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ABSTRACT Anomaly detection is becoming widely used in Manufacturing Industry to enhance product
quality. At the same time, it plays a great role in several other domains due to the fact that anomaly may
reveal rare but represent an important phenomenon. The objective of this paper is to detect anomalies and
identify the possible variables that caused these anomalies on historical assembly data for two series of
products. Multiple anomaly detection techniques were performed; HBOS, IForest, KNN, CBLOF, OCSVM,
LOF, and ABOD. Moreover, we used AUROC and Rank Power as performance metrics, followed by
Boosting ensemble learning method to ensure the best anomaly detectors robustness. The techniques that
gave the highest performance are KNN, ABOD for both product series datasets with 0.95 and 0.99 AUROC
respectively. Finally, we applied a statistical root cause analysis on the detected anomalies with the use of
Pareto chart to visualize the frequency of the possible causes and its cumulative occurrence. The results
showed that there are seven rejection causes for both product series, whereas the first three causes are
responsible for 85% of the rejection rates. Besides, assembly machines engineers reported a significant
reduction in the rejection rates in both assembly machines after tuning the specification limits of the rejection
causes identified by this research results.

INDEX TERMS Anomaly detection, assembly lines, big data, machine learning, manufacturing industries,
root cause analysis, unsupervised learning.

I. INTRODUCTION
For years, Manufacturing Industry has been adopting new
quality measurement tools that led to an intensive-data envi-
ronment, paving the way for using Machine Learning (ML)
methods to extract information from the data as an endeavor
to reduce the production cost and enhance the product
quality [1].

In Manufacturing Industry, Assembly machines are con-
sidered as essential components and are widely used in the
production lines. To ensure the final product quality, each
assembly machine has an integrated inspection system that
is supported by high-speed vision cameras to measure each
assembled piece’s dimensions. Additionally, each assembly
machine has different specification limits depending on the
design of the product to be assembled [2].

The dataset used in this paper includes information about
dimensions measurements for two series of connectors,
where both series have gold-coated pins that makes it very
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expensive to reject any assembled piece in the production
line. The final product quality is ensured bypassing the prod-
uct design specification limits to the inspection system in the
assembly machine and after the inspection system measuring
each assembled part dimensions. In case any part’s measure-
ments exceeded the design specification limits, the assembled
part will be considered as an anomaly and automatically
rejected and thrown to the trash [2], [3].

Anomaly is an unusual behavior in data that does not
follow the expected behavior. Anomaly detection (AD), also
synonymously termed as outlier detection, novelty detection
and deviation detection, is the process of detecting patterns
that do not follow the expected behavior in a given dataset.
Although anomaly may reveal rare, it represents an important
phenomenon. Thus, Anomaly detection has attracted consid-
erable attention from the research community [4], [5].

Anomaly detection has been used in a wide range of
application domains; for example, credit card fraud detection,
insurance, health care, computer security intrusion detec-
tion, image processing, security-critical device failure detec-
tion and many more [4], [6].
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An important aspect of anomaly detection is the nature of
the anomaly. An anomaly can be categorized in the following
ways [7]:

A. POINT ANOMALY
Point anomaly is a single independent data instance that
represents an irregularity or deviation which happens ran-
domly and may have no particular interpretation compared
to defined normal behavior in a data set. For example, after
the assembly process of a connector is finished, it is fol-
lowed by the inspection process, there is a point at which
one of the assembled part dimensions is measured with a
value far from the rest of the measurements and even exceeds
the design specification limits. This abnormal behavior is
known as point anomaly [6], [8]. Samples of point anomaly
in 2-dimensional space are illustrated in Fig. 1 (O1, O2 data
points).

FIGURE 1. Samples of anomalies in 2-dimensional space.

B. CONTEXTUAL ANOMALY
Contextual anomaly also referred to as conditional anomaly,
is a data instance that is considered as an anomaly in a
specific context, but not otherwise [6]. This type of anomaly
is common in time-series data streams, for example, after the
assembly process of a connector is finished, the inspection
system reports dimensions measurements for the assembled
part with very high or very low values, but this happens
only when the assembly machine starts working, or before
it stops, or during high load hours, all these are considered
as contextual anomalous behavior in the assembly machine.
Sample of contextual anomaly is illustrated in Fig. 1 (N2 data
points) with a condition that these data points hold different
context from N1 data points [6], [8].

C. COLLECTIVE ANOMALY
Collective anomaly is a collection of individual data points,
wherein each of the individual points in isolation appears as
normal data instance while observed in a group that shows
unusual characteristics with respect to an entire data set [6].
Collective anomaly in the assembly process appears when
a sequence of assembled parts is reported with dimension’s
measurements that deviated from the normal behavior by the

inspection system [6], [8]. Samples of collective anomaly is
illustrated in Fig. 1 (O3 data points).

In machine learning manner, anomaly detection techniques
have three main types according to the availability of the
labels in the dataset in hand, as follows:

D. SUPERVISED TECHNIQUES
In supervised techniques, machine learning models are built
for both anomalous data and normal data, where unseen data
instance is classified as normal or anomaly by comparing
which model it belongs to [7].

E. SEMI-SUPERVISED TECHNIQUES
In semi-supervised techniques, machine learning models are
only built to fit the normal data, where unseen data instance
is classified as normal if it fits the model sufficiently well;
otherwise, the data instance is classified as an anomaly [7].

F. UNSUPERVISED TECHNIQUES
In unsupervised techniques, no any training dataset is needed.
This is mainly because these approaches are based on the
assumption that anomalies are much rarer than normal data
in a given dataset [7].

Root cause analysis (RCA), refers to the process of
identifying and delimiting the elements originating the
anomaly [9]. RCAprocess aims at allocating the root cause by
analyzing fault information with observed data [9]. In Man-
ufacturing Industry, RCA is a highly effective technique
for product design engineers and production managers to
help in innovative problem-solving. Therefore, RCA has
been used in numerous areas and is usually concerned with
finding the root causes of events with safety, health, envi-
ronmental, quality, reliability, production, and performance
impacts [10], [11]. The process of RCA involves sorting the
unstructured data and uncovering input, output relationships
to identify the root causes and generally consists of the
following four major steps [11]–[13]:

G. DATA COLLECTION
The Data collection stage is to gather the necessary data to be
able to diagnose the root cause.

H. CASUAL FACTOR CHARTING
Casual factor charting is a simple sequence diagram depicting
the actions that led to an occurrence.

I. ROOT CAUSE IDENTIFICATION
When the sequence of events leading to an occurrence is
determined, they can be used in turn to determine the actual
root cause of the occurrence.

J. RECOMMENDATION GENERATION AND
IMPLEMENTATION
After determining the root cause occurrence, a list of rec-
ommendations is made on how to minimize or completely
remove the occurrence of the cause.
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The process of detecting anomalies in assembly lines and
analyzing its root causes is done based on the available datum.
In contrast, the defects of assembled parts are classified into
two types; surface defects and damage. The texture and color
characteristics are used to identify surface defects. On the
other hand, shape dimensions measures are used to iden-
tify part damages, and both tasks are to ensure high-quality
shipping products by notifying the robot controller to throw
anomalous parts in the tray [12], [13].

In this paper, we developed a machine learning model
using several anomaly detection techniques such as; HBOS,
IForest, KNN, CBLOF, OCSVM, LOF, and ABOD to detect
the anomalies in the assembly line for 54104, 54132 product
series and to identify the possible variables that caused these
anomalies by performing a root cause analysis on the product
series anomalies. The remaining part of this paper is orga-
nized as follows; Section II describes Related works in the
Literature, Section III presents the methodology, Section IV
discusses the result, and Section V concludes the research and
discusses further future studies.

II. RELATED WORKS
Anomaly detection has been the major focus of several kinds
of research and scientific papers over the years and according
to Xu et al in [14], Anomaly detection is a hot topic in
terms of machine learning and its increasing greatly, being
applied in a wide range of fields while it plays a great role in
several other domains. Therefore, in the existing literature,
several techniques and approaches have been proposed to
detect anomalies as well as to improve the performance of
existing anomaly detection techniques. In this section, wewill
discuss the most relevant techniques in the state-of-the-art.

A. ANOMALY DETECTION
In [14], several techniques have been surveyed and the
main focus was on comparing the techniques for unlabeled
high-dimensional benchmark datasets. The authors faced a
challenge in identifying the threshold between anomaly and
non-anomaly data points and another challenge in choos-
ing the best features in this high-dimensional space. They
proposed an ensemble learning-based approach to detect the
anomalies in a dataset with such challenges; they used mul-
tiple anomaly detection algorithms including Angle-based
Outlier Detection (ABOD), k-Nearest Neighbors Detector
(KNN), and Local Outlier Factor (LOF). Moreover, in order
to find the best performance and to evaluate these models,
the authors used Area Under the Receiver Operating Charac-
teristics (AUROC), Precision, and Rank Power as an evalu-
ation metric. The results showed that FastABOD and KNN
achieved the best performance in the area under the curve
of ROC (AUROC) reaching up to 75% in detecting the true
positive anomalies in the dataset.

Similarly, the authors in [15] used a large scale data with a
high-dimensional space. They also faced the same challenges
as in [14]. However, they investigated different types of learn-
ing models for deep anomaly detection techniques. Finally,

they adopted a deep hybrid model by using one-class SVM
(OC-SVM) together with deep neural networks model called
One class neural network (OC-NN) to detect the anomalies
and conversely to [14], the authors here used Autoencoders
as feature extractors and nonetheless they used the same
techniques to evaluate the model while the results did not
show clear improvement.

On the other hand, the authors in [16], [17] used Local Out-
lier Factor (LOF) and Isolation Forest (IForest) techniques
to detect the anomaly in a large scale data. Moreover, they
used F1-score, Precision, and Recall as performance metrics
except for Galante in [17] who addedOne-Class Support Vec-
tor Machines (OCSVM) as an additional technique to detect
anomalies and he added AUROC as performance metrics.
Additionally, all of them faced the same challenge in han-
dling high-dimensional space and principal component anal-
ysis (PCA) was used to overcome this challenge by extracting
new features that better represent the data which ended up
with improving the final model performance F1 score to 64%.

In [18], the authors compared multiple unsupervised tech-
niques to detect the anomaly on ten benchmark datasets.
They used KNN, LOF, OCSVM, Connectivity-Based Outlier
Factor (COF), Cluster-Based Local Outlier Factor (CBLOF),
and Histogram-based Outlier Score (HBOS). Moreover, they
faced a challenge in setting the threshold between anomaly
and non-anomaly data points. The authors compared the per-
formance of these techniques for various types of datasets
including large-scale data with a high dimensional space.
In addition, they used AUROC together with the Preci-
sion score and Rank Power as performance metrics and to
compare and evaluate the performance of all these tech-
niques. As a result, they found that KNN and LOF algo-
rithms performed best compared to the other algorithms
with AUROC equal to 98% for low dimensional space
datasets and 54% for high dimensional space datasets and
they relied on the computation time to pick from these two
algorithms.

Again in [19], the authors used anomaly detection cluster-
based techniques such as NKICAD, K-means, CBLOF, and
LDCOF to detect the anomalies in network traffic dataset.
Despite their dataset being unlabeled, the authors relied on
statistical methods to calculate labels to help in evaluating
the used algorithms with the use of Accuracy and Sensitivity
metrics. The authors did experimental analysis first on bench-
mark datasets to validate their approach and then used this
approach for their network traffic dataset. Finally, the result
shows these cluster-based techniques are on average, able to
detect 87% of the anomalies in network traffic dataset.

In [20], the authors used OCSVM, LOF and Random
Forests as anomaly detection techniques. Also, only AUROC
and Computation time are used to evaluate the performance.
Thus, they stated that IForest achieved AUROC 70% in
high dimensional data while their dataset does not contain
anomalies in the training samples. Meaning that they tested
the models under semi-supervised anomaly detection type
contrary to the authors in [16], [18].
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Furthermore, the same techniques are used by the authors
in [21]; however, F-score, Recall, and Precision were added
as performance metrics to evaluate the techniques in their
approach. They stated that the proposed approach achieved
a high detection rate and low false-positive rate at the same
time which is the target optimal solution.

B. ROOT CAUSE ANALYSIS
In [9], The authors introduced a procedure for an automated
root cause analysis using machine learning algorithms. They
named the anomaly points as parts outside the tolerance
limits, and they proposed a supervised and unsupervised
approach to detect root causes of these anomalies’ parts.
The proposed approach used a decision tree algorithm to
detect root causes on a large scale with a large number of
variables.

Furthermore, Sarkar in [11] has shown the usefulness of
an empirical cluster technique analysis to classify differ-
ent anomaly types into a smaller number of categories and
then use engineering knowledge to identify the root causes
associated with these clusters. This approach is a combina-
tion of machine learning techniques such as cluster analysis
and engineering domain knowledge to detect the root cause
analysis. Additionally, Sarkar used hierarchical clustering to
groups based on combinations of variables to obtain a man-
ageable number of clusters, and then he used the engineering
knowledge to investigate each of these clusters more closely
to find out the root cause associated with the cluster.

Conversely to the previous works, the authors in [22] used
the quality tools to detect the root cause. The authors used
Pareto analysis to help in identifying and classifying the
defect according to percentage significance. In addition, they
also plotted the Cause and effect diagram to identify themajor
causes of the anomaly.

Similarly, the authors in [23] conducted a study on three
months’ data to observe the process going on in the produc-
tion line, to reduce the rejection rate by tracking the root
causes. Moreover, to achieve the objectives, the authors used
Pareto analysis to identify and classify the defects according
to percentage significance and Cause-Effect diagram was
used to determine the major causes. The outcome of the study
led to reducing the overall rejection rate in the production line
from 10% to 7 %.

To conclude, the reviewed papers study anomaly detection
techniques and aim to achieve good detection rates, whereas
the majority of these papers adopted unsupervised machine
learning due to the nature of the available data. Moreover,
most of the authors of the reviewed papers faced a challenge
in picking the right features to reduce the dimensionality.
Another challenge was faced while identifying the anomaly
and non-anomaly threshold for large scale data. Although the
authors used different combinations of detection algorithms
and evaluation metrics, most of them managed to overcome
these challenges to different degrees. Finally, the authors
of the reviewed works in root cause analysis agreed on
using statistical quality control tools like Pareto analysis and

Cause-Effect diagram to determine the major causes of the
detected anomalous data points.

III. METHODOLOGY
This section describes data science project lifecycle, includ-
ing the proposed approach to achieve the objectives with the
description and justification of the used techniques.

Furthermore, in an ideal environment, every successful
project must go through a data science lifecycle. Starting
with data collection, model development, model evalua-
tion, results presentation, and model deployment. Moreover,
adopting this life cycle could determine the project’s success
and having useful outcomes [24].

A. DATA COLLECTION
Assembly machines for the product series under the scope
of this study have a vision system used for the inspection
process, where each machine consists of four inspection cam-
eras dedicated to measuring the assembled piece dimensions
and then store these measurements as a CSV format in the
company server. Therefore, for the purpose of this study,
the dataset files for both product series were obtained from
the server as the only available source.

B. DATA DESCRIPTION
The data are stored by Assembly machines in a specific
format which is difficult for a normal machine learning algo-
rithm to read and process. Fig. 2 below, illustrates how the
original CSV files are saved in the server.

FIGURE 2. The original dataset for one assembled pieces.

The columns and rows are swapped. In addition, for each
instance in the data, there are specific numbers of rows where
each row represents a dimension measurement for its respec-
tive number of pins, whereas the number of columns depends
on the number of pins in each series. Table 1 below demon-
strates the number of instances, measurements, columns, and
rows for each series.

For each attribute in the dataset, Table 2 below displays the
name, type, and description.

After each instance in the dataset, there is a blank line
and there are also empty cells. This is due to the nature of

189664 VOLUME 8, 2020



O. Abdelrahman, P. Keikhosrokiani: Assembly Line Anomaly Detection and Root Cause Analysis

TABLE 1. Instances Details per Product Series.

TABLE 2. Dataset Attributes Description.

how the data files are formatted, whereas there are no miss-
ing values in both series datasets. However, there are many
special characters in the dataset, such as (#, !, O, and #1).
Furthermore, some data points have very high values com-
pared to the specification limits (such as 9.999). Regarding
this, assembly machines engineers reported that this happens
when the inspection camera misses any dimension mea-
surement. Thus, it uses these high values and immediately
rejects this assembled piece, therefore, any instance has a
high value or any of the special characters is considered as an
anomaly. Finally, TailAlignment attribute is duplicated, and
the engineers described this as a confirmatory measurement.
Thus, both TailAlignment attributes reflect the same type of
measurement performed using the same camera.

C. PROPOSED SOLUTION
The proposed approach to achieve the objectives of this study
consists of four main stages, as illustrated in Fig. 3 belowwith
the proposed mains tasks in each stage.

D. DATA PRE-PROCESSING
The dataset files require many preparations to make it suit-
able for use by machine learning algorithms. These prepa-
rations include reformatting the dataset, handing duplicated
measures, instances with high values and special charac-
ters, feature scaling, feature selection, and the dimensionality
reduction as follows:

1) REFORMATTING DATASETS
The data are stored as a CSV file in a specific format
that makes it nonreadable by machine learning algorithms.

FIGURE 3. Proposed solution flowchart.

Therefore, due to the dataset size and the high number of
columns and rows in the data, we used Python to reformat the
dataset to a readable format. Moreover, part of the reformat-
ting process was changing the names of the attributes, where
each attribute in the dataset is renamed to have a meaningful
name that reflects the real measure done by the inspection
cameras.

2) DUPLICATES
There is one attribute duplicated ‘‘TailAlignment’’ and since
it is a confirmatory measure, we solved this problem through
merging both attributes by taking the minimum and maxi-
mum values. This is because the rejection process is basically
based on the minimum and maximum specification limits,
thus it will not lead to losing the variance and anomalies in
the data.

3) SPECIAL CHARACTERS AND MIS-MEASURES
Assembly machines engineers reported that the assembly
machines use these special characters when the inspection
cameras mismeasure any pin. Therefore, these instances are
dropped and later these instances will be discussed since they
are considered anomalies.

4) FEATURES SCALING
As reported by the author in [25], machine learning algo-
rithms perform well when the features in the data are on the
same scale since it will be used in dimensional space. For this,
we used MinMax scaling technique to rescale the features to
be in (0, 1) range. The use of MinMax was mainly because
this technique does not affect the variance in the data since it
is sensitive to the presence of the anomalies during the scaling
process.
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5) FEATURES EXTRACTION
The data are in high dimensional space with a number of
attributes reaching to 309 attributes for 54104 series and
158 attributes for 54132 series. To overcome this problem,
first, we looked at the correlations between the datasets
attributes to understand their relationships. This is because
anomaly detection techniques assume that the attributes are
not highly correlated to better learn from the data. After
that, the features were aggregated by taking the minimum
and maximum values for each measurement type, and this
mainly because we do not want to miss the variance in the
data. Moreover, the aggregation process led to having a new
19 attributes for 54104 series dataset and 20 attributes for the
54132 series dataset. Nevertheless, we compared the aggre-
gation technique to PCA. The result indicated that the aggre-
gation technique improved the baseline model performance
significantly compared to PCA. Therefore, features aggrega-
tion better represents the data and holds more variance.

E. MODEL DEVELOPMENT
The model development stage is divided into two parts; the
first part is to achieve the first objective of this study by
developing a machine learning model using anomaly detec-
tion techniques to detect the anomalies in the assembly line
for 54104, 54132 product series. The second part proposed
to achieve the second objective by performing root cause
analysis on 54104, 54132 series anomalies to identify the
possible variables that caused these anomalies.

1) ANOMALY DETECTION EXPERIMENT
We built a machine learningmodel based on the prepared data
using multiple anomaly detection algorithms and compare
their performance to pick the best one. The selected algo-
rithms are HBOS, IForest, KNN, CBLOF, OCSVM, LOF,
and ABOD. We ran each of these selected algorithms mul-
tiple times with many parameters’ tunings and then we used
Boosting ensemble learning method on the best models. The
idea behind this is to have stable performance, as stated by
the authors in [26] that anomaly detection models often suffer
from instability due to its unsupervised nature. Moreover,
as in the review of the related works in Section II, unsu-
pervised anomaly detection techniques are used widely to
detect the anomalies in the data and as highlighted by most
authors. This is because the underlying data are unlabeled
similarly to our data in this study, which means it is a better
choice to use unsupervised learning techniques to discover
any abnormal behavior in the data. Specifically, the authors
in [27] reported that this type of learning is suitable to
solve such a problem. Furthermore, each selected algorithm
is either cluster-based, angle-based, statistical, neighbor-
based, density-based, or classification-based. Therefore, each
detection algorithm has a different work mechanism when
detecting point, contextual, or collective anomalies. As an
advantage, the combination of these algorithms will help in
detecting any type of anomaly that may be present in the data.

2) ROOT CAUSE ANALYSIS
Root cause analysis is mainly used to find the pins mea-
sures that exceeded the specification limits. To achieve this,
we worked on the detected anomalous instances as a result
of the best anomaly detectors in the first objective by con-
ducting a statistical analysis on these detected instances
through studying the minimum and maximum values of
each attribute in the data. In addition, we plot the statis-
tical analysis results in Pareto chart to see the occurrence
frequency and the cumulative contribution of each attribute
in causing the anomalies. This approach is used widely in
the related works, and although most of the authors agreed
on performing a statistical analysis first, they used various
types of visualization. In this study, Pareto chart is used
due to its several advantages such as; ease in plotting the
frequency of each cause, showing the cumulative frequencies
for the cause, helping in deciding which cause to fix first
and easier interpretation as compared to other visualization
techniques.

F. MODEL VALIDATION
The datasets contain quite enough samples; therefore,
we used one main validation approach which is Percentage
split. This procedure evaluates the models on a percent data
sample by splitting it into two; The first portion is used
for training purposes and the second portion is used for
testing.

G. MODEL EVALUATION
The In this study, the ideal model must be able to distinguish
the anomaly data points from those normal data points, and
since the final goal is to ensure the quality and deliver only
products without anymeasurements issues, therefore, the best
model must be able to detect any true positive instances. For
this reason, we used two performance metrics in each training
and testing cycle to measure the model’s performance. These
two metrics help in determining the best model in terms of
detecting the true positive instances and both metrics are
commonly used in the related works to evaluate anomaly
detection models. The first metric is AUROC (Area Under
the Receiver Operating Characteristics), this metric to helps
in evaluating the model based on its ability to distinguish
between anomaly and non-anomaly data points by diagram-
ming a curve of the true-positive rate against the false-positive
rate of the model. Thus, the more underlying area reflects
better detection for the anomalies. The second metric is Rank
power (RP) and we used this as an additional metric to rank
the models based on the ability of each model to detect and
rank the real anomalies at the top and before all other detected
data points. Finally, to have a better idea on how each model
performed, it is important to mention that we calculated the
labels for the test set for both product series with the help of
the specification limits and we confirmed these label with the
machines engineers and this was compared with the rejection
rate for each assembly machine.

189666 VOLUME 8, 2020



O. Abdelrahman, P. Keikhosrokiani: Assembly Line Anomaly Detection and Root Cause Analysis

H. IMPLEMENTATION
Python and Jupyter notebooks are the tools used for themodel
development and root cause analysis. Moreover, the main
libraries used are Sklearn, PyOD, Pandas. These libraries
offers the required preprocessing methods and anomaly
detection techniques.

IV. RESULTS AND DISCUSSION
Preprocessing tasks resulted in a ready and clean dataset
while it affected the number of the instances since some
instances were dropped, Table 3 below shows the instances
after the preprocessing tasks.

TABLE 3. Dataset after preprocessing tasks.

On the other hand, during the dimensionality reduction
process, we used KNN algorithm as a baseline to see how
the selected features in each approach affect themodel perfor-
mance. Table 4 and Table 5 below state the number of selected
attributes using Filter andWrapper approachwith its effect on
the performance compared to the baseline for both series.

TABLE 4. 54132 selected features performance compared to the baseline.

TABLE 5. 54104 selected features performance compared to the baseline.

Features selection approaches did not improve the model
performance compared to the baseline. Therefore, we used
PCA features extraction approach with various numbers of
components to see if the extracted components improve the
performance. The results for both product series are illus-
trated in Table 6 below.

From the comparison table above, we observe that PCA
improved the model performance. Although there is a huge

TABLE 6. Comparison of PCA results for both series to the baseline.

reduction in dimensionality, the extracted components do not
still hold much information about the data and even when
increasing the number of components, and it reduces the
model performance. Moreover, as an additional improve-
ment, we aggregated the dataset features based on the mea-
surement’s types and this is because the assembly machines’
rejection mechanism uses the minimum andmaximum values
for each type of measurement. The best performances for
all these techniques are compared to MinMax aggregated
features as shown in Table 7 and Table 8 below for both
product series.

TABLE 7. Comparison of reduction techniques for 54132 datasets.

TABLE 8. Comparison of reduction techniques for 54104 datasets.

By comparing dimensionality reduction techniques to the
baseline, it shows that MinMax features have the highest
performance. Moreover, for a better understanding of the
relationships of the derived features, Fig. 4 below displays
the heat map of the correlation matrix with scale from 1 to
−1. Where 1 (lighter color) represents a strong positive cor-
relation, −1 (darker) represents a strong negative correlation
whereas a value near to zero represents weak or no correla-
tion.

From the correlation heat map above, we can confirm
that the derived features do not have that much strong pos-
itive or negative correlation to each other, this is what makes
anomaly detection algorithms consider all features instead
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FIGURE 4. Correlation matrix for MinMax derived features.

of being influenced by the strong correlations between the
features. Therefore, we conclude that this feature representa-
tion holds enough information to help the model learn from
the data.

A. ANOMALY DETECTION EXPERIMENTS
The proposed approach in the model development stage
involves using a combination of multiple anomaly detection
algorithms and as stated earlier in the Methodology section,
the selected algorithms are HBOS, IForest, KNN, CBLOF,
OCSVM, LOF, and ABOD. The development process is ini-
tiated by using the best feature representation. Table 9 below
shows the best performance for each model on test data in
both product series.

TABLE 9. Best performance for each model on test data for both series.

From the comparison of the results above, ABOD algo-
rithm achieved the highest result by scoring 0.99 AUROC

in detecting anomalies in 54132 series data with 0.61 as
the ranking of the actual anomalies are detected first. For
54104 series, the best performance accomplished by KNN
algorithm by scoring 0.95 AUROC in detecting the anoma-
lies in 54104 series data with 0.24 for ranking the actual
anomalies are detected first. Table 10 below comparing the
performance of the detection algorithms to the calculated
anomalies and machine rates.

TABLE 10. Algorithms detection VS calculated and machine anomalies.

As mentioned previously in Table 9, ABOD algorithm
achieved 0.99 of the anomalies are detected and by com-
paring this percent to the number of the detected ones
in Table 10 above as 62 data points are predicted as anomalies,
whereas the calculated anomalies are only 35, this means that
there are additional 27 instances wrongly predicted as anoma-
lies and by comparing the 62 anomalies to the machine rates
which is 168 anomalies instances. Actually, this number is
for all instance in the train and test set data, and we know that
there are mismeasures that dropped previously during dataset
cleaning tasks. After subtracting the dropped instances we
found that there are only 75 anomaly instances in the test
set, meaning that ABOD algorithm has only 13 wrong pre-
dictions. Therefore, we can say that the assembly machine for
54132 does not have over reject, while we should not forget
the data are for five days.

On the other hand, KNN algorithm achieved 0.95 AUROC
when detecting the anomalies from Table 9. By comparing
this to the number of the detected ones in Table 10, there
are 343 data points predicted as anomalies while the calcu-
lated anomalies are 203. This means that there are additional
140 wrong predictions, and by comparing these 343 anoma-
lies to machine rates which are 602 anomalies and after
subtracting the dropped ones, we end up having only 145
anomaly instances in the test set. Therefore, KNN algorithm
has only 5 wrong predictions, which give a sign that the
assembly machine for 54104 does not have high over reject.
However, we should not forget that the data are only for five
days.

For a better understanding of the AUROC performance
for the detection process done by all anomaly detection
techniques used, Fig. 5 and Fig. 6 illustrate the area under
the curve of ROC (AUROC) as a comparison between the
detection techniques used for both series datasets.

189668 VOLUME 8, 2020



O. Abdelrahman, P. Keikhosrokiani: Assembly Line Anomaly Detection and Root Cause Analysis

FIGURE 5. Comparison of the detection techniques for 54132 series.

FIGURE 6. Comparison of the detection techniques for 54104 series.

From Fig. 5 above, for 54132 series, we can confirm that
ABOD algorithm (black color line) covered 99% of the area
under the curve while also KNN covered the same area with
99%. Though, we picked ABOD because it scored higher in
Rank Power metric. Also, Fig. 6 for AUROC 54104 series
displays that most of the area under the curve is covered by
KNN (dark orange line) with 95% whereas the least area
is covered by IForest algorithm. Furthermore, the scatter
plots below in Fig. 7 and Fig. 8 show which instances are
predicted to be an anomaly using the best-selected detection
algorithms.

From the scatter plot for ABOD algorithm predictions on
54132 series dataset, anomaly data points in red color while

FIGURE 7. Scatter plot for ABOD algorithm predictions on 54132.

FIGURE 8. Scatter plot for KNN algorithm predictions on 54104.

the blue color for the normal ones, we can see that this
algorithm did well in detecting the point anomalies whereas
no clear presence of another type of anomalies in the data.
Similarly, the scatter plot in Fig. 8 below, KNN algorithm
predictions on 54104 series datasets, we can see that KNN
algorithm was able to detect the point anomalies whereas no
clear presence of another type of anomalies.

B. ROOT CAUSE ANALYSIS
The second objective is mainly statistical-based analysis to
find the possible variables that cause the detected anomalies.
In addition, since assembly machines reject the parts that
exceed the limits, therefore, by checking Boxplots for both
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FIGURE 9. Pareto Chart for 54132 series rejection causes.

series to see the data point in terms of their first quartiles,
mean, median and the third quartiles. The results are con-
cluded in Pareto chart as shown in Fig. 9 for 54132 series.

From Pareto chart above, TailPitch measurements
exceeded the limits 24 times followed by NailIn which
exceeded the limits 16 times, then ContactPosition exceeded
the limits 14 times. These three measurements are the major
causes of the rejection based on their cumulative occur-
rence, these three measurements cause 86% of the rejection
in this series. Therefore, it shows that tuning and fixing
the specification limits for these three measures will result
in 86% reduction in the rejection rate for these 54132 series
which is a significant reduction. Moreover, Table 11 below
concise all pins measurements that exceeded the limits with
identifying each pin and either if it exceeded the minimum
limits or the maximum limits, and the total occurrence for
each measurement type in the 54132 series’ dataset.

TABLE 11. Possible variable caused 54132 rejection.

Moreover, 54104 series boxplots results are concluded in
Pareto chart below in Fig. 10.

Pareto chart above shows that NailOut measurements
exceeded the specification limits 138 times followed by Con-
tactPosition which exceeded the limits 46 times and then

FIGURE 10. Pareto Chart for 54104 series rejection causes.

SolderTailLength exceeded the limits 41 times. Moreover,
these three measurements are the top three causes for the
rejection based on their cumulative occurrence, these three
measurements causing 85% of the rejection for this series,
meaning that tuning the specification limits for these three
pins measures will result in 85% reduction in the rejection
rate for this 54104 series which is a significant reduction.
Moreover, Table 12 below concise all pins measurements
that exceeded the limits with identifying each pin and it
either exceeded the minimum limits or the maximum limits,
and the total occurrence for each measurement type in the
54104 series’ dataset.

TABLE 12. Possible variable caused 54104 rejection.

In conclusion, the first objective is achieved using
anomaly detection techniques whereas the best algorithm
for 54132 series is ABOD with 0.99 AUROC. On the other
hand, the best algorithm for 54104 series is KNN with
0.95 AUROC. By comparing the first objective results to the
related works in the literature, 54132 series model achieved
0.99 AUROC which yields better results than the related
workswhereas 54104 series usingKNN scored 0.95AUROC.
However, there is an approach in the related works which
scored 0.98, which is thus better than our approach using
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ABOD model. For the second objective, the root causes
diagnosed for 54123 anomalies are TailPitch, NailIn, Con-
tactPosition, NailLength, NailOut, NailHiLo, and NailPosi-
tion, whereas the first three causes are responsible for 86%.
Moreover, the root causes for 54104 anomalies are NailOut,
ContactPosition, SolderTailLength, NailIn, TailAlignment,
NonContact, and NailPosition. The first three causes for this
series are responsible for 85% of the anomalies in both series.

V. CONCLUSION AND FUTURE WORKS
In this paper, we studied assembly data for two product series
to detect anomalous data points and to diagnose the possible
causes of these anomalies. The results showed that there
are 62 anomalous data points for 54132 using ABOD algo-
rithm and 343 anomalous data points for 54104 using KNN
algorithm with no clear presence of over reject in assembly
machines for both series. In addition, the results showed that
there are seven rejections causes for each series, whereas the
first three causes are responsible for 86% and 85% of the
rejection rates in 54132 and 54104 product series respec-
tively. Ultimately, the results of this research are expected to
lead to a significant reduction in the rejection rates in both
assembly machines to different degrees. Nevertheless, this
reduction depends on performing an appropriate tuning for
the specification limits of the identified rejection causes for
each series.

A. FUTURE WORKS
This paper studied historical data for two assembly line
machines to detect the anomalies and its root causes, future
work can focus on predicting when these anomalies will
happen instead of just focusing on when it happened which
could lead to more quick and effective results when making
decisions. Another possible future work is to study the dimen-
sions’ measurements as time-series data which might lead
to putting more focus on each measurement type separately
with time. Furthermore, it is well-known in the literature that
anomaly detection techniques are facing instability issues due
to the data and the unsupervised learning nature, and since
we trained the best-selected models using five days’ data for
both product series, a recommended future work may train
the models using data for a longer period, this is more likely
to have stable and robust models and thus it can generalize
well for unseen data.
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