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ABSTRACT As the world pushes toward the use of greener technology and minimizes energy waste, energy
efficiency in the wireless network has become more critical than ever. The next-generation networks, such
as 5G, are being designed to improve energy efficiency and thus constitute a critical aspect of research and
network design. The 5G network is expected to deliver awide range of services that includes enhancedmobile
broadband, massive machine-type communication and ultra-reliability, and low latency. To realize such a
diverse set of requirement, 5G network has evolved as a multi-layer network that uses various technological
advances to offer an extensive range of wireless services. Several technologies, such as software-defined
networking, network function virtualization, edge computing, cloud computing, and small cells, are being
integrated into the 5G networks to fulfill the need for diverse requirements. Such a complex network design is
going to result in increased power consumption; therefore, energy efficiency becomes of utmost importance.
To assist in the task of achieving energy efficiency in the network machine learning technique could play a
significant role and hence gained significant interest from the research community. In this paper, we review
the state-of-art application of machine learning techniques in the 5G network to enable energy efficiency
at the access, edge, and core network. Based on the review, we present a taxonomy of machine learning
applications in 5G networks for improving energy efficiency. We discuss several issues that can be solved
using machine learning regarding energy efficiency in 5G networks. Finally, we discuss various challenges
that need to be addressed to realize the full potential of machine learning to improve energy efficiency in the
5G networks. The survey presents a broad range of ideas related to machine learning in 5G that addresses
the issue of energy efficiency in virtualization, resource optimization, power allocation, and incorporating
enabling technologies of 5G can enhance energy efficiency.

INDEX TERMS 5G, energy efficiency, millimeter wave, machine learning, massive MIMO, SDN, NFV,
CRAN, HetNet.

I. INTRODUCTION
Until the 4th generation of mobile communication stan-
dard, the focus was to deliver high data rate. Over the past
years, technologies such as the Internet of Things (IoT) have
resulted in billions of connected devices and the generation of
an enormous volume of data. It is expected that the traffic vol-
ume will increase exponentially and will become 1000 folds
by 2020. Also, the number of connected devices will continue
to increase exponentially. It is expected that there will be
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approximately 50 billion devices by 2021 [1]. Due to this,
the focus has shifted to other design requirements to deliver
a diverse set of service that includes:

• Enhanced Mobile Broadband (eMBB): This use case
is in line with the previous generation use cases where
the aim is to provide a higher data rate. 5G aims to pro-
vide 10 to 100x improvement over 4G and 4.5 networks,
which is equivalent to 10Gbps.

• Ultra-Reliable Low-Latency Communication
(URRLC): This use is geared to those mission-critical
services that require extremely low error rate (high
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reliability) and low latency. These applications usually
do not require a high data rate.

• Massive Machine Type Communications (mMTC):
With the rise of the IoT, the ubiquity of devices has
necessitated the development of connectivity standards
that can support high device density with low power
consumption. Usually, IoT devices operate on battery
and are expected to last several years ( 10 years). The
previous generations did not consider such scenarios.

Such requirements have resulted in the need to design a com-
munication infrastructure that can readily adapt to changes.
In this regard, 5G networks are being designed to provide
pervasive networking, high data rates, coverage, reliability,
and low latency. Meeting such diverse requirements has also
resulted in increased ICT energy consumption. By 2025,
the ICT industry itself could be responsible for 30% of power
consumption globally, where data centers alone account for
3% of carbon emission [2]. In mobile networks, 80% of
the total energy of cellular networks is consumed by base
stations and has pivotal importance for energy efficiency
improvements [3]. For instance, to improve the coverage and
meet capacity requirements, a large number of small cells
will be deployed. Small cells make the network denser, which
leads to more energy consumption. According to the small
cell forum, in 2024, all 4G small cells will be replaced by
5G small cells, reaching 13.1 million installations in 2025
[4]. Furthermore, massive MIMO also increases the power
consumption due to more hardware components required for
each BS [5]. Therefore, there is a need for efficient resource
management and spectral sharing for improved energy effi-
ciency.

Another factor of energy consumption of the network
devices is the energy requirement that differ from peak hours
to less load time. Base station related factors add up to the
energy consumption every time a new function is added
to the network. Such operations add cost to the Operating
Expenses (OPEX) by adding dedicated hardware. This can
be fixed by introducing virtualization of the infrastructure.
As networks are expanding massively, the network functions
are not easy to manage on dedicated devices and need a
paradigm change in conventional management of the net-
work. Network Function Virtualization (NFV) can handle
such provisions by eliminating the need for hardware and
implementing separate software-based functions [6]. This
virtualization not only provides flexibility but also reduce
OPEX and CAPEX cost. Different virtual machines can use
a common node to implement NFV functions. For example,
in the case of RAN, one virtual machine providing baseband
processing and other virtual machines for core network user
policies can use the single node. This reduction in hardware
deployment through virtualization can lead to a more energy-
efficient network. Furthermore, energy efficiency is directly
affected by data rates; hence, a balance is required between
energy consumption and QoS [7]. From a service provider’s
perspective, degradation in QoS is unacceptable. Therefore,

the focus should be on maintaining the right level of energy
efficiency so that the QoS does not affected.

Considering the energy constraints and versatile network
requirements, traditional approaches are not enough for net-
work optimization. In this regard, machine learning tech-
niques are being used to let the system learn intelligently
from data and optimize the overall operation of the network.
For example, virtualization technology improves energy effi-
ciency and resource utilization and can result in up to 50%
of energy-saving [8]. To achieve energy-efficient virtualiza-
tion and network optimization, machine learning can further
improve energy-efficiency through load sharing and con-
solidation. Likewise, energy consumption in the data cen-
ters, which consume most of the energy, can be minimized
by intelligent resource allocation and management through
machine learning approaches.

Several machine learning approaches can be applied to
improve the energy efficiency of 5G networks. In supervised
learning, the model is trained on a set labeled data to pre-
dict optimal solutions. An example of a supervised learning
application is massive MIMO for energy efficiency, in which
channel estimation and detection are considered a problem
because of a high number of antennas. Unlike supervised
learning, unsupervised learning works on unlabeled input
and is suitable for clustering and dimensionality reduction.
For example, unsupervised learning can be used to clus-
ter BS with similar behaviors for energy-efficient operation
in varying load conditions. The use of reinforced learning
approaches for energy-efficient solutions is suitable when
little or no prior data is required for processing.

This paper aims to provide a comprehensive survey of
recent advances in energy efficiency techniques at access,
edge, and core network utilizing machine learning. Power
allocation, resource optimization, pre-coding, and other
energy-efficient techniques have been discussed in this paper
with regards to 5G and energy efficiency.

A. MOTIVATION
Cellular technologies have seen gradual evolution from 1st

generation to 5th (5G) for meeting the demand in terms
of bandwidth, throughput, latency and jitter [9]. In 2017,
there were around 8.4 billion connected devices, among them
2.7 billion were smartphone users. It is expected that the
connected devices will reach 20.4 billion, with 3.5 billion
smartphone users in 2020 [10].With this tremendous increase
in smartphone users, wearables, and IoT devices, providing
high data-rates, coverage, and low latency is becoming a
challenge. Furthermore, each generation gave rise to energy
consumption due to the addition of hardware to support new
applications and requirements. It is expected that 5G will
give significant rise to this traditional trajectory of energy
consumption. The need to support high data rates and a large
number of devices are making these networks more hungry
for energy. The energy consumption of 5G is four times than
of 4G [11]. Currently, 0.5% of the entire world’s energy is
consumed bymobile network [12]. According to the Ericsson
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Mobility Report [13], in 2025, the amount of user data will
increase four-time compared to today’s network. As a result,
energy efficiency is a significant factor in 5G as compared
to earlier generations. Several technologies are being inte-
grated in the 5G network to realize the diverse set of ser-
vices. These technologies include Software-DefinedNetwork
(SDN), Ultra-Dense Network (UDN), Network Function Vir-
tualization (NFV), multi-access edge computing, and cloud
computing. However, the integration of various technologies
creates several challenges in terms of energy efficiency. For
example, in Ultra DenseNetwork (UDN), even though energy
consumption is decreased due to low transmission power but
the increase in computational requirement results in higher
energy consumption in a dense scenario. This increase in
computation power will continue to increase over time [14].
Also, to serve growing demand, massive MIMO technology
is used to serve denser sites. However, in massive MIMO,
the balance among linearity and efficiency is critical. The
measurements of power amplifiers directly affect the energy
efficiency of the massive MIMO system. Making them lin-
ear escalates the cost, and non-linearity eventually affects
energy efficiency. The demanding nature of future technolo-
gies requires appropriate hardware, efficient learning tech-
niques (that can take energy efficient decisions intelligently),
and new network design to break the energy curve.

Machine learning, in this regard, can deal with several
challenges faced in 5G networks due to the integration of
several new technologies in an energy-efficient manner. The
motivation behind this article is to address the growing need
for intelligent networks that take intelligent decisions to
make the network energy efficient. The future generations
of wireless communication and 5G networks are too diverse
to make decisions based on pre-defined and fixed rules.
The ability to interact with the environment and learn from
the generated data makes it possible to design a network
that adapts to improve the network energy efficiency. Fur-
thermore, in 5G or even future wireless networks, machine
learning techniques can help with various non-linear and non-
convex problems that may arise due to 5G deployment and
network design.

In terms of expenses, energy efficiency is also a significant
cause of concern for mobile network operators. Besides eco-
nomic importance for network operators, energy efficiency
has ecological importance as well. SMARTer2020 published
a report in 2015 that by the end of 2020, the carbon emission
will reach 1.27GT (around 2.3% of global emission) [15].

B. COMPARISON WITH EXISTING LITERATURE
Various surveys has been conducted on 5G technologies [12],
[16], energy efficiency [14], [17]–[19], and on enabling tech-
nologies such CRAN [20]–[23], SDN [21], NFV [6], UDN
[24], massiveMIMO [25], [26], HetNets [27] andMEC [28]–
[30]. The surveys on energy efficiency is either limited to the
energy harvesting techniques, system design [18], virtualiza-
tion [21] or architecture [19]. Table 1 explains some of the

research contributions and limitations of existing review on
the issue of energy efficiency.

To the best of our knowledge, this survey is unique as it
captures the application machine learning from a different
perspective. The classification and review presented in this
paper allow the researcher to understand the significance
of various machine learning techniques in 5G for energy
efficiency using the end-to-end approach.

C. NOVELTY AND CONTRIBUTION
This paper aims to provide a comprehensive survey on
addressing energy efficiency in 5G network challenges
encountered in enabling technologies such as mmWave,
CRAN, massive MIMO, NFV, hetNets, small cells, and SDN
using machine learning. Few studies have been made on
energy efficiency in their respective enabling technologies in
the literature. However, none of them categorized the network
by covering whole network requirements from the core to
the access network. This survey incorporates variousmachine
learning-based energy-efficient techniques in the 5G network
for researchers to benefit and explore further. Specifically,
the main contributions are highlighted as follows:

• A detailed discussion on applying machine learning for
improving energy efficiency focused on the enabling
technologies for 5G.

• A review on the energy efficiency aspect of 5G technol-
ogy using end to end layered approach that involves core
network, access network, and edge network.

• Taxonomy of application of machine learning in 5G
networks for energy efficiency found in the literature.

• Open issues and future research directions for achieving
energy efficiency in the 5G ecosystem.

D. ARTICLE ORGANIZATION
The rest of the paper is organized, as shown in Figure 1.
Section II provides a brief overview of the evolution of 5G
enabling technologies, energy efficiency, and machine learn-
ing. Section III presents energy efficiency’s needs, chal-
lenges, metrics, and projects. The taxonomy is discussed
under section IV, underlining the importance of energy effi-
ciency. Section V provides future directions and challenges to
help researchers to continue research in this area. Section VI
finishes the paper with a conclusion.

II. BRIEF OVERVIEW OF 5G, ENERGY EFFICIENCY &
MACHINE LEARNING
This section gives a brief overview of 5G, energy efficiency
and machine learning and we also bring forward the need for
machine learning and its applicability in energy efficiency.

A. 5G AND ENABLING TECHNOLOGIES
Extensive coverage, reduced latency, greater bandwidth and
higher data rates are the much-anticipated features of 5G.
3GPP initiated 5G studies with its estimated completion by
2020 in rel 16. As compared to 4G, 5G data rate requirements
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FIGURE 1. Outline of the paper.

FIGURE 2. Outline of technologies analysed for energy efficiency in this
survey.

are increased by ten folds and hence requires higher data
rate and bandwidth. 5G aims to cater to the new spectrum
utilization (C-band), which has higher frequencies to fulfil
bandwidth needs. A summary of the performance difference
between 4G and 5G is shown in Table 2 and the enabling
technologies of 5G in Figure 2. Moreover, with the introduc-
tion of VANET, IoT, 5G assisted smart healthcare [32], real-

time controlling of the machine and high data rate requires
the integration of following enabling technologies:

• Millimeter waves fall under 30GHz to 300GHz,
which provides more bandwidth to users. Larger band-
width means a higher data transmission rate. However,
at extremely high frequencies, attenuation increases,
which means that mmWaves cannot be used for long-
distance communication. However, these high frequen-
cies work well for a short distance and are used in small
cells.

• Massive MIMO is connecting multiple antennas to a
single base station to provide improved spectrum uti-
lization and data rate. Furthermore, it results in reduced
interference due to efficient beamforming and spatial
multiplexing. Despite several advantages, some issues
need to be addressed, such as pilot contamination, chan-
nel correlation and interference management.

• Heterogeneous Network (HetNet) involves deploying
different radio technologies and along with legacy sys-
tems to provide seamless coverage and capacity. Inter-
tier and intra-tier interference, resource allocation, and
optimization are the most significant bottlenecks to
energy efficiency.

• Ultra Dense Network or dense deployment of small
cells provide users with better coverage and throughput
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TABLE 1. Existing recent surveys on energy efficiency.

TABLE 2. Performance difference between 4G and 5G (based on Verizon and 5G-ppp analysis).

[24]. Ultra-dense networks comprise of numerous small
cells that can be deployed using the base station,
relays, or Remote-Radio Heads, with all the functionali-
ties of a conventional macrocell along with the benefit
of low power consumption. Deployment of numerous
small cells undoubtedly address the capacity and cov-
erage issue but result in increase cost and management
due to the deployment of a large number of base sta-
tions [33].

• Software Defined Networking (SDN) is one of the
most crucial components that provides management
facilities to large and high-speed networks by splitting
the data plane and control plane. In the case of 5G
network, SDN can orchestrate and control applica-
tions/services in a fine-grained and network-wide man-
ner resulting in the more efficient management of the
network.

• Network Functions Virtualization (NFV) decouples
functions (firewall or encryption services) from allo-
cated hardware into connectable blocks and shifts those
functions to virtual switches, servers, or inexpensive
hardware. Specialized hardware, used in networks are
expensive and difficult to program to adapt to changing
network requirements. Furthermore, the hardware has
interoperability issues making the network less flexible.
Therefore, by decoupling hardware from the associated
network functions provides improved scalability and
flexibility.

• Cloud Radio Access Network (CRAN) is a widely
accepted paradigm to provide features like central
processing, energy-efficient infrastructure, real-time
computing, and improved spectral utilization. The three
components Baseband Unit (BBU), Remote Radio Head
(RRH), and Optical Transport Network (OTN), are used
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to provide base-station functionalities, radiofrequency
signalling, and their transmission to the cloud network.
The use of densely deployed RRHs which are controlled
by C-RAN enhances the scalability and improves net-
work capacity.

• MECMobile Edge Computing, similar to CRAN tech-
nology, also aims to improve the RAN. CRAN focus on
centralization and cloud services. In contrast, MEC aim
towards decentralization by pushing the computation,
processing and storage close to the user. MEC decreases
the latency and reduces network congestion in the back-
haul network. ETSI proposed the idea initially to resolve
the network congestion issue by using the distributive
computing approach. Certain features ofMEChave been
introduced in 4G as well.

B. ENERGY CONSUMPTION OVERVIEW
Cellular systems have made headway from purely analog
to digital technology that provides ubiquitous connectivity.
The focus of each generation was to provide higher data rate
and capacity. The energy efficiency was not given significant
consideration until 3G. According to a study on 2G and 3G
power consumption [34], for a 15 minute time window, GSM
consumes an average of 1.08kW to 1.20kW.Whereas, UMTS
average power consumption for the same 15 minute time
window was around 0.19kW to 0.22kW.

According to another study, 5G power consumption at peak
hours is 1200W to 1400W, which is 300% to 350% greater
than of 4G [35]. The power consumption varies significantly
between peak and off-peak hours. To address this issue,
researchers proposed to put the base station radios in sleep
mode as the majority of the electricity consumption was due
to base stations and RF transceivers (76% of total power con-
sumption). The base station switching strategy is an efficient
technique to save energy and improve energy efficiency. This
behavior of turning the base station ON/OFF depends on the
fluctuations of traffic patterns over time and space. China
Mobile started using the same BS ON/OFF strategy from
2009 and can save around 36 million kWh [36]. Considering
the potential of this BS sleep strategy, researchers started
working on this technique to get more benefits. Considering
the 5G network for this strategy, it becomes more challenging
because of different enabling technologies and heterogeneity
of the network. Other hurdles in the energy-efficient prac-
tices were site architecture, their distribution for coverage,
the power consumption of electronic devices and cooling
systems (24% of total power consumption). An estimation of
consumed energy in ICT, data centers, carbon footprint, RBS
and core network is shown in Table 3.

C. QUEST FOR ENERGY EFFICIENCY
In 1990, the Information & Computer Technology emerged,
which led to work on electricity consumption. In the early
times of ICT, electricity consumption was mainly divided
into commercial and domestic use of wired and wireless
devices [37]. If the increase in ICT consumption from 2010 to

2015 is compared, the power consumption of communication
networks increased from 185TWh to 805Twh [38], that is an
almost 31% increase. According to Ericsson, the energy con-
sumption of 5G is much smaller than of 3GPP and 4G, which
is also shown in Figure 3. Over the last decades, many reports
highlighted the energy crunch of ICT sector. According to
[39], it is estimated that in 2030, energy consumption will
increase to 21%. Recent research by Ericsson [40] focused
on environmental aspects and sustainability perspective of
communication, where the target is to make ten times more
energy-efficient than the networks in 2017.

FIGURE 3. Energy usage of electricity, renewable sources and electricity
plus other facilities of communication system (a) Ericsson [13] estimation
for coverage of different technologies from the year 2010 to 2018 (b) Total
energy consumption of 2018 and 2025.

In 3G, energy efficiency was in very early stages and was
not a significant part of the research. The new modulation
scheme, access schemes and channel coding required more
power compared to 2G [41]. With the launch of CDMA,
energy efficiency improved because of its efficient power
control and resource utilization. Thus, researchers started
working on how efficiently the power could be used in terms
of data centers in 3G and base stations. In [42], power
reuse factors for 3G were presented that discussed increasing
energy efficiency by re-utilizing resources. For the optimized
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TABLE 3. Estimation of the consumed energy in ICT, data centers, carbon footprint, radio base station and core network for the time period from 2001 to
2030.

energy-efficient network researchers worked on dense low
power networks [41], renewable energy supply [43], power
management, power reuse and CDMA deployment. In Fig-
ure 4, the energy consumption comparison among different
parts of the communication system is shown for the year
2013 and 2025.

FIGURE 4. Energy consumption estimation in communication system
in 2013 and 2025 [44].

In 4G, with the introduction of MIMO and OFDM,
researchers aimed to explore both in terms of spectral effi-
ciency and capacity. At that time, energy concerns were
not given significant consideration [45]. Due to limitations,
MIMOwas replaced bymulti-userMIMO, that provide much
better results in terms of energy efficiency. OFDM work as
a multi-user diversity aiming at spectral efficiency as well
as efficient use of energy. According to [46] an efficient
architecture was required in initial stages of 4G to make
network energy efficient, the author also discussed green
energy standardization, metrics and techniques required for
4G. Also, the consumed energy of ICT for the year 2011 was
around 4.7% of the worlds energy consumption [47], [48].
Base stations consume approximately 80% of the total cellu-
lar network, whereas among this 70% is due to amplification
and cooling purposes [48].

D. MACHINE LEARNING OVERVIEW
The engineering of developing intelligent programs (artificial
intelligence) started in the 1950s. Machine Learning (which
does not need any categorical programming to learn) started
evolving in the mid-1980s and matured over time. Machine
learning is the sub-field of Artificial Intelligence (A.I) and is
further sub-categorized into Supervised, Unsupervised, and
Reinforced Learning. Deep Learning is also a sub-field of
machine learning which evolved in 2010 and can be classi-
fied as supervised, unsupervised, and reinforced. Recently,
machine learning based approaches has been applied to many
research fields for solving problems like resource manage-
ment & allocation [49], power allocation [50], [51], cell
sleeping [52], pre-coding [53], [54]. In this section, we look
at different machine learning approaches used for the energy-
efficient wireless network. A brief discussion on the benefits
of applying machine learning based over the conventional
approaches for improving energy efficiency in the 5G and
beyond network is also presented.

1) COMPARISON WITH TRADITIONAL APPROACHES
The new wireless technology-based model needs high data
rates and diverse applications that challenge traditional tech-
nology in learning and decision-making processes. Some of
the M.L advantages over traditional approaches are as below:

• Machine learning can learn from its data, whereas the
traditional techniques are mostly hard coded.

• Particularly in large scale problems, learning speed sig-
nificantly improves.

• In conventional approaches, a new set of instructions
needs to be coded for every new function.

• Machine learning has autonomous decision-making
capability.

• Software development every-time for new applications
is a costly project.

Besides its benefits, there are also some of the drawbacks
associated with machine learning related to training.Machine
learning integration for large scale processing, security, and
how the application-level implementation is possible for
research theories [55].
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2) MACHINE LEARNING APPROACHES FOR ENERGY
EFFICIENCY
Machine learning is further divided into supervised learning,
reinforced learning, and unsupervised learning. There is also
further classification on these techniques to be best utilized
for particular problems. Machine learning techniques dis-
cussed in this paper are also presented in Table 4. Supervised
learning is the best approach for channel-related problems
such as channel estimation, its detection, and learning its
behavior to take future predictions. This is because super-
vised learning produces the output from the collected data
based on forgoing experiences. However, for the networks
where the raised problems are unknown, reinforced learning
is best to use, such as resource allocation and management.
Reinforced learning has the potential to adjust its strategy
to obtain the required results. It learns from the results sys-
tematically and improves the decisions further. Unsupervised
learning is slightly different from supervised learning as it is
better utilized for clustering and spectrum sensing problems
in wireless networks. It functions on its own to learn the
network and solve the problem and thus solve more complex
problems compared to supervised learning. Figure 5 depicts
machine learning classification and learning approaches that
are frequently used in 5G enabling technologies and energy
efficiency problems.

FIGURE 5. M.L classification and techniques used for energy efficiency.

III. ENERGY EFFICIENCY OVERVIEW
The goal of connecting billions of devices is non-sustainable
in terms of both economic and environmental concerns. The
rate at which network design demand is increasing, it will
eventually lead to 1000 times more power consumption than
today’s network. This energy crunch lead researchers to set
up a Green Touch Consortium [71] to research over the
critical matter of green energy efficient network. According

to [18], resource allocation, network planning and deploy-
ment, energy harvesting & transfer, and hardware solutions
are the broad categories that can increase energy efficiency.
According to the Shannon formula, with the increase in band-
width, the energy consumption factor also rises [31]. Massive
MIMO is a promising technology to deal with efficiency
concepts in terms of both spectrum and energy. Multiple
antennas attached to a BS can either sleep or turn off mode to
increase energy efficiency. In [26], the authors worked on the
trade-off between spectral efficiency and energy efficiency.
The proposed work presented resource allocation to increase
energy efficiency using the benefits of the Rayleigh fading
channel model for massive MIMO. Authors in [16] worked
not only on energy efficiency as well as on end to end delay.
Besides spectrum efficiency, increase in bandwidth, deploy-
ing small cells, D2D/M2M communication, and ultra-dense
networks, energy efficiency is another interlinked challenge
that needs to be addressed. However, 5G is promising to
decrease energy consumption by 90% [72]. According to
[73], energy efficiency can be calculated as a ratio between
the energy consumption of a system and Joules per bit capac-
ity, which is an energy consumption ratio.

ECR =
Esys

Csys (1)

A. GREEN PROJECTS
The telecommunication sector is among the top energy con-
sumers. Data centers, base stations, and core networks have
the highest carbon footprint and energy consumption com-
pared with overall ICT energy consumption. It is assumed
that in 2030 almost 20% of the global CO2 emission will
decrease [74]. Despite all the new IoT, architecture, and
traffic growth, the concerns are to meet the minimum require-
ment of energy consumption. The need for green commu-
nication has led researchers to work on various projects to
achieve dual benefits. Firstly, reducing the energy cost as
it affects profit calculations directly. Secondly, by reducing
the carbon footprint, that is also an alarming environmental
aspect. For this purpose, many joint ventures and projects
mentioned in Table 5 were initiated over the past years to cut
the energy consumption factor. In [75] 5GrEEN is discussed,
which took the initiative to highlight the need for energy
efficiency in 5G. In 2010, the Green Touch consortium aimed
to improve energy consumption to 90% at the end of 2020. 5G
Infrastructure Association covering the private side of 5PPP
mutually launched a 5G Infrastructure Evaluation Associa-
tion Group in 2006 [76]. The target was to develop inter-
national standards, cooperation among 5G standards for the
long run evaluation, and provide more secure internet. Some
of the other research projects over past years are [77]–[81].

Many other 5G projects are also in line for automotive,
vertical industries, and 5G long term evolution. In 2018,
5G-EVE, 5G-VINNI, and 5GENESIS started working on
infrastructure enhancement aspects to create a foundation
that eventually helps to mount end to end 5G. 5G SMART,
5GROWTH, and 5G-SOLUTIONS are the projects started

VOLUME 8, 2020 187505



A. Mughees et al.: Towards Energy Efficient 5G Networks Using Machine Learning

TABLE 4. M.L techniques discussed in this paper for energy efficiency.

in 2019 for smart energy, machine-based remote operations,
architecture, and dynamic use of the network. Inmost of these
projects, the work was on energy efficiency aspect in 5G
with focus on load balancing. However, a lot of work is
required for on-demand response modeling and service-level
optimization specifically to the power side.

B. GREEN METRICS
The volume of the network is expanding by the factor
of 10 every five years. Energy efficiency is now required as
an important component and needs to be involved in every
development aspect. From architecture level to deployment,
network-level to facility-level green metrics roles are mean-
ingful. Energy efficiency seems to be understandable if it can
be measured. They are used to measure the consumed energy
also for enhancing efficiency by comparing performance
trade-offs. The following are the international standardization
bodies to study the telecom equipment to enhance the energy
efficiency globally [82]:

• International Telecommunication Union (ITU) has the
main focus on energy consumption reduction, energy
metrics and environmental protection & recycling. Their
focus is also on Green House Gas (GHG) impact and
how ICT can contribute to GHG.

• European Telecommunications Standards Institute
(ETSI) is concerned with the life cycle of telecom
network, telecom infrastructure, ICT equipment and aim
towards the reduction in energy consumption. Its main

focus is on power optimization, energy consumption,
power feeding and assessment of ICT energy impact
globally.

• Climate Change Standardization Landscape
• Alliance for Telecommunication Industry Solutions
(ATIS) is a standard organization that provides the
evolving ICT industry solution. It deals explicitly with
telecommunication equipment energy and power con-
sumption at different load levels.

Green metrics can be implemented at equipment, facility, and
network-level to measure and enhance efficiency [83]. Some
of the network-level metrics are Energy Consumption Rating
(ECR) [75], Energy Efficiency Rate (EER) [84], Access Per
Cycle (APC) [85], (ECG) [83], (EEER) are used to measure
energy efficiency at network level, performance evaluation
and other aspects related to network capacity and coverage.
Power Usage Efficiency PUE and its subordinate metric Data
Centre Efficiency (DCE) [86] is implemented on the facility
level for power. Telecommunication Equipment Energy Effi-
ciency Rating (TEEER) [87] and Telecommunication Energy
Efficiency Ratio (TEER) energy metrics were developed by
ATIS as equipment level metrics. Some other energy metrics
are mentioned in Table 6.

IV. TAXONOMY
Energy efficiency has gained its importance in the design and
operations of 5G networks. The energy efficiency covers the
whole network from the radio access network, core network,
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TABLE 5. List of green projects.
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TABLE 6. List of green metrics.

data centers, and technologies. In this section, we will discuss
the taxonomy of 5G enabling technologies to improve energy

efficiency using ML techniques. The proposed taxonomy is
shown in Figure 5. Several approaches, including resource
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FIGURE 6. Taxonomy of machine learning application for energy efficiency in 5G.

management, resource sharing, bandwidth allocation, and
power allocation, have been discussed to improve energy
efficiency. The below section gives a detailed overview of
energy efficiency in 5G and its solutions with the help of
machine learning.

A. CORE NETWORK
1) SOFTWARE DEFINED NETWORKING (SDN)
5G networks are required to be more resilient and self-
autonomous. The 5G infrastructure is based on Software
Defined Networking (SDN). In this network architecture, it is
possible to control the network centralized and intelligently
to use software applications. All the communication between
applications and services can be managed from the central-
ized center allowing dynamic adaption in real-time. Many of
the ICT companies like Yahoo, Google, Facebook, and Cisco
opted software-defined networking in their data centers and
network equipment [88].

SDN separates the traditional vertical integration by
detaching the data plane from the control plane, improving
user experience by providing a higher data rate and low
latency. Because of this separation, network switches start
working as forwarding devices. A logically centralized con-
troller controls the traffic replacing routers, switches, and
traditional table forwarding format. These switches and con-
trollers are connected via well-defined programmed inter-
faces. These application programming interfaces (API) are
used to employ control by controller [89]. One of the widely
use API is OpenFlow, and the famous controllers are NOX,
POX, Beacon, Maestro, MUL, RISE, OpenDayLight, and
NOX-MT [20]. This further helps inmanaging the forwarding

plane and providing access to all other parts of the hetero-
geneous network. Some of the major advantages of SDN is
intelligent networking, resource virtualization, and session
management.

Other than several benefits, there are few issues in SDN
that needs to be investigated further. One of the limitations
is an overhead increase because of excessive requests to the
controller. To solve the congestion problem, a framework is
proposed based on low-cost load-balanced route management
(L2RM) to monitor the burden of traffic in fat-tree DCN [90].
In the second phase, adaptive route modification (ARM) is
triggered based on load. A dynamic polling system is adopted
to update statuses to reduce overload. The ARM mechanism
proposed works in two ways. Firstly, it helps switches to
remain updated and remove old data to avoid overloading
buffer. Secondly, it wakes up only when necessary, thus sav-
ing cost and energy. In terms of overloading, the proposed
system is effective for the energy efficiency factor. Data cen-
tres utilize about 10% to 20% of power, and over-furnishing
of the data centre with resources causes a lot of energy
inefficiency. SDN is one method to reduce energy wastage
and efficiently use power in peak hours and resultant traffic
consolidation. In cloud computing, there is an agreement
between cloud providers and organizations to ensure pro-
vided services and quality of service to customers. Because
of overbooking, there are chances of service level agreement
(SLA) violation. [91] offers a technique to improve energy
efficiency based on the overbooking ratio, which is decided
based on link information and investigating the correlation
between VMs. When the scenario of overloading happens,
VM shifts to another host to reduce SLA violation.
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One approach to solve these issues is by making them
intelligent enough to learn from their environment. SDN is
very useful in realizing such smart solutions. Machine learn-
ing is an efficient way to work in conjunction with SDN to
facilitate numerous challenges for optimization, organization,
and network resources management. The latest computing
technologies like TPU also can cope with the high compu-
tational requirements of machine learning. These specialized
purpose processors like TPU and GPU have enough capacity
to incorporate the use of machine learning techniques to give
results within milliseconds [92], [93]. Most of the work done
on SDN is on traffic, security, and routing. To the best of
our knowledge, significant research is required to combine
machine learning with SDN to improve energy efficiency.
Here, we investigate machine learning techniques used in
SDN to enhance performance and energy. In machine learn-
ing, the feature extraction approach is used to extract the most
relatable data that incorporates feature learning (which helps
differentiate different features from raw data) and feature
reduction. The output depends on the features selected; the
more complex features require more considerable training.
More training means high computational power and memory.

Switches, ports, and active links consume a lot of power
in any SDN. One way to conserve energy is by minimiz-
ing the power factor of these switches and links. Moreover,
desirable network performance is achieved by changing the
flow paths to get maximum throughput and minimum delay.
To configure and control the network, the controller should
have all the updated information related to the network. Based
on this information, SDN can reconfigure the topologies.
An energy-efficient routing based hybrid solution is proposed
in [56]. A supervised and reinforcement learning framework
named HyMER with a primary focus on energy efficiency
and routing is discussed. In the first stage, supervised learning
is used for feature reduction via PCA, training, and then
testing. RL is used in the second phase, where Q-learning
is used for network status components and links utility for
dynamic routing based on repeated steps till destination. The
proposed technique provides energy-efficient and maintains
network performance as well. However, this technique relies
on extensive training using historical data. If the training data
is not sufficient, the output may be biased.

Another approach used for the efficient use of energy is
combining SDN with machine learning [57]. It is imple-
mented on the POX controller for traffic information and
topology extraction. The principal component analysis (PCA)
is used to reduce the feature size. The data with reduced
features, along with topology, is fed to train the model. The
proposed framework consists of three modules—traffic man-
ager to store data of traffic flow and the status of topolo-
gies. Machine learning learns from historical data and draws
graphs for traffic load. Linear regression is used to build a
regression model to train data sets. In SDN, because of the
iterative update of OpenFlow, the routing efficiency decrease.
The purpose of routing techniques is to decrease energy
factors, especially by minimizing packet delivery time.

Energy efficiency and routing schemes are interlinked with
each other. Using neural network [58] developed a routing
scheme that makes the controller work centralized to the
data flow. In this technique, the data flow path can also be
predicted, which helps to fulfil QoS requirements. A central
controller controls data collection, neural network packet
creation, training, routing, data processing, and rerouting.
Moreover, in the data plane side, switches contribute to flow
forwarding, NN creation, and route prediction. The Control
plane also monitors network and topologies discovery. When
the packet is received, it is first analyzed by the switch and
then forwarded upon received request. Hop is predicted based
on received NN data. With every hop headers of packets are
changed accordingly. At the time of failure or overloaded
network, a reroute request is generated. For intelligent rout-
ing, the neural network is trained by the controller based on
collected data. One of the benefits of machine learning is its
data-driven nature. As alreadymentioned, the SDN controller
has the benefit of global network visibility, proving helpful in
collecting data to feed machine learning. Not only this, with
the help of machine learning, the configuration is possible in
real-time.

SDN has been employed in transport networks [23], wire-
less sensor networks [94], network function utilization (NFV)
[95], cloud radio access networks (C-RAN) [22], Internet of
Things (IoT) [21] and edge computing because of its intrinsic
strengths. Some other benefits that SDN are granular, secu-
rity, centralized control, less operation cost, software-based
traffic scanning, cloud level abstraction, and guaranteed QoS.

2) NETWORK FUNCTION VIRTUALIZATION (NFV)
Next-generation wireless networks are all about independent
service-related functions. Consequently, virtualizing network
services is an approach tominimize use of hardware. Network
Functions Virtualization (NFV) relieves network operators
from increasing OPEX costs by reducing the conventional
purposed hardware, installation, and up-grading for new ser-
vices. NFV has the biggest advantage in energy efficiency.
Almost 30% of energy consumption can be decreased with
its implementation into 5G architecture [17]. NFV benefits
network operators in several ways, such as:

• No need for dedicated hardware also results in energy
saving

• No location dependency
• It is assumed that there is no energy consumption when
BBU will be in the idle condition in an absolute state.

• Improved operational efficiency & reduced cost
• Seamless and reliable interoperability with the latest
technologies

• Real-time and potent virtualization

The short distance between the user and virtual machines
can also save power because of shorter paths. There are
several standardization efforts to increase the adoption of
NFV. ETSI community ISG NFV is in the phase of release
4, working toward NFV evolution, automation, management,
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and orchestration [96]. Apart from ETSI other standardiza-
tion bodies ONF, IRTF, IETF, OPNFV, ATIS, BBF, OVF
and 3GPP are also contributing to NFV standardization [6].
Virtual functions are different from the logical system and
are virtually installed on commodity hardware. These are like
the blocks which can be used for numerous purposes. Virtual
network functions (VNF) are virtualized tasks implemented
by the NFV platform, providing security, load balancing, and
other EPC functions.

NFV usually works on high-performance modes and uti-
lizes the CPU optimally, mostly Dynamic Voltage and Fre-
quency Scaling (DVFS) mode, which helps maintain energy
efficiency. Energy consumption using NFV is similar to a
dedicated CPU energy consumption at its high processing
mode. In virtual environments, where the physical machines
are used for virtual network function (VNF), deployment
needs proper research to increase power consumption and
inefficient resources utilization. Also, traffic processing never
remains the same during the peak and average hours, which
also leads to energy wastage. Idle servers consume the same
amount of power but waste more than half of the energy
because of no utilization. Machine learning is an effective
way to reduce energy consumption by handling VNFs, espe-
cially on average traffic hours. An energy-efficient NFV
based architecture on 5G [97] investigated the effect of active
users in the network. The aim was to investigate the energy
consumption. All mobile core entities (mobility management
entity, serving gateway, packet data network gateway, and
policy & charging rules function) are formulated in one
virtual machine as core network virtual machine (CNVM).
The RRH and BBU are decoupled, where the BBU is imple-
mented in a virtual machine referred to as BBUVM. The only
way to pass the traffic is through CNVM and BBUVM. With
the focus on energy consumption, the architecture provides
services across flexible administration. Results proved that
up to 38% of consumed energy could be saved using the
proposed approach.

To handle complex networks, NFV Management and
Orchestration systems (MANO) are deployed to manage vir-
tualized infrastructure, communication and network infras-
tructure, NFV entities, and their life cycles [98]. As discussed
earlier, ETSI projects are in phase IV; howeverMANO frame-
work can improve management and orchestration services for
NFV. Most relevant projects are open source MANO [99]
for resource orchestrator, openbaton [100] for, throughout
service orchestration, Juju for VNFM, open stack tracker [99]
for optimization and resource allocation and X-MANO [101]
for sensitive information. With the help of SDN, many ser-
vices can be deployed over the network by providing flexible
VNFs. There can be many virtual functions such as firewalls,
servers, storage units and load balancers which are conven-
tionally defined as middleboxes [102]. For proper flow in an
organized network, all virtual functions should be intercon-
nected. This connectivity to provide services throughout is
called service function chaining (SFC). These SFCs support
multiple VNFs to provide traffic flow and services.

Proper resource optimization is a mandatory aspect of
quality of service. Thus, resource estimation is a critical
aspect of a smooth service that should be appropriately uti-
lized. A semi-supervised machine learning-based resource
demand novel model is proposed to avail the NFV environ-
ment characteristics to do the predictions [59]. Long short-
term memory (LSTM) model, which is also a type of recur-
rent neural network (RNN), can use past and current learning
data. After training, the data is further processed to remove
ambiguities. The collected SFC data is then used to predict
performance. The result shows that the proposed technique
is giving improved results as compared to the simple LSTM
technique. Another resource allocation technique in NFV is
proposed using Deep Learning [60]. It identifies the network
traffic by utilizing the timing characteristics.

B. ACCESS NETWORK
1) MASSIVE MIMO
Among several metrics, bandwidth efficiency is one of the
important factors to be chosen for the next-generation net-
work. The rapid increase in carbon emission and the grow-
ing power demand of communication networks resulted in
enhanced energy efficiency metrics. For this, MIMO became
significant due to energy-efficient capability and enhanced
throughput. In massive MIMO, the concept of numerous
base station deployment is the same as TDD operations like
conventional MIMO. However, it does not require additional
power for the transmission and bandwidth [25]. Multiple
Input Multiple Output (MIMO) is not a new concept. It has
been deployed in 4G with one BS support to eight antenna
ports. Although it is an old concept, it was not deployed fully
as conventional BS was considered more cost-effective and
MIMO more complicated.

As MIMO concept enters into 5G, a larger number of
antennas can be deployed, which is referred to as mas-
sive MIMO. Massive MIMO gives many advantages over
MIMO such as increased throughput, enhanced spectral effi-
ciency, increased signal to noise ratio, increased capacity,
reduced latency, increased data rate, and energy efficiency
[25]. Despite the earlier mentioned massive MIMO benefits,
antennas placement is still an issue in massive MIMO. The
basic rule to place an antenna with spacing is half the sig-
nal wavelength to provide no-correlation among antennas.
Massive MIMO, with hundreds of channels at one BS, leads
to increased spatial diversity. However, channel hardening
results when the faded channel behaves as a non-fading chan-
nel [103]. The random interference is still there in massive
MIMO, but it has little effect on communication. One way
to achieve zero correlation is by decreasing the wavelength;
the higher the frequencies, the lower are the chances for
correlation.

Transferring more bits per Hertz bandwidth makes the
networkmore spectrum efficient. However, another challenge
is to make the network more energy efficient. This can be
somehow possible with spatial modulation. Massive MIMO
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is much better than MIMO in higher bandwidth, enhanced
energy efficiency, and spatial freedom. However, the pilot
contamination problem occurs because of inter-user inter-
ference using the same reference signal and is an inherent
problem. Because of the frequency limitation, the cells are
bound to use the same frequencies blocks. The orthogonal
pilot sequences lead to pilot contamination. The pilot con-
tamination issue can occur in both ordinary BS and massive
MIMO.However, it still gatheredmore attention in the case of
massive MIMO because of the reuse of pilots. As the channel
difference between conventional MIMO and massive MIMO
is significant, a pilot contamination problem in any BS is
reduced by switching among different pilots (among large
pilot sequences).

In the case of massive MIMO, due to more active terminals
and more reuse of pilots (as pilots do channels estimation),
it is challenging to avoid pilot contamination. Whereas in
conventional MIMO, it can be overcome as more the termi-
nals, higher will be pilot contamination. Regular Pilot (RP)
and Superimposed Pilot (SP) are the twomost frequently used
methods to suppress pilot contamination [104]. In RP, data
and pilot sequences are transferred in a fragmented way while
adjusting the pilots sequence. In contrast, SP is an old con-
cept, where data symbols and pilot together instead of placing
them in time or frequency. The superimposed pilot has also
been advocated for real-time implementation through simu-
lation in [105]. The proposed work advocates that the super-
imposed pilot has shown better results in hybrid systems.
Uplink MIMO provides significant power saving because of
the higher array gain. This is possible because of the coherent
signal integration. In contrast, in the downlink, the beams are
focused on a particular direction for users. Cell-free massive
MIMO is a new concept. A large number of access points are
deployed in a distributed manner to serve numerous users.
These access points (AP) work in the same TDD and consist
of single or numerous antennas. This concept gives high
energy efficiency and spectral efficiency because of less inter-
user interference even with furnishing many users at the same
time-frequency because of the less distance among antennas
[106]. The cell-free massive MIMO concept is similar to
small cell deployment; the more significant difference is the
deployment of many AP vs. single AP. Massive cell-free
MIMO’s energy efficiency factor depends on power alloca-
tion and consumption, channel estimation, and the selection
of best access points. Although massive MIMO has matured
[107], supporting both multi-user and massive MIMO. Sev-
eral researches are being carried into spectral efficiency, pilot
contamination/decontamination, power allocation factor, and
energy efficiency.

A deep learning-based approach is used in [50] to let the
system learn from its user equipment location to allocate
downlink power. A massive MIMO network is considered
on TDD for both user equipment and base station operations.
The initial optimal powers are calculated using the Monte
Carlo method, and the training part is done offline. The
deep learning approach is used to let the network allocate

power based on user location. It is proved that max pro-
duction strategy for neural network is more advantageous in
complex calculations than conventional approaches. When
used together for power allocation, max-min and maximum
production approach showed incompetence, which is then
addressed through a different neural network using the LSTM
layer. Although the simulation provided promising energy-
efficient power allocation results, the massive MIMO sce-
nario considered is not significant to prove its efficiency
for the real-time environment. However, deep learning is
a promising tool to solve the real-time high computational
problem as they can learn iteratively from the environment.
Another work proposed [53] on pre-coding integrates deep
neural networks because of its capability to reduce the
computational complexity. It utilizes structural information
through the training stage. Distributed massive MIMO is
also considered an energy-efficient way to allocate resources.
Compared to conventional massive MIMO, its throughput,
energy efficiency, and channel modelling in a complex envi-
ronment are noticeable [108]. Also, the beamforming in
massive MIMO results in improved energy efficiency on the
targeted coverage area [109].

2) ULTRA DENSE NETWORK/DENSE SMALL CELL
Ultra-dense networks were required to fulfill the needs of
those areas that are highly packed and require more cell
deployment. There are three ways to enhance the capacity
of the network (a) by enhancing the spectrum efficiency (b)
broadening the bandwidth, and (c) by deploying more cells.
The concept of dense deployment is found back in 4G, stuff-
ing the same area with many cells. However, the cost factor
and interference among those macrocells surfaced, which
has more diminishing returns. The better idea was to move
towards cells that providemore coverage to end-users and less
deployment cost. Small cells (picocells, femtocells) provide
coverage closer to the end-users and require less power, with
almost 90% more capacity. Small cell deployment does not
entirely negate the need for macrocell as its coverage area is
too small compared to macrocells, which is why macrocells
are still required to cover a large area. Ultra-dense small cell
network extends the coverage on the benefits of low power
consumption and deployment cost.

Apart from coverage area frequency reuse is also another
factor of small cells. Small cells are divided into four types:
(a) Picocells are mainly used to increase the capacity up to
100m and can be deployed indoors and outdoors. (b) Femto-
cells are also a type of small cell with the same characteristics
as picocells, except the coverage is 10-30m. (c) Relays are
the macro extension and need proper planning for indoor
and outdoor deployment to reduce interference. Its coverage
area is a little larger than of femtocells (up to 100m). (d)
RRHs can only be deployed outdoor but with proper plan-
ning, as this is normally connected with BS through a wired
connection or microwave links. The provided coverage is
around up to 100m. The consumed power of small cells is
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same for all approximately 100mW (indoor) and 0.25W to
2W(outdoor) [24].

Deploying small cells and making the area dense does not
solve all the problems. Some new issues like interference
and more energy consumption also arise. To resolve such
issues, the integration of different techniques are required
for challenges to be addressed. Capacity is not imperatively
dependent on dense deployment on cells, many other factors
like interference, frequent handoffs, excessive energy con-
sumption, and mobility. The focus of 5G is to use higher
frequency ranges, and hence ultra-dense networks are con-
sidered an efficient feasible solution. It benefits in utilizing
frequencies more productively, deploying small base cells
densely (to cater to exploding traffic demands), and bet-
ter energy consumption. Therefore, the need for an energy-
efficient network became indispensable.

A three-layer learning solution is provided for dense small
cell networks in [62], macro base stations and small base
stations are deployed where power grid feed energy is used
to Macro Base stations (MBSs) and energy harvesting tech-
niques like solar cell provide power to Small Base stations
(SBSs). SBS also has the feature of on/off to save energy. The
proposed first layer takes decision locally at SBS by making
the best use of resources. It is composed of the heuristically
accelerated reinforcement learning approach. The second
layer takes decisions at MBS and is made up of a multi-
layer feedback neural network and is also responsible for the
energy factor. This approach gave promising results in terms
of radio resource management for self-organizing networks
and energy efficiency.

3) HetNets
Initially, HetNets were introduced to increase spectral effi-
ciency and capacity in LTE-advance. At that time, macrocell
was used in the majority for large coverage perspective,
whereas small cell was to fill in the gaps. The power con-
sumption of macrocells is also noticeably large as compared
to pico, femto, and microcells. With 5G, enhanced energy
consumption, high data rates, and large coverage capacity
become essential for the network. Dense deployment is the
key to provide better user association and cell selection.
However, many other limitations and challenges emerge with
it that will be discussed further in this section. Although small
cells aremore power-efficient thanmacrocells and the HetNet
are an optimal choice, but still, there are some hurdles:

• With the growing installation of macrocells and small
cells, not only the installation cost increases but also
the functioning power cost of towers and equipment
increases.

• Coverage gaps
• interference among small cells and macrocells
• Increased OPEX

The first thing that directly affects energy efficiency or power
consumption is the network’s architecture, the number of
nodes, and deployment. As mentioned above, with mas-

sive deployment of small cells, the coverage increases mas-
sively, but the cost of these deployments and maintenance
also increases. The urgent need for enhanced spectral effi-
ciency in 5G and energy efficiency both caught the eyes of
researchers. In [110] the spectral efficiency, trade-off with
energy efficiency is also discussed. However, multiple BS
are deployed, focusing on HetNets deployment, and they
consume maximum power even if the traffic is minimal,
resulting in OPEX and environmental energy efficiency con-
cerns. HetNets consists of small-cells and macrocells that are
also differentiated based on power consumption but can also
be managed by the same operator. In this scenario, resource
management is required to utilize the same frequency so
that the coverage is not affected. Another method is to use
discontinuous bands individually to cell types to minimize
interference. After the dense deployment and architecture
solutions, the major problem is how the users will be allot-
ted to BS cells. The problem of associating a user with a
BS cell, termed as user association, also affects the net-
work’s performance. To solve the user association problem
efficiently, more accurate network information is required.
In a dynamic environment, there is a need to solve the
problem more efficiently and intelligently. For this, machine
learning is an emerging technology to solve such issues.
In [64], the problem of energy efficiency is effectively solved
in uplink HetNets along with user association optimization
using deep reinforcement learning. For such non-linear prob-
lems, traditional methods of problem-solving are not enough.
Deep reinforcement learning can solve decision making and
resource allocation problems efficiently in real-time.

According to [27], enhanced spectral efficiency and load
across base stations are important to avoid congestion and
better user association. The user association decision solely
depends on the quality of service, requests and require-
ments, priority, and availability of resources [111]. Among
some of the previously used user association methods is
by using the maximum SINR for the association. However,
in the case of lots of user association to that particular
base station, the performance degrades significantly. Sev-
eral researchers also worked on user association and power
allocation together [49], [63] [64] using deep reinforcement
learning (DRL) and deep neural networks. According to [65],
DRL is an efficient way to resolve complex issues. Another
problem re-association, which is of the same importance
as user association [66]. With the introduction of different
cell sizes, user association becomes demanding. Channel
conditions, bandwidth, load on the base station, and power
consumption account for user association. Based on the trans-
mitter and receiver characteristics, the available spectrum
can be reused, thus leading HetNets to be more spectrum
efficient. This reuse spectrum characteristic results in less
power usage for both uplink and downlink, eventually mak-
ing HetNets more energy efficient. Efficient resource allo-
cation is essential for the energy efficiency of the network.
Deep neural network can solve complex non-linear problems
such as resource allocation, user association and resource
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management. A machine learning approach used for resource
allocation in [112], works by rewarding the QoS for each
femtocell and macrocell user. This helps to allocate power
allocation and gain efficient energy more effectively as the
environment changes dynamically. Another research work
focused on resource allocation used Convolutions Neural
Network (CNN), which also increased energy efficiency. The
idea is to subdivide the resource allocation issue into clas-
sification and regression problems and achieve the energy
efficiency decisions with low-level complexity [113].

Small cells, when deployed in the HetNets, use the same
spectrum as of the microcell layer. Macrocells are the most
power-consuming cells. Deploying small cells can result in
spectrum reuse and reduce energy consumption. However,
the interference is always there in small cells and microcells,
even with the spectrum reuse strategy. The e-ICIC feature
helps to mitigate this problem by allowing macrocells to
reuse the almost underutilized spectrums. Thus small cell
technology can help the network to cater data needs of several
connected devices and massive data traffic. Although small
cells can provide high data rates for communication, they
are also prone to high energy consumption. It is essential to
consider the energy consumption of BS and network benefits
for operators, i.e., remaining profitable while consuming less
energy.

4) mmWave
Most of these are using microwave frequency that is below
6GHz. As the number of devices is increasing expeditiously,
these frequency ranges are becoming congested. Researchers
are exploring new strategies to either use unused frequen-
cies, new spectrum, or substitute technologies. One feasible
solution to this problem is the use of a spectrum above
30GHz termed as millimeter wave. 30GHz to 300GHz is the
under-utilized spectrum segment where 24GHz is used for
microwave communications and is unlicensed, and 28GHz
are put up for auction in 2019. Federal Communication
Commission (FCC) promoted the auction of the high-band
mmWave spectrum in 2019. The contiguous spectrum to be
available for mmWave communication is 37GHz and 39GHz,
which make 2400 MHz and an additional 1000 spectrum
for 47GHz. In early 2020, 2400MHz of 5G spectrum were
accessible for auction [114]. However, most of the research
is already done on 28GHz, 71GHz to 76GHz, and 81GHz to
86GHz band.

However, over the past years, researchers have doubts
about its sustainability. It has an extremely short range of
wavelengths that is the reason it is best used for line of sight
communication and has the benefit of faster data transfer.
Because of its wavelength nature, it can easily get blocked
by any obstacle. Various mmWave limitations are:

• Deterioration in mmWave signals can badly affect prop-
agation.

• mmWave provides high data rates but also vulnerable
(sensitive and easily affected by blockage). The sensi-

tivity of mmWave to weather and especially rain causes
severe attenuation and effect communication because
the size of rain droplets and mmWave wavelengths are
approximately the same [115].

• The major benefit of mmWave over other wireless
communication systems is ten-fold enhancement in fre-
quency to carry data. Not only this, because of less wave-
length, but more antennas arrays can also be installed on
transmitter and receiver base stations [116].

Hybrid precoding has become a significant research area.
It helps mmWave take benefits from beamforming when
combined with spatial multiplexing. Precoding schemes
always have a significant impact on energy efficiency. Archi-
tecture, planning, and hardware are also essential to rule
out the energy issues. However, energy coherent hardware
deployment sometimes risks-high data rates. Researchers are
working on hybrid coding (combining analog & digital pre-
coding). The channel estimation is necessary for mmWave
hybrid precoding, and that is a difficult task. Millimeter
waves are questioned over its sustainability, scattering, and
sensitivity. Channel changes over time due to reflection and
scattering. With massive antennas installation because of
massive MIMO integration with mmWave (at transmitter
and receiver side), it is challenging to estimate channel due
to significant computational requirements and complexity.
Deep learning is considered a feasible solution to such high
computational problems.

A deep learning-based approach is proposed by [53] for
hybrid precoding to enhance precoding performance and
spectral efficiency. A deep neural network-based framework
is considered for training purposes and creates mapping rela-
tionships among multiple layers to initiate functions. The
considered system is with one base station and Uniform Lin-
ear Array (ULA) antennas with no prior information on the
links. The framework consists of six hidden layers of DNN to
do the mapping, and then training is done for statistical infor-
mation of mmWave. As precoding techniques have a direct
effect on energy efficiency, the same deep learning approach
for precoding can be used to enhance energy efficiency as
well. Another energy-efficient hybrid coding technique for
mmwave and massive MIMO is proposed [54] that uses
machine learning. The hybrid precoder is generated through
their sum rates that is always with the high probability.
This scheme proved enhanced energy-efficient and sum-rate
hybrid precoding architecture when compared to traditional
approaches.

Base stations using mmWave are mostly equipped with
large arrays of antennas that help overcome path loss,
improve spectral efficiency, and increase capacity. Due to
thesemassive arrays of antennas, energy efficiency becomes a
concern. To fully utilize this installation, analog beamforming
is used to increase energy efficiency. On the other hand, spec-
tral efficiency effects will increase because of independent
radio frequency chains in the case of digital beamforming.
However, energy efficiency will be reduced. Both analog
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beamforming and hybrid beamforming designs are used in
mmWave on either radiofrequency or intermediate frequen-
cies [117].

A beamforming scheme using deep learning focused on
training and design issues of baseband is proposed in [67].
In conventional mmWave communication, multiplex tech-
niques (OMA, TDMA, OFDMA and CDMA) are used
because of fewer users than available RF chains. As the
user capacity increases with 5G, the conventional techniques
are not enough. Non-orthogonal multiple access (NOMA)
is utilized as it works in the power domain. MmWave and
NOMA provide good results for high data rates. However,
it requires additional energy consumption. MmWave has the
properties to provide high bandwidth at a short distance, and
MIMO provides coverage on a large scale. A lot of work has
been done on this combination to utilize it for power control
[118], pre-coding [53], [119], power allocation [51].

C. EDGE NETWORK
1) CRAN
RAN provides connectivity via radio connections between
end-users and network. Every RAN innovation is dependent
on architectural scarcity and end-user demands. BSS was
standardized for GSM, and it provides radio mobility func-
tions and is considered the core of 2G. A traditional BS
performs based on two devices: Digital Unit (DU) and Radio
Equipment Controller (REC), where DU deals with all fre-
quency functions like modulation/demodulation, frequency
amplification, A/D and D/A conversion, and frequency filtra-
tion. Baseband function is performed at REC like controlling
and managing the base station.

As the end-users increased and GPRS evolved, this called
for a network architecture up-gradation; GPRS BSS. GSM
was working on a circuit switching pattern whereas, GPRS
evolved with packet-switching technology. Both RAN archi-
tectures can work parallel, but interface modification was
required along with the addition of the Packet Control Unit
(PCU). GERAN was carried out to cater GSM and EDGE
network growing data needs and is the EDGE’s access net-
work. UTRAN was developed for UMTS and consisted of
more than one RN, several transceivers, and one controller
(RNC). It was modified from previous RAN architecture to
focus on enhanced data rates. UTRAN was terrain depen-
dent divided on the bases of the population in urban, rural,
and suburban. With the LTE standardization, E-UTRAN was
developed, which is different from all previous RAN archi-
tectures because of no centralized controller. There are two
interfaces used in E-UTRAN that are X2-interface and S1-
interface. All kinds of information transfer, mobility func-
tions, load balancing, and interference coordination are dealt
with by X2-interface. S1-interface is divided into further user
plane and control plane. In UTRAN, the radio processing
unit is segregated from signal processing units, and the same
continued in E-UTRAN. In the previous 2G RAN architec-
ture, all frequency-related functions like amplification (ana-

log to digital and digital to analog) conversion and control,
transport, and baseband functions were performed at the
transceiver base station. However, with architectural change
and data needs, it was difficult to perform all these functions
in one place. This lead to the development of D-RAN. In D-
RAN, Remote Radio Unit (RRU) and Baseband Unit (BBU)
replaced REC and DU respectively. According to [120], D-
RAN is considered as the efficient RAN architecture for 3G
and 4G networks.

Due to increased data needs, a new RAN concept has
been developed for massive data, which also caters to the
interference problem. With the advancement in RAN archi-
tecture, user plane is segregated from the control plane, and
the SDN switch is used to exchange the user data messages
from the RAN controller and the other part from the control-
based interface. This segregation makes RAN more versatile
to accommodate different NFV and SDN features important
in 5G networks like MIMO, service chaining, and network
slicing. Cloud/Centralized RAN refers to the concept of
consolidating all data at one point; cloud and is considered
as a cheaper alternative of OPEX and CAPEX (capital and
operative cost) [121]. A generalized CRAN consists of three
main components: (i) RRH, (ii) BBU pool, and (iii) a front-
haul network to provide connectivity between them. The
BBU pool has several software-defined BBUs with central-
ized processors to optimize radio resources. RRH provides
signal coverage and uses the uplinks/downlinks to transfer
RF signals from UE to BBU and BBU to UE. To be more
precise, it amplifies radio frequencies, does the filtration and
conversion from analog to digital, and vice versa. RRH is
distributed in a cost-efficient manner, and this is one reason
why C-RAN is considered energy efficient.

C-RAN gives the edge to fulfil 5G technologies vision by
rendering advanced network architecture and support features
such as enhanced performance, high capacity, increased flex-
ibility, energy efficiency, and minimized front-haul network
cost [122]. As mentioned, to cater to large data rates and
resource management, small cell technology is deployed
massively with CRAN to get the heterogeneous CRAN
concept [123]. H-CRAN is a new concept to merge both
CRAN and heterogeneous to get more benefits for resource
allocation. H-CRANs major benefit is exploiting the RRH
benefits in providing high data rate capacity, QoS, and energy
efficiency. High power nodes (micro BS, macro BS) are the
more significant consumer of power than low power nodes
(pico BS, Femto BS). All digital processing units reside in the
BBU pool. H-CRAN is more energy efficient as it can gather
data. The analysis process can take place on run-time, which
is possible because its architecture is centralized. More dense
deployment of low power nodes incurs acute interference.
Spectral efficiency degradation and the energy consumption
is achievable by suppressing interference. There are also other
conventional techniques for energy consumption minimiza-
tion, like switching off several BS, which are not in use.
However, they are not feasible in every network because
of the tight coupling among data services and convergence.
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Convergence is the primary factor affecting energy
efficiency.

Most of the energy problems have been solved with the
C-RAN development (centralization of baseband operations),
which aided network in terms of less deployment of BS.
However, further research is required on the energy efficiency
issue at resource utilization and allocation, power in C-RAN,
and computational complexity. An H-CRAN resource allo-
cation scheme is proposed based using machine learning
to improve energy efficiency and QoS interference for the
H-CRAN downlink [68]. The proposed scheme works by
learning information online, and the allocation is performed
on the assigned controller. Based on enhanced spectrum par-
titioning, user traffic is prioritized and differentiated with
location to be used as the initial learner to feed the machine.
Power is allocated based on a single controller connected to
BBU, which also needs network state information to take fur-
ther actions that guarantee energy efficiency. Another work
on resource allocation scheme for downlink H-CRAN using
machine learning is proposed [124]. The target was also on
energy efficiency, fulfilling the service quality alleviating
inter-tier interference. H-CRAN can support multiple tech-
nologies and bring efficiency and resource allocation factors
with no need to rebuild the transport network. Energy effi-
ciency is an essential factor in the wireless network directly
linked with traffic demand and load. Radio resource index is
also a factor to affect energy consumption, and bandwidth and
energy consumption reciprocity are severe.

As mentioned earlier, the cell sleeping concept is also used
to minimize power consumption. Thus, enabling way along
with beamforming by using deep neural networks is proved
to enhance energy efficiency through simulation work [52]
significantly. The problem of joint cell sleeping has been
focused on CRAN. A deep neural network-based framework
is developed to solve the optimization problem. When the
RRH is not selected for transmission, it is sent to sleep mode,
as maximum power can be saved by putting more cells to
sleep mode. DNN can learn from its inputs and output to give
the optimal results used in this proposedwork to achieve time,
accuracy, and energy efficiency. The significant decrease in
power consumption is because of BBU placement in data
centers, as the RRH has minimal power consumption. BBU
work is dependent on user traffic, data load, and demand.
Hence managing BBU operation can result in enhanced
energy. For real-time scenarios, more time-efficient algo-
rithms are required to solve the problem. Machine learning
can be applied to the NP-hard problem (splitting DUs, diverse
requirements nodes, and densely deployed high-power nodes)
to minimize the computational time and power consumption.

2) MEC
Mobile Edge Computing (MEC) emerged as an essen-
tial technology implementation for 4G and can be quickly
adopted for the 5G network. It intelligently merges network
conditions, location, and radio information to serve users
efficiently [125]. In both 4G MEC and 5G MEC, consumers

can decide the place of MEC installations. Because of the
same deployment level, the transition between 4G MEC and
5G MEC is somewhat easy because of the same resources
utilization, old management techniques utilization, and easy
interaction with the control plane. However, integratingMEC
with NFV and SDN will enhance its flexibility and services.
This flexible nature of MEC will eventually help to accom-
plish URLLC by achieving the edge cloud milestone [126].
Although new mobile devices are equipped with high-speed
processing units, they may not be able to handle complex
processing. Also, battery consumption constraint restricts
users from using computationally intensive applications. This
lead to the development of Mobile Cloud Computing (MCC).
InMCC, the end-user gets the advantage of centralized clouds
(CC) storage resources and computing. MCC has central-
ized deployment but high latency, jitter & distance to the
user equipment, and ample storage and computational power.
On the contrary,MEC is deployed in a distributedmanner and
has little jitter, latency, and distance to the user equipment and
limited storage and computational power.

Among other MEC advantages, computational offloading
is one of them. Computational offloading gives the edge of
energy consumption, response time, and performance [30].
In [127], three use cases have been discussed for MEC:
(i) Consumer-oriented services (ii) Operator and third party
services (iii) Network performance and QoE improvement
services. Consumer-oriented service use case benefit end-
users the most because of the computational offloading. Low
latency applications like online gaming and some virtual &
augmented reality get more benefits fromMEC. In the second
use case of operator and third-party services, MEC is utilized
for IoT as a gateway to deliver the services. The third use case
is used to enhance network performance. MEC can provide
real-time information, and this helps to improve QoE and can
enable the coordination between backhaul network and radio.

Optimization of offloading selections and resource allo-
cation plays a vital role in enhancing energy efficiency.
It has both the cloud computing facility and location & radio
information. According to [128] proposed technique, offload-
ing decisions in MEC for energy consumption reduction
worked on an accurate channel state information. However,
for dynamic channels, accurate channel state information
is hard to achieve. For these dynamic systems, Reinforced
Learning (RL) can be incorporated. In [70], RL based theme
is used to enhance energy efficiency. Specific state, reward,
and action have been described to utilize DRL features fully.
The proposed framework is used for multi-user equipment
computational offloading. Markov Decision Process (MDP)
has been used in [69] to improve the service migration pro-
cess. The focus is to migrate the service based on distance
from the source to theUE.MEC is also different fromMCC in
terms of limited radio resources, storage, and computational
resources. Because of these limitations, offloading actions
sometimes prove expensive. Thus a proper offloading tech-
nique is required. A computational offloading framework is
defined because of the different network conditions in [129]
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to improve offloading expenses. A pre-calculated offloading
solution has been employed to take the recurrent offload-
ing decision. Deep Reinforcement Learning is an excellent
approach to control complex and high dimension problems
for MEC. Moreover, by investigating deep connections for
MEC, can decide for resource allocation and computational
offloading intelligently.

V. ENERGY HARVESTING
Algorithms and protocols are designed to increase the energy
efficiency of wireless networks. Researchers are also working
on the means of energy that are amply available in the envi-
ronment. Renewable energy is one way to provide power to
network devices. Energy harvesting is the utilization of ambi-
ent energy from external sources. These energy sources can
be thermal, solar, wind, kinetic, radiation, and magnetic. The
obtained energy can be further stored or directly utilized for
wireless devices. Some ways to harvest energy for wireless
communication are as follow:

• Natural energy harvesting Natural resources like solar,
wind, andwater are used to harvest energy. These natural
resources are stochastic, resulting in power fluctuations.

• Coupling techniques The two coupling techniques are
used to harvest energy: inductive coupling and magnetic
coupling. Both coupling techniques are used for the
short ranges as they are dependent upon distance and
coupling coefficient.

• Wireless Power Transfer (WPT) In WTP, radio fre-
quency signals are used to harvest energy. These elec-
tromagnetic radiation is being harvested over the air to
utilize the energy which would be otherwise neglected.
The above-discussed randomness of energy (from nat-
ural resources) is covered in radio frequency energy
harvesting. The radio-frequency range between 300GHz
to 3kHz is used for harvesting energy [130].

For self-sustained network design, maintaining the energy
flow and balancing fluctuations is very important, which can
cause damage to the devices and service disruption. The near
field energy generation has 80% of success, whereas for
far distance RF energy harvesting method is used that also
requires additional equipment like antennas and rectifier cir-
cuits [131]. Another way is to efficiently utilize the interfer-
ence signals, which also do not affect the system performance
is using interference signals as energy harvesting [132]. The
EH is best suitable for portable devices and cannot work
on the plugin power strategy and for those who are power-
hungry.

Radiofrequency signals are considered a more efficient
energy harvesting technique rather than solar and wind
energy harvesting resources. In 5G communication,mmWave
can engage a large number of antennas arrays due to its
smaller wavelength and cell shrinking feature. It is a good
candidate for future energy harvesting [133]. The growing
5G technology is leading by the massive deployment of
small cells to increase the capacity and energy efficiency

of HetNets. Small cell features can be further enhanced by
exploiting the energy harvesting concept.

A distributed Q-Learning approach is used in [134], for
small cells. The solar energy is taken as a reference as it
helps to offload BS at day time. TheMarkov decision method
is used to make decisions for each agent. For the growing
needs and challenges, power is also a constraint for the
machine to machine communication. The combination of
machine learning and energy harvesting techniques, together
with cognitive radio, can outperform in energy efficiency
aspects. Cognitive machine to machine devices (CM2M)
consume a lot of energy, and replacing the battery often is
tedious. Thus, researchers started incorporating energy har-
vesting with CM2M. This integration helps to increase both
spectrum as well as energy efficiency. EH-M2M uses cellular
users energy, but it can also harvest energy from ambient
sources, which ultimately helps to increase battery lifespan
for devices. Machine type communication also holds chal-
lenges other than power, such as network control, resource
allocation, and scheduling. A resource allocation technique
proposed in [135] uses spectrum reusing scenarios to enhance
energy efficiency in EH-CM2M.

Another resource allocation strategy for EH-CM2M net-
works is proposed in [136] that uses the deep reinforcement
learning approach to enhance energy efficiency. An alterna-
tive solution to the M2M energy issue is to shift traffic to the
device to device communication. D2D communication also
provides feasibility to communicate with each other. In the
case of EH-D2D, the energy is harvested from nearby access
points [137]. Mostly D2D devices are data-hungry, and that
the reason RF harvesting can offset supplementary energy
to these devices [138]. Many researchers working on EH-
D2D have studied resource allocation techniques in terms
of power and resource allocation. The research in energy
harvesting for D2D communication is far from mature and
requires significant research efforts.

VI. FUTURE DIRECTIONS AND OPEN ISSUES
Radio interface components are the primary reason behind
the energy efficiency factor, as 80% of the wireless systems
are mainly composed of base station transceivers. Reducing
energy consumption is the simplest way to gain green net-
works [123]. The goal of 5G is to increase spectral efficiency,
ubiquitous coverage, andminimize latency. This can be possi-
ble by updating and reconstructing network architecture (.i.e
virtualization) and advances in radio access network tech-
nologies (.i.e, massive MIMO). It will also maximize system
performance and increased energy efficiency. Although a lot
of research and experimental work has been done on virtual-
ization and softwarization of the network, there is still more
research required to overcome issues related to hardware
design and deployment, service chaining, energy efficiency,
policies, and virtual functions. In this section, we highlight
some of the open issues and challenges associated with it.
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1) Combining technologies: Small cells are great for
more dense users, whereas massive MIMO is efficient
for less dense environments. Massive MIMO imple-
mentation is different depending upon the dense nature
of the targeted area. As the 5G network is an amalga-
mation of diverse technologies, combining these tech-
nologies can prove energy-efficient 5G design.Massive
MIMO is less energy efficient as compared to small
cell networks. However, when the consumed power
of the active antennas circuit is less than switched off
antennas, it gives higher energy efficiency values. Mas-
sive MIMO and mmWave can be combined to achieve
less power consumed architecture because of its par-
tially connectivity nature. However, further research
should be focused on the dynamic installment of the
architecture. The network’s energy efficiency factor is
highly dependent on the ratio of computational power
and transmission power. Due to the dynamic nature
of the 5G network, these power values do not remain
the same all the time. Hence, the relationship between
computation power and transmission power should also
be studied to get overall network energy efficiency.

2) Harvesting real-time benefits: SDN controller has the
benefit to program controller vigorously. As the central
controller is detached from the data plane, it can mon-
itor the network in real-time, which can do data con-
figuration and monitoring. Thus integrating machine
learning to SDN gives more benefits to real-time net-
works. MEC is also an excellent option to harvest real-
time benefits. Currently, MEC manages mobility for
end-users under simplistic scenarios. However, in the
future, handling several nodes while effectively con-
trolling the virtual machine migration is a challenge for
guaranteed service delivery.

3) Softwarization& virtualization:Both SDN and NFV
can be incorporated in a network together. They serve
each other irrespective of their contrary nature. SDN
can provide programmable benefits to NFV in the form
of connectivity among virtual network functions. NFV
helps SDN by providing virtualization of network func-
tion. Moreover, to cope with growing user demands
and energy constraints, there is much space to research
MEC’s incorporation with SDN/NFV. For the future,
research can be done on installing content and appli-
cation both at the consumer side can reduced energy
usage and OPEX as computational offloading benefits
energy efficiency.

4) Machine learning and data relationship: Keeping
in view the advantages of machine learning to solve
complex problems to improve performance and less
complicated implementation shows its feasibility over
traditional algorithmic approaches. The bigger advan-
tage that machine learning has is its learning nature
from the environment. However, a severe lack of avail-
able data sets for research purposes and securing data
from networks is difficult. Even after data acquisition,

the model needs to be trained. Before training, all
data must be aligned, debugged, and cleaned of all the
biased values that will also require a lot of process-
ing. Future researchers need to work on the trade-off
between efficient machine learning for wireless net-
works and howmodels can be simplified. Especially for
those areas where energy efficiency is a critical aspect.

5) Reinforced learning in real-time environment:Rein-
forced learning is a good approach to use in real-
time environments because of its weight assignment
based on learning. Another important benefit of rein-
forcement learning is that it can work well even with
no sample or I/O data. It can learn iterative from its
environment, giving rewards and responses. However,
in intricate state space, it is not adaptive. This is because
of the exponentially large storage space, making it
difficult to search for data in the huge database. Fur-
ther research is required to solve the means of storing
statistical data, as inputs in the form of a vector in the
traditional approach make it difficult.

6) Collaboration & Discovery MEC infrastructure is
deployed at the consumer end. Because of this user-
side deployment, proper communication is required
among different network providers. This highlights
the need for a proper protocol for collaboration to
access network despite different deployment places.
To harvest low latency and energy-efficient MEC ben-
efits, a well-equipped discovery system is needed for
future MEC framework to avoid unnecessary compu-
tations. Machine learning can also play a significant
role in the automatic monitoring and synchronization
of resources.

7) Front-haul dependency Due to the growing user data
requirements, the front-haul bandwidth requirements
are also growing. And because of the high cost of front-
haul deployment, not only expanded infrastructure and
increased OPEX & CAPEX will become a challenge.
Also, it will lead to decreased energy efficiency. For
these issues, fronthaul requires low latency and vast
capacity networks to cater to the current capacity issue.

8) D2D communication: In device to device communi-
cation, energy efficiency is impacted due to frequent
device discovery operations. It is highly dependent on
protocols that force devices to listen and exchange
discovery messages frequently. More research work is
required in the future to mitigate the energy issue from
these frequent discovery issues.

9) Need of energy harvesting: In the future, dense
deployed BS enabled with the computational capabil-
ities will consume a lot of energy. Hence harvesting
energy resources should be used to energize MEC
servers. This renewable energy resources will also help
to sustain the network longer.

10) Performance: Applications that rely on extensive
hardware resources or demand for low latency are at the
risk of more performance degradation. This happens
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because of their virtualized nature. As a consequence of
this excessive virtualization nature, improving energy
efficiency becomes a challenge.

11) RAN and need for intelligence in algorithms:
Offloading in radio access networks provides the ben-
efits of lower latency, improved QoS & QoE, and auto-
matic network selection. However, for a heterogeneous
environment, QoE is still a challenge. In the future,
for better energy trade-off and less computational com-
plexity, there is a need for intelligent learning tech-
niques like machine learning, which saves energy by
reducing recurrent information traffic.

VII. CONCLUSION
5G is a diverse network that will enable a variety of services
with the help of several enabling technologies. The main
drivers are virtualization, softwarization, new RANs, and
backhaul strategies. All the enablers for 5G will help deliver
extremely low latency rates, provide high throughput, and
support massive connectivity simultaneously. Furthermore,
the need for increased network capacity, geographical cov-
erage, and increasing traffic demands require network densi-
fication. All such improvements to support diverse use cases
will eventually lead tomore energy consumption compared to
past generations. This is not sustainable from an environmen-
tal and business perspective. The need for the energy-efficient
network is adopted worldwide because of both economic and
environmental concerns. A lot of research has been done on
improving energy efficiency in the 5G networks from the past
few years. Due to the autonomous decision-making capabil-
ities and benefit of learning from its environment, there has
been growing interest in using machine learning techniques
to solve energy efficiency at various 5G network levels.

In this paper, we surveyed the state of the art literature to
address the energy efficiency issue in the 5G network and
the need for intelligent learning. For this purpose, we pro-
posed a taxonomy where we categorized the 5G network into
three main parts; access, edge, and the core. The enabling
technologies under the provided taxonomy are discussed by
addressing machine learning importance in improving energy
efficiency. In conclusion, machine learning holds the ability
to mitigate energy efficiency issues and improve performance
in future networks and under unpredictable network condi-
tions. If appropriately implemented, machine learning has the
potential to optimize the operation of a 5G network while at
the same time, improving energy efficiency. However, there
are still several open challenges that need to be addressed
to build highly energy-efficient networks. For this, we high-
lighted some of the key challenges that need to be thoroughly
investigated and provided future research direction for the
same.
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