, pre-
cision and F1 score, respectively. However, fusing the same
compound of features with MLP resulted in a slightly better
AUC of 98.74% than that of the GNB model (i.e., 98.45%).
We also noticed that adding trigram to this compound and
fusing them with GNB led to the best recall of 97.21%.

In a similar situation, our approach could result in optimum
performance for distinguishing MCI patients from healthy

adults, achieved with GNB; with 97.5%, 97.5%, and 97.46%
scores of accuracy, recall, and F1 score, respectively, when
fused with a compound of the top 200 statistically significant
lexicosyntactic features, bigrams and trigrams. Nevertheless,
removing trigrams from this combination led to the best preci-
sion of 100% and AUC of 99.37%. Contrarily, MLP took the
lead in classifying theMCI fromADgroups with a compound
of the top 200 statistically significant lexicosyntactic fea-
tures and bigrams, where we scored 98.75%, 100%, 97.5%,
98.57% and 99.6% of accuracy, precision, recall, F1 score and
AUC, consecutively.

This applies to the task of classifying PoAD patients from
the AD and HC groups, where GNB and MLP outperformed
SVM. A combination of the top 100 statistically signifi-
cant lexicosyntactic features, bigrams, and trigrams were
sufficient for training GNB to segregate the PoAD and HC
groups with the best accuracy of 95%, precision of 96.66%,
recall of 95% and F1 score of 94.66%. Yet, the best AUC
was achieved with MLP fused with a compound of the top
100 of statistically significant lexicosyntactic features and
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TABLE 8. Top models for classifying AD - MCI groups.

TABLE 9. Top models for classifying HC - PoAD groups.

TABLE 10. Top models for classifying AD - PoAD groups.

bigrams (i.e., 97.5%). On the other hand, differentiating
PoAD patients from the AD group was best performed by
MLP trained with a combination of the top 100 statistically
significant lexicosyntactic features, bigrams, and trigrams,
which resulted in 95%, 93.33%, 100%, 96%, and 97.5%,
accuracy, precision, recall, F1 score, and AUC, respectively.

In brief, we found GNB to be superior for distinguishing
AD, MCI, and PoAD patients from healthy adults whereas
MLP took the lead in the classification of the MCI and
PoAD groups against AD patients. We also noticed that
bigram showed slightly higher importance than trigram in the
training of MLP; yet, both were mostly important to GNB.
Interestingly, our approach could reveal the most informative
n-grams features, leading to optimal performance and show-
ing high discriminative power of bigrams and trigrams when
selected with chi-square algorithm [79], emphasizing that
n-grams are the definite strength of our models. Besides,
it showed that statistically significant lexicosyntactic features
have positively impacted the performance of our models.
Tables 6-10 present a summary of the best models. In addi-
tion, detailed experiments are provided in Supplementary
Tables 6-10.

On the other hand, aligning with Orimaye et al. [39],
our experiments show the powerfulness of n-grams features,
capturing the most informative linguistic deficits between
HC and people with different dementia stages. We found
both bigram and trigram vocabulary spaces to be effective
in the diagnostic task, leading to optimal performance of
our models. However, we observed that combining the
statistically significant features with n-gram vocabulary

spaces increases the performance, indicating the useful-
ness of our approach in the automatic diagnosis of prodro-
mal dementia via the cookie theft picture description task.
Orimaye et al. [39] highlighted the advantage of n-grams
features as being easily computed without requiring manual
annotation, which suggests that our models could be extended
to other clinically recommended pictures for the same
purpose.

V. COMPARISION WITH RELATED WORK
The comparison of our results alongside previous studies
on automated assessment of picture descriptions may be
challenging due to multiple reasons. Firstly, NLP tasks do
not typically necessitate the usage of specific metrics, which
resulted in different metrics across related studies. Some
metrics are illustrative; yet, may mislead the evaluation on
skewed datasets. Another challenge would be the different
distributions of datasets across studies, which is the case
in related studies despite using the same corpus of Demen-
tiaBank, meaning that results may vary when classes are
differently distributed in the training and testing sets. In addi-
tion, as reported in the related work and summarized in
Table 1, the number of samples varies across previous studies,
which is a major constraint to direct comparisons. Further-
more, we noted that some authors had reported their best
performing models instead of reporting the average of their
results over multiple iterations. Most of these challenges
were note clearly justified; for instance, regarding why they
used a certain number of samples or only reported their best
models. Consequently, we evaluated our work against the
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most related studies with the highest performing models as
follows:

A. AD VS HC
In the task of differentiating AD patients from healthy adults,
we selected four baselines against our models; the work of
Orimaye et al. [39], the work of Karlekar et al. [47] along
with the work of Di Palo and Parde [48], and the recent study
of Chen et al. [50].

Orimaye et al. [39] proposed a similar work in which
an SVM classifier was trained with a compound of the top
1000 lexical, syntactic, and n-grams features to classify 242
samples of patients with possible and probable AD alongside
242 samples of healthy adults. They achieved 93% AUC,
showing that such features could aid the diagnosis of AD.
Karlekar et al. [47], on the other hand, appliedmultiple neural
networks models (i.e., CNNs, LSTM-RNNs, and a combina-
tion of them), where they used transcripts belonging to all
dementia etiologies with the accompanying POS tags, which
were originally annotated by the custodian of the dataset.
They dealt with these transcripts differently by dividing them
into utterances and considering each utterance as a sample.
Their best model was a combination of CNNs and LSTM
with an accuracy of 91.1%. On the other side, Di Palo and
Parde [48] reproduced the work of Karlekar et al. [47] and
added a class weight and an attention mechanism to handle
the skewness of the classes; however, the highest accuracy
was 88%, achieved through an CNN-LSTMmodel fused with
both the attention mechanism and class weight. They also
reported a corresponding F1 score of 93.05% and AUC of
95.03%, setting benchmarks scores on this dataset with these
metrics. Lately, Chen et al. [50] integrated a CNNmodel with
a bidirectional GRU and added attention layer to distinguish
256 transcripts belonging to AD patients from 242 of healthy
participants, where they reported an accuracy of 97.42%. We
believe their work represents the state-of-the-art accuracy
on this dataset for classifying people with AD from heathy
adults.

When comparing our approach with these baselines, sev-
eral perspectives must be pointed out: at first, with regard
to Orimaye et al. [39], our approach differs in a few ways.
We firstly utilized the entire dataset whereas they selected
an equal subset of the majority to that of the minority to
overcome the skewness of the classes. Additionally, more
detailed experiments were provided in our study to show the
behavior of our models with different sets of features. To the
best of our knowledge, Orimaye et al. [39] used the origi-
nal POS-annotated transcripts and also involved functional
words when computing n-grams whereas both of them were
discarded in our approach so, therefore, their work is not
directly comparable to our work. Moreover, they used the age
of participants as a feature, which could possibly contribute
to the performance of their models. In addition, our models
were evaluated with other metrics alongside AUC, showing
better performance in comparison to their models.

In comparison with the studies of Karlekar et al. [47] and
Di Palo and Parde [48], we used only transcripts belonging
to the AD group rather than using combined transcripts of
all dementia etiologies. More importantly, we did the clas-
sification at the transcript level rather than the utterance
level, stressing on the fact that dividing a single transcript
into utterances and considering each utterance as a sample
might result in irrelevant samples thus unfair distributions
across classes. For example, some utterances might be pro-
duced by a healthy participant yet have a degree of linguistic
deficiency. This approach has not escaped criticism by other
researchers [50]. Moreover, unlike all these three baselines,
our study did not involve the originally POS-annotated tran-
scripts, which could aid the diagnostic process yet might
decrease the generalizability of the model to an unannotated
dataset. To the best of our knowledge, they also considered
filler words (e.g., uh, um, and hmm) which seen to be heavily
used by patients with dementia thus contribute to the overall
model performance [56]. On top of that, two of our models
(i.e., GNB and MLP) outperformed these baselines, putting
a new benchmark for classifying AD and HC groups from
DementiaBank dataset.

As to the recent study of Chen et al. [50], we both present
relatively comparable results for classifying the AD and HC
groups. Nevertheless, our study differs in a few perspectives;
at first, we analyzed the language ability across multiple
stages, showing how it decreases as the cognitive impairment
increases. Besides, while their study involved imbalanced
classes, we tackled this issue with a subsampling technique
thus made a use of the entire dataset. More importantly, they
used the accuracy measure to evaluate their model despite
using imbalanced classes, which perhaps could bemisleading
in such a case [80]. We contrarily assessed our models using
multiple metrics.

In fact, to the best of our knowledge, an accuracy score
achieved through an approach using imbalanced classes is
not obviously representative as it would probably drop when
using the same approach with balanced classes. In addition,
the performance of such model may be limited in real appli-
cations as most of the population is dementia-free. As such,
the performance of our models differs from that of Chen et al.

Furthermore, despite being promising, neural networks are
generally considered computationally expensive than tradi-
tional algorithms. This is increased when it comes to RNNs,
including both of LSTM and GRU recurrent units, due to its
incapability to be parallelly computed, which leads to much
more training time of RNNs [81]. Accordingly, we believe
that traditional learners confront neural networks when both
perform similarly. Table 6 summarizes these baselines along-
side our models.

B. MCI VS HC AND AD
We evaluated our experiments for distinguishing the MCI
group from the HC and AD groups against the work of
Orimaye et al. [37] and the work of Al-hameed et al. [41].
Orimaye et al. [37] they introduced a few skip-gram models,
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FIGURE 4. Illustration of the proposed framework.

where words are intermittently skipped while forming n-
grams, to differentiate 19 MCI patients from 19 healthy
adults. With the top 200 compound skip grams, they scored
98%, 97%, 97% and 99% of precision, recall, F1 score, and
AUC, consecutively, employing SVM, NB, and LR classi-
fiers. On the other side, Al-hameed et al. [41] used acoustic
features to identify these groups from their speech recordings,
where they extracted a total of 811 features then performed
feature selection using ‘‘SVMAttributeEval’’ method under
Weka software package. Besides, their study is the only iden-
tified study that utilized DementiaBank dataset to classify the
MCI and AD groups. They reported an averaged accuracy
of 97.3 and 95.6% across multiple visits with SVM classifier
to distinguish MCI patients from healthy adults and form AD
patients, respectively.

Our study has a few different aspects in contrast to these
baselines. With regards to Orimaye et al. [37], while their
study is concerned with classifying the MCI and HC groups,
our study investigated the language deficiency of MCI
patients against both HC and AD participants thus may shed
light on the correlation between the language deficiency and

progression of dementia. Besides, despite showing promising
results, the skip-gram technique at word-level may fail to
capture the grammatical complexity in patients with cognitive
impairment. Another aspect that differentiates our approach
would be the subsampling technique for handling the skew-
ness of the classes. Notwithstanding that we both achieved
comparable performance, our approach surpassed this base-
line, slightly.

In respect to Al-hameed et al. [41], on the other end, the set
of features is dissimilar as we used linguistic features, which
may be more informative compared to acoustic markers.
We also dealt with the skewed dataset in its original sta-
tus whereas they used the Synthetic Minority Oversampling
Technique (SMOTE) which artificially creates samples out of
the minority class. Despite being an intelligent oversampling
method for imbalanced data, SMOTE is considered time-
consuming and complex [82]. Furthermore, in contrast to
Al-hameed et al., we evaluated our models using different
metrics along with accuracy, since accuracy may mislead
the performance when dealing with such skewed dataset as
mentioned earlier. At last, two of our models outperform
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these baselines (i.e., GNB for the classification of the MCI
and HC groups and MLP for the MCI and AD groups)
putting a benchmark for classifying these classes, demon-
strated in Tables 7 and 8.

C. PoAD VS HC AND AD
In the tasks of identifying patients with initial AD (i.e.,
PoAD) from the HC and AD groups, we could not iden-
tify any previous work against our study. Consequently,
we believe that this is the first investigation of its kind
to explore language samples of patient with possible AD
for the purpose of early detection. Despite their given
small volume, we could achieve optimal performance for
differentiating these classes with our proposed approach as
shown in Tables 9 and 10.

VI. CONCLUSION
Our study shows that early stages of dementia can be effi-
ciently diagnosed through linguistic patterns and deficits.
Given the optimal performance achieved with our approach,
we suggest that traditional screening tests for the initial diag-
nosis of prodromal dementia (e.g., MoCA) could be replaced
with ML models, as depicted in Fig 4. One advantage of this
study is the fact that it introduces original lexicosyntactic
features and investigates their representations, in conjunc-
tion with other well-known lexicosyntactics, across differ-
ent dementia etiologies. Besides, previous automated work
barely discussed different stages of dementia in parallel,
making of our study the first to investigate all transcripts
belonging to different etiologies in the corpus of cookie theft
picture description from DementiaBank. Another advantage
of the current work would be the proposed statistical-based
feature selection that handles normally and oddly distributed
features. We also recommend random search over grid search
for configuring the employed classifiers (i.e., GNB,MLP, and
SVM) on this dataset.

On the other hand, a limitation we might think of would
be the selection of samples for the lexicosyntactic statisti-
cal analysis, where we followed the technique performed
by Orimaye et al. [39] in selecting individuals from the
majority classes with matching demographic attributes to
that of the minority classes. We also limited our linguistic
features to lexicosyntactic, which is obviously one aspect of
linguistic biomarkers, leaving others for future investigations.
In addition, a current out-of-control limitation is the sparse
nature of related datasets, which happens to be a limitation
across various computational diagnostic studies [83], [84].
Besides, the most informative vocabulary spaces in our study
are bounded to the cookie theft picture, meaning that a pic-
ture with different information units may result in different
sequences of n-gram features. Finally, this study utilized
a subset of DementiaBank dataset inherited from English
speakers which warrants further investigations of whether
findings in this paper are applicable to other languages.

Our scope of future research will address some of above-
mentioned limitations. First, we plan to extend and examine

our lexicosyntactic features alongside other features includ-
ing the language ability in social situations ‘‘or so called
pragmatic deficits’’ which has been rarely investigated [85].
Another planned avenue for future work would be the usage
of synthetic augmentation for prodromal dementia samples.
Finally, yet importantly, we also plan to explore the effect
of linked data for the same purpose, involving other related
datasets such as dem@care [86].
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