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ABSTRACT Insulator is an important part of transmission line. Defective insulators will cause potential
safety hazard to transmission lines. Image detection technology can improve the efficiency of insulator
defect detection and greatly reduce the maintenance cost. However, the existing insulator defect detection
technology has the disadvantages of low accuracy and long detection time. An insulator defect detection
method based on improved ResNeSt and Region Proposal Network (RPN) was proposed. First, this method
builds a new network based on ResNeSt. Secondly, we added the improved RPN to the improved ResNeSt
for feature extraction, to better detect minor defects on insulators. Finally, we enhanced the data processing
and labeled the open insulator data set. On this data set, the proposed model is tested and a large number of
controlled experiments are done. The results show that the proposed network is more accurate and faster
than the control group. Moreover, the proposed network has an accuracy rate of 98.38% for insulator
defect detection, which can detect 12.8 pictures per second. The proposed method has good efficiency and
practicability in aerial photo insulator defect detection.

INDEX TERMS Computer vision, defect detection, deep learning, residual network, region proposal.

I. INTRODUCTION
Insulator is an important part of transmission line, whose
main function is electrical insulation and line support. When
problems such as break, crack and dirt occur to the insulator,
the insulator is prone to breakdown, which results in zero
insulation resistance at both ends of the insulator string. The
insulation of the insulator is lost, resulting in the interruption
of power supply, which will lead to a blackout. To check and
maintain insulators regularly to ensure the safety of reliable
power supply system, insulator defect detection has become
an important issue [1].

In recent years, machine vision methods such as
Histogram of Oriented Gradient (HOG) [2] and Local Binary
Patterns (LBP) [3] are often used in insulator defects detec-
tion. Compared with the original manual detection method,
thesemethods have the advantages of fast detection speed and
low cost. However, due to the fact that the actual working
insulator is often in a complex background, it is extremely
easy to be affected by light and noise [4]. The application of
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these methods is not good in practice, and it is easy to identify
the shadow as a defect.

Compared with the original methods of insulator defects
detection which are based on machine vision, the methods
based on deep learning can extract the image features effi-
ciently and automatically, which greatly improves the effi-
ciency and accuracy of defects detection. The methods based
on deep learning have attracted the attention of many experts
in related fields.

In general, most of the methods which are based on
artificial features and machine learning are sensitive to
complex background interference. Most of these methods
are time-consuming and far from real-time applications.
Most importantly, neither the existing feature-based methods,
machine learning methods or deep learning methods have
systematically analyzed and solved the problem of insulator
multi-defect detection [5]. Therefore, it is meaningful to pro-
pose a method that can solve the existing problems.

In order to ensure the accuracy and speed of insulator
defects detection, an improved ResNeSt [6] and Region
Proposal Network (RPN) [7] is proposed. This proposed
method can identify three kinds of defects in four kinds of
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common insulators. Through the experiments on the data set,
this method is more accurate and faster than other insulator
defects detection methods based on deep learning. This paper
mainly overcomes three challenges:

a) Because ResNeSt lacks practical application, it is nec-
essary to improve the data set before training themodel.

b) At present, deep learning is mainly used in the direction
of object recognition, however, the effect is slightly
poor when detecting irregular and irregular objects
such as defects. Therefore, it is necessary to optimize
the network to obtain better performance.

c) In aerial photography, the insulator in the working state
often only occupies a small part in the high-resolution
image. The convolution detection method is very slow,
which cannot meet the requirements of real-time detec-
tion. And small object detection has always been an
important difficulty in object recognition direction.
Therefore, it is necessary to optimize the speed and
accuracy of model detection.

The rest of this paper is organized as follows. Section 2
reviews the previous research on insulator defects detec-
tion, and introduces the relevant methods used in this paper.
Section 3 introduces the characteristics of insulator defects,
describes the overall structure of the network, and improves
the original ResNeSt and RPN. Section 4 evaluates the pro-
posed network and compares it with other networks. Finally,
section 5 gives the conclusion of our proposed network and
the direction of our future work.

II. RELATED WORKS
In this section, we review the previous research on insulator
defects detection.

A. INSULATOR DEFECTS DETECTION
Traditional machine learning methods mainly locate obvi-
ous defects through HOG and LBP features. Wu et al. [8]
constructed an insulator data set and calculated the HOG
features of each image. On this foundation, Principal Com-
ponent Analysis (PCA) was used in this paper, a complete
set of data set is established and a classifier based on sparse
representation is trained to obtain the location of insulation
defects. However, in the complex background of texture inter-
ference, only using the over complete HOG features set to
train the classifier cannot achieve good performance. In order
to offset his shortcomings, Tiantian et al. [9] used HOG and
LBP features, which can form a fusion feature. This spe-
cial fusion feature can train Support Vector Machine (SVM)
classifier. Through rigorous experiments, they found that
this method can achieve multi-angle insulator location in
complex scene. Zuo et al. [10] combines Haar-like features,
integral image features and HOG features to train cascade
classifiers and SVM classifiers. Then the two classification
models are applied to locate insulators. Finally, the defects
location is determined by incremental contour value method.
Oberweger et al. [11] proposed a K-Nearest Neighbor (KNN)
classifier to distinguish insulator from background clutter,

and developed an automatic insulator defects detector based
on elliptic Fourier descriptor to analyze the defects of each
insulator. It is possible to detect multiple insulator defects
by their proposed method. However, there is no public data
set for insulator defects detection. The data set they built
only contains 10 images of insulator defects. Although the
methods based on machine learning improve the accuracy
of insulator location and defects detection, these methods
have the common limitation of time-consuming because the
sliding window strategy must be used to detect the whole
aerial image.

In recent years, some scholars take the deep learning net-
work as the feature extraction method of insulator defects
detection. Compared with the original machine vision feature
extraction method, deep learning can accurately locate the
defect location of insulator under the natural complex back-
ground. Even in the bad natural environment such as shadow,
it can still better locate the boundary of defect. Hu [12],
Zhao [13] used Fast RCNN and Faster RCNN to locate the
insulator, but the training process of Fast RCNN and Faster
RCNN is complex and difficult to deploy, so it is unable
to locate insulator in real time in aerial images. Ling [14]
used Faster RCNN which uses rectangular bounding box to
mark the insulator position in aerial image. U-net is developed
to segment the defect contour in the rectangular boundary
box. When the insulators overlap seriously, the performance
of this string structure will be reduced. In addition, there is
no common data set for insulator defects detection, so it is
difficult to train a good performance end-to-end network to
detect insulator defects. Wu et al. [15] designed an insulator
defect location method based on Region of Interest (ROI) by
improving YOLOv3. Although this method does improve the
quality of insulator defect detection inmost aerial images, it is
still not a real-time solution. In addition, there is no public
data set for insulator defect detection. Therefore, it is diffi-
cult to train a good performance insulator defect detection
network. To meet this challenge, they segmented insulator
strings from aerial images. They pasted segmented insulator
strings onto aerial images containing only background to
enhance their insulator defect data set. However, the insulator
defects in the simulated aerial images are similar to those
in the original aerial images. This shortcoming affects the
experimental results and the generalization ability of network
performance. Prates et al. [16] shot a single insulator in a
simple background as the network pre-training data set, and
set up the insulator in the outdoor simulation work as the
real insulator data set. They trained with the original deep
learning network, without further optimization of the network
performance.

There are few researches on insulator defect detection
through deep learning, which is because the number of defec-
tive insulators in normal working environment is very small,
which leads to the collection of defective insulator data sets
taking a long time. In this paper, based on the unlabeled real
defective insulator data sets published by Prates, we carry
out defect labeling, data set enhancement and adaptation to
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ResNeSt network. The following section describes in detail
how we improve.

B. RESIDUAL BLOCK
The network model with residual block, such as ResNet [17],
is obviously better than the original convolution network in
the field of image classification. With the increase of net-
work layers, the network degrades. And with the increase of
network layers, the loss of training set decreases gradually,
and then tends to saturation. When the depth of network is
increased, the loss of training set will increase. After the
introduction of residual block, the network can reach a very
deep level, and the effect of the network will become better
because ResNet has a deeper convolution layer. Due to the
down sampling effect of original convolution neural network,
small objects cannot obtain significant features. At the same
time, residual learning method is used to combine deep fea-
ture mapping with shallow feature mapping. The algorithm
effectively takes advantage of the combination of high-level
features and low-level features, and can better adapt to the
detection of insulator like small targets in high-resolution
images.

Xie et al. [18] proposed ResNeXt which is the upgraded
version of ResNet. He thinks that the original deep learning
network to improve the accuracy of the model is to deepen
or widen the network, but with the increase of the number
of hyperparameters, such as the number of channels, filter
size, etc., the difficulty of network design and calculation cost
will also increase. Therefore, the structure of ResNeXt can
improve the accuracy without increasing the complexity of
parameters and reduce the number of hyperparameters. The
core innovation of ResNeXt is to propose aggregated trans-
formations, which uses parallel stacking the same topology
blocks to replace the three-layer convolution block of the
original ResNet, which improves the accuracy of the model
without significantly increasing the magnitude of parame-
ters. At the same time, due to the same topology structure,
the number of hyperparameters is also reduced, which is
convenient for model transplantation.

Zhang et al. proposed ResNeSt which was an upgraded
version of ResNeXt. ResNeSt combines the group convo-
lution of ResNeXt and the channel attention mechanism of
SE-Net. ResNeSt groups the channels, using the channel
attention mechanism for each group, and retaining the resid-
ual structure of ResNet. ResNeSt surpasses its predecessors
ResNet, ResNeXt, SE-Net and EfficientNet in image clas-
sification. The mAP of Faster RCNN with ResNeSt50 as
the backbone was 3.08% higher than that with ResNet50.
Using ResNeSt50 as the backbone, the mIoU (mean Inter-
section over Union) of DeeplabV3 is 3.02% higher than using
ResNet50.

C. REGION PROPOSAL NETWORK
Region Proposal Network (RPN) is proposed in Faster
RCNN. Because of introducing multi-scale sliding window
to traverse each spatial position of feature graph, RPN greatly

improves the recall rate of object detection. However, RPN
only extracts candidate objects from a certain depth con-
volution feature layer, and its fixed size convolution kernel
limits the size of visual receptive field of a single feature
layer. Therefore, Feature Pyramid Networks (FPN) gener-
ates multi-scale candidate targets on multiple feature layers,
which further improves the recall rate of object detection [19].
Based on that, this paper carried out the experimental analysis
of the defect recall rate of multi-scale RPN insulator, and
found that the performance of different depth convolution fea-
ture layer on different scale insulator defect candidate target
recall rate has great difference. Large size insulator defects
have higher recall rate in high-level feature, while small size
insulator defects have higher recall rate in low-level features
with high-resolution. Therefore, according to the effective
receptive field size of each depth convolution feature layer,
this paper adopts the scale complementary strategy to divide
the candidate target into three paths of RPN to adapt to the
multi-scale variation of insulator defects.

III. INSULATOR DEFECTS AND DETECTION NETWORK
In this section, we analyze the characteristics of insulator
defects and propose a defect detection network based on
ResNeSt. We will introduce the overall architecture and
detailed core components of the improved ResNeSt.

A. INSULATOR DEFECTS
The common insulators are Polymeric Grey Insulator (PGI),
Ceramic Pin Insulator (CPI), Glass Green Insulator (GGI)
and Ceramic Bicolor Insulator (CBI). The common insulator
defects are break, crack and dirty. First of all, break means
that most of the insulators are damaged and lose their working
capacity. Crack usually only accounts for a small part of
the insulator, but the damage often makes the insulator lose
most of the insulator. In rain and fog weather, the insu-
lation performance drops sharply, resulting in flashover or
insulation breakdown, which will result in grounding fault.
Dirt refers to the pollution material with conductive perfor-
mance accumulated on the surface of line insulator, which
will greatly reduce the insulation level of insulator after
being affected by moisture in wet weather, and the flashover
accident occurs under normal operation. Secondly, different
types of insulators show different characteristics on different
defects, including color features, shape features and regional
characteristics. We need to design a reasonable network for
these features.

B. IMPROVED RESNEST
ResNeSt is a kind of network based on ResNet and intro-
duced split attention block proposed by Zhang et al. The
network achieves 81.13% top-1 accuracy rate on ImageNet.
The performance is significantly improved but the number
of parameters is not significantly increased. It has great
application value. Therefore, this network is considered
to complete the insulator defect detection. ResNeSt intro-
duces Split-Attention block on ResNet. The Split-Attention
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block allows features map between different feature mapping
groups. It is a computing unit composed of feature map-
ping module and split attention operation module. ResNeSt
can divide the input insulator characteristic diagram into the
number of groups determined by the hyperparameter K , and
introduces a new cardinal parameter R, and R = G/K ,
where G is the total number of essential factor groups. Each
individual group is then mapped to {L1,L2, . . . ,LG}. Next,
the elements of each cardinal group are summed and fused
by multiple partitions. The combination of each cardinal
group can be obtained, which is represented by L̂k , where
L̂k ∈ RW×H×C/K , and {k ∈ 1, 2, . . . ,K }, W , H and C are
the output feature mapping sizes of the segmented attention
module.

Considering that the defective insulator in aerial photos
may account for a small part of the whole picture. And
the resolution is often very low. In order to speed up the
calculation of ResNeSt, as shown in the middle part of Fig. 1.
The following improvements are made.

We proposed a thinning algorithm based on ResNeSt to
refine the detection effect of insulator defects adaptively.
As shown in Fig. 1, the feature image split by ResNeSt block
is introduced as a fusion network to obtain the final segmenta-
tion result. In order to refine the characteristics of insulators
and defects, the improved ResNeSt module generates table
transformed local propagation coefficient mapping for all
positions. The formula is as follows:

W p
i =

exp
(
hpi
)∑m×m

t=1 exp
(
hti
) , p ∈ 1, 2, . . . ,m×m (1)

FIGURE 1. Improved ResNeSt for insulator defect detection.

where hpi is the confidence level of neighborhood p at loca-
tion i, and m × m is the size of propagation neighborhood.
Finally, the final output is obtained through the following
processing:

gi =
∑m×m

p=1
wpi · f

p
i (2)

Among them, f pi is the confidence vector of neighborhood
p at position i of the improved ResNeSt module, gi is the final
prediction vector of position i.
Like the standard residual block, if the input and out-

put feature maps share the same shape, the final output of
the improved ResNeSt can be expressed as y1 = h(xl) +
F(xl,Wl), where f (yl) = xl+1 and f (yl) is the activation
functions of yl , h(xl) is the direct mapping of xl , and F(xl,Wl)
is the residual part. For a deeper layer L, the relationship
between it and layer l can be expressed as follows:

xL = xl +
∑L−1

i=l
F(xi,Wi) (3)

This formula proves two properties of the improved
ResNeSt:

a) The layer L can be expressed as the sum of any layer l
shallower than it and the residual part between them.

b) When l = 0, xL = x0+
∑L−1

i=0 F(xi,Wi) means that l is
the sum of the units of each residual block feature.

According to the derivative chain rule in Backpropagation
algorithm, the gradient of loss function ε with respect to xl
can be expressed as follows:

∂ε

∂xl
=

∂ε

∂xL

∂xL
∂xl
=

∂ε

∂xL

(
1+

∂

∂xl

L−1∑
i=l

F (xi,Wi)

)

=
∂ε

∂xL
+
∂ε

∂xL

∂

∂xl

∑L−1

i=l
F(xi,Wi) (4)

This formula proves two other properties of the improved
ResNeSt:

a) In the whole training process, ∂(
∑L−1

i=l F (xi,Wi))/∂xl
cannot always be -1, that is to say, there will be no
gradient disappear in the residual network.

b) ∂ε/∂xL means that the gradient of the layer L can be
transferred directly to any layer shallower than it.

By analyzing the forward and backward processes of the
improved ResNeSt, it is found that when the residual block
satisfies the above two assumptions, the information can be
transmitted smoothly between the high level and the low
level, which indicates that these two assumptions are suffi-
cient conditions for the improved ResNeSt to train the depth
model.

C. MULTI-SCALE RPN
Small defects are common in insulator defects. Because some
insulator defects are far away from the camera, the tar-
get size is small, which makes the insulator defect target
occupy a small pixel in the image, and the corresponding
area contains less information. Therefore, it is easy to miss
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the detection, which affects the detection accuracy of the
algorithm. Therefore, it is difficult to identify and locate
the small-scale insulator defect target in the field of target
detection. In order to solve the difficult problem of small
object detection in challenge c, ResNeSt is combined with
multi-scale RPN. We use ResNeSt whose backbones are
ResNet50 and ResNet101 as the basic network of feature
extraction. Conv3, Conv4 and Conv5 are defined to repre-
sent the last residual block ResNeSt_3d, ResNeSt_4f and
ResNeSt_5c in each stage of the infrastructure network.
For the three branches, the height (pixel value of insulators
instance height) of the effective real annotation box in RPN
is within the range of [inf, 50], [inf, inf] and [100, inf].
The ground truth annotation across this range is regarded as
invalid annotation and does not participate in the training of
the RPN branch.

The RPN is trained with different target paths due to differ-
ent RPN scales. The RPN multi task loss function is defined
as follows.

LossRPN = Loss1 + ϕ[τ = 1]Loss2 (5)

where Loss1 is the classification loss using cross entropy
loss function. Loss2 is the position regression loss using
Smooth L1 loss function [20]. ϕ is a hyperparameter.
τ = 1 means that only positive samples are used for position
regression. In order to shorten the high-resolution features
of the graph to the low-level features, the high-resolution
features of the graph are aggregated. In the bottom-up feature
coding path, the max-pooling method is used to realize down
sampling. The purpose is to reduce the parameters and keep
the invariance of rotation and translation. Max-pooling is
to take the maximum value of adjacent features and retain
more texture feature information. The average pooling can
reduce the variance error of the estimated value caused by
the size limitation of the neighborhood, and more emphasis
on the lower sampling of the overall feature information.
At the same time, it is more conducive to information transfer
to the next feature layer. According to the effectiveness of
different resolution feature layers for different scale insula-
tor defects, the candidate region feature codes are extracted
by multi-scale detection method combined with multi-scale
insulator defect candidate set Ci = {Cs,Ca,Cl} generated
by multi-path RPN and aggregate featureQi = {Q3,Q4,Q5}

obtained by cross-scale aggregation feature network module.
Firstly, the candidate regions of insulator defects inCi set are
generated by the main detection branch of multi-path RPN to
match the corresponding aggregation featureQi generated by
cross-scale aggregation feature network. The region of inter-
est of the feature layer is obtained. Then, (C/8)×w×h feature
is obtained by using the ROI-pooling normalized extracted
feature coding. Then, the extracted feature codes are trans-
formed from the full connection layer to the high-dimensional
feature vectors, and the confidence scores and four coordinate
offsets of the candidate regions are accurately calculated to
obtain the final detection results. The other two auxiliary
detection branches are similar. For the candidate regions of

different scale sets, the corresponding detection branches are
used. Each detection branch training has a real class label
xml∗ and a real label box box∗. The loss function of sin-
gle branch insulator defect detection training is defined as
follows.

Loss (xml, box) = Loss1
(
xml, xml∗

)
+ ωxml∗Loss3
× (box, box∗) (6)

where Loss3 is the regression loss function of candidate target
and Loss3(box, box∗) = R(box−box∗).R is Smooth L1 loss
function. xml is the confidence score of network candidate
target frame. box is the predicted candidate target frame. ω
is the loss function of balancing classification and regression
tasks. When the overlap degree between the predicted can-
didate target frame and any real annotation frame is greater
than the constant λ(0 < λ < 1), then p∗ = 1, otherwise
p∗ = 0. The proposed multi-scale RPN based on improved
ResNeSt is shown in Fig. 2. The implementation process of
the improved multi-scale RPN is shown in Algorithm 1.

FIGURE 2. Improved RPN for insulator defect detection. Improved RPN
activates two parts split by the Split-attention block at the same time.

IV. EXPERIMENTS AND DISCUSSION
The experiment is based on PyTorch 1.5.1 in Python 3.7.
PyTorch is a library specially built for deep learning model.
The above experiments were performed on Intel (R) Xeon (R)
gold CPU 6148@3.7GHz 32GB, GPU run on NVIDIA Tesla
V100 32GB and Ubuntu 16.04 LTS.

A. DATA ANNOTATION
This data set was a defective insulator data set published
by Prates et al. in 2019. The data set contains four com-
mon 15kV distribution insulators, which are Polymeric Grey
Insulator (PGI), Ceramic Pin Insulator (CPI), Glass Green
Insulator (GGI) and Ceramic Bicolor Insulator (CBI). They
were respectively installed on a teaching high-voltage cable.
A total of 2560 real photos of defective insulator and normal
insulator were taken. There are too few images in the public
data set. In order to balance the number of defect images, opti-
mize the data set and enhance the data set, we remove some
unclear and ambiguous images. Through data enhancement
techniques such as rotation, brightness adjustment and trans-
lation, the number of data sets was increased to 48000 photos.
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Algorithm 1 Improved Multi-Scale RPN

Input: training sample U = {(xml∗i , box
∗
i )}

N
i=1, itera-

tions K , learning rate ξε and ξεb and minibatch B
Output: weight ε and εb

1 for t = 1 to T do
2 for minibatch do
3 if box∗h < 50
4 Lossfar = Loss1 + ϕ[τ = 1]Loss2
5 Lossfar (xml, box) = Loss1 (xml, xml∗)+

ωxml∗Loss3(box, box∗)
6 if 50 ≤ box∗h < 100
7 Lossmedium = Loss1 + ϕ[τ = 1]Loss2
8 Lossmedium (xml, box) = Loss1 (xml, xml∗)+

ωxml∗Loss3(box, box∗)
9 if box∗h ≥ 100
10 Lossnear = Loss1 + ϕ[τ = 1]Loss2
11 Lossnear (xml, box) = Loss1 (xml, xml∗)+

ωxml∗Loss3(box, box∗)
12 ε = SGD(∇ε(Loss1 + ωxml∗Loss3), ε, ξε)
13 εb = SGD(∇εb(Loss1 + ωxml∗Loss3), εb, ξεb)
14 end
15 end
16 return ε, εb

There are 12000 photos for each type of insulator. Each type
of insulator contains 4320 defective insulator images and
7680 normal insulator images. The resolution of the above
data sets is 224 × 224. After sorting out, it is found that
there are three kinds of insulator defects in each insulator
data set, which are break, crack and dirt. For each type of
insulator, there are 1440 pictures of each of the three defects.
Public data sets are unlabeled. We use LabelImg [21] image
annotation tool to label the insulator and the defects on the
insulator. The tool will generate an xml file, and each xml file
corresponds to each image one by one. Each xml file contains
the boundary box coordinates of insulator location, insulator
type, boundary box coordinate of defect location and defect
type.

B. EVALUATION METHOD
In order to comprehensively and objectively evaluate the
performance of the proposed method, we use the following
indicators for comprehensive evaluation [22].
ACC (Accuracy):ACC = (TP+TN )/TP+FP+TN+FN .

TP (True Positions) is the number of positive samples cor-
rectly identified as positive samples. FP (False Positions) is
the number of negative samples wrongly identified as positive
samples. TN (True Negatives) is the number of negative
samples correctly identified as negative samples. FN (False
Negatives) is the number of positive samples that are wrongly
identified as negative samples.
Mean Average Precision (mAP):Average Precision (AP) is

the area under the precision recall curve. Where precision =
TP/(TP+ FP), recall = TP/TP+ FN .

TABLE 1. Detection results on insulator data set.

MAP is the average value of multiple AP categories. The
larger the mAP, the better the network performance.
AUC (Area Under Curve): AUC =

∑m
i−2((xi − xi−1) ×

(yi + yi−1)/2). AUC is the area under Receiver Operating
Characteristic curve (ROC curve). The closer the AUC is to 1,
the better the classifier performance is. Where xi is the false
positive rate of the abscissa of the ROC curve, xi = FPR =
FP/(FP + TN ), and yi is the true rate of the ordinate of the
ROC curve, yi = TPR = TP/(TP+ FN ).
FPS (Frames Per Second): FPS refers to the number of

pictures processed per second. The higher the FPS, the faster
the network speed.

C. RESULTS AND EVALUATION
A comprehensive evaluation of the proposed method is car-
ried out on the enhanced Prates insulator data set. The per-
formance of the proposed method is better than that of the
existing methods.

In order to prove the performance of the proposed
method, we compare the following defect detection algo-
rithms. Original YOLOv3 [23], YOLOv3 by Tao, original
YOLOv4 [24], Faster RCNN by Ling, Faster RCNN [25] and
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FIGURE 3. The training accuracy of proposed network and the control group. In order to observe the rising speed of the training accuracy of all kinds
of network more intuitively, the abscissa is expressed in exponential form. The proposed network rises fastest among all the training accuracy curves,
and can also maintain a high degree of accuracy.

RetinaNet [26] with ResNet50, ResNet101, ResNet50-RPN,
ResNet101-RPN, ResNeSt50, ResNeSt101, ResNeSt50-
RPN and ResNeSt101-RPN as the backbones and four types
of EfficientDet [27]. The fusion feature layer corresponding
to Conv3, Conv4 and Conv5 is ResNeSt_3d, ResNeSt_4f
and ResNeSt_5c. The corresponding floor space dimensions
are interlinked. The corresponding anchor scales of {Conv3,
Conv4, Conv5} are {322,642,1282}. In this paper, three ratios
{1:2,1:1,2:1} are used. In the training, the samples with the
Intersection over Union (IoU) higher than 0.7 are regarded as
positive samples, and those less than 0.3 are taken as negative
samples. There is parameter sharing among feature pyramid
networks, which makes all levels have similar semantic
information. The specific performance is evaluated in the
experiment.

For the above-mentioned deep learning methods, the best
hyperparameters are adjusted to obtain the best performance.

As shown in Table 1, the network with improved
multi-scale RPN performs better than the original network.
The ACC, mAP and AUC of Faster RCNN with proposed
method as the backbonewere 0.0067, 2.5% and 0.0222 higher
than those of Faster RCNN with ResNeSt101-RPN. The
ACC, mAP and AUC of RetinaNet with proposed method
as the backbone were 0.0099, 0.8% and 0.0164 higher than
those of RetinaNet with ResNeSt101-RPN. However, when
proposedmethod is used as the backbone of our proposed net-
work, although the accuracy is improved, the FPS decreases
by 1.18. Less than 5 images are detected per second, which
cannot meet the requirements for real-time detection of
insulators in UAV aerial photos. The FPS of YOLOv4 can

reach 25.21. This is because YOLOv4 will first use 1 × 1
convolution check to reduce feature dimension, and then
use 3 × 3 convolution kernel to increase dimension. In this
process, the calculation number of parameters and the size
of model will be greatly reduced. However, the ACC, mAP
and AUC of YOLOv3 are only 0.8562, 75.6% and 0.7854,
which cannot meet the requirements of real-time insulator
defect detection.

We found that the break defect did not work well in
all control networks, especially PGI and GGI. We list
the test results of some networks which are EfficientDet-
D3 (EfficientNet-B3), RetinaNet (ResNeSt101-RPN), Faster
RCNN (ResNeSt101-RPN), YOLOv4 (CSPDarknet-53),
Faster RCNN (Ours) and RetinaNet (Ours) on some test
sets, as shown in Fig. 4. The detection speed of YOLOv4 is
fast, but the accuracy is generally not high. Fast RCNN
(ResNeSt101-RPN) failed to detect a small break defect on
CPI, nor did it detect a piece of break defect with unclear
color characteristics on GGI. RetinaNet (ResNeSt101-RPN)
judged a large break defect on PGI as two break defects,
and mistakenly detected the shadow of a wire on CBI as
a dirt defect. EfficientDet performs well in the data set of
this paper, but its speed is slow and there are many training
parameters. Even the common deep learning computer card
cannot train this series of networks and cannotmeet the needs.
For the PGI with break defect, Faster RCNN cannot detect
the most part of the break defect except with the backbone of
ours. The ACC detected by other networks is also low. This
may be due to the massive damage of the insulator, which
cannot even be identified as an insulator. For CPI with three
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FIGURE 4. Performance of EfficientDet-D3 (EfficientNet-B3), RetinaNet (ResNeSt101-RPN), Faster RCNN (ResNeSt101-RPN),
YOLOv4 (CSPDarknet-53), Faster RCNN (Ours) and RetinaNet (Ours). The first column is the insulator type, insulator position,
defect category and defect location labelled by LabelImg. The text above the rectangle indicates the insulator type or defect
type detected by the network. The following number indicates the accuracy of the object detected by the network.

breaks, some networks without improved RPN cannot detect
the smaller defects in the middle right, such as YOLOv4.
However, the improvedmulti-scale RPN can detect and locate
such small defects.

We found that crack and dirt can be detected well in any
kind of network, which may be due to the obvious character-
istics of crack and dirt on the insulator. However, RetinaNet
with ResNet101-RPN as the backbone and Faster RCNNwith
ResNet50-RPN misjudge some shadows as dirt. This may be
due to the obvious contrast between shadow and dirt on the
light CBI, resulting in misjudgment.

For using our proposed method as the backbone in Faster
RCNN and RetinaNet, although the mAP reaches 95.8% and
96.7%, FPS is only 12.80 and 4.69. In the actual insulator
defect detection, we must balance the detection accuracy
and detection efficiency. We discarded the network with FPS
of 4.69, leaving the network whose mAP is 95.8% and FPS
is 12.8.

In order to verify the performance improvement of the
improved multi-scale RPN, we compare it with the original
RPN method. Four ablation experiments are designed to
verify the performance of the proposed network.
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a) The original Faster RCNN with ResNet50 as the
backbone.

b) Replace ResNet50 in a) with improved ResNeSt50 as
the backbone.

c) The original RPN is added to the improved ResNeSt50.
d) The original RPN in c) is replaced by the improved

multi-scale RPN.

Table 2 shows the results of abstention experiments.
Compared with the original Faster RCNNwith ResNeSt50 as
the backbone, the improved ResNeSt improves the mAP
by 5.97% but reduces the FPS by 18.60%. The addition of
improved multi-scale RPN has better accuracy in detecting
insulator defects. Detection speeds have also been improved.
Compared with the original RPN, the improved multi-scale
RPN improves the mAP by 3.57% and FPS by 15.52%.
It improves the efficiency of network detection and can meet
the need of real-time detection.

TABLE 2. Ablation experiments of proposed network.

V. CONCLUSION
In this paper, a method of aerial photo insulator defect detec-
tion based on improved ResNeSt and improved multi-scale
RPN is proposed. In view of the characteristics of insu-
lator defects, the original ResNeSt is improved, and the
multi-scale RPN is improved to detect smaller defects more
efficiently. The experimental results show that compared with
Faster RCNN with ResNeSt101-RPN as the backbone, ACC,
mAP and AUC have been improved by 0.0067, 2.5% and
0.0222, and FPS have been improved by 7.57. Comparedwith
RetinaNet with ResNeSt101-RPN as the backbone, ACC,
mAP and AUC have been improved by 0.0099, 0.8% and
0.0164. In the data set of this paper, ACC, mAP and AUC
have better performance than other control defect detection
networks.

However, at present, there are many kinds of insulators,
and only four kinds of insulators have been collected and dis-
cussed in this paper. In the follow-up work, more samples of
defective insulators should be collected and added to the data
set, and the network should be adjusted appropriately to adapt
to more types of defect detection. In addition, the selection of
a classifier for further experiments and how to improve the
detection speed of the network will be further investigated as
a future outlook.
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LIST OF ABBREVIATIONS
HOG Histogram of Oriented Gradient
LBP Local Binary Patterns
RPN Region Proposal Network
PCA Principal Component Analysis
SVM Support Vector Machine
KNN K-Nearest Neighbor
ROI Region of Interest
IoU Intersection over Union
mIoU mean Intersection over Union
FPN Feature Pyramid Networks
PGI Polymeric Grey Insulator
CPI Ceramic Pin Insulator
GGI Glass Green Insulator
CBI Ceramic Bicolor Insulator
FC Fully Connected layer
ACC Accuracy
TP True Positives
FP False Positives
TN True Negatives
FN False Negatives
mAP mean Average Precision
AUC Area Under Curve
ROC Receiver Operating Characteristic
FPS Frames Per Second
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