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ABSTRACT Dams are the main water retaining structures in the hydraulic engineering field. Safe operations
of dams are important foundations to ensure the hydraulic functionalities of these engineering structures.
Deformation, as the most intuitive feature of the dams’ operation behaviors, can comprehensively reflect the
dam structural states. In this case, the analysis of the dam prototype deformation data and the establishment
of a real-time prediction model become frontier research contents in the field of dam safety monitoring.
Considering the multi-nonlinear relationships between dam deformation and relative influential factors as
well as the time lag effect of these influential factors, this article adopts long-short-term memory (LSTM)
network algorithm in deep learning to deal with the long-term dependence existing in dam deformation
and explore the deformation law. The method proposed in this work can effectively avoid the gradient
disappearance and gradient explosion problems by using the recurrent neural network (RNN). In addition,
this work adopts the Attention mechanism to screen the information that has significant influence on
deformation, combining the Adam optimization algorithm that has high calculation efficiency and low
memory requirement to improves the learning accuracy and speed of the LSTM. The model overfitting is
avoided by applying the Dropout mechanism. The effectiveness of this proposed model in studing the long
time series deformation prediction of concrete dams is confirmed by case studies, whose MSE (mean square
error) and other 4 error indexes can be reduced.

INDEX TERMS Deformation prediction, LSTM network, Adam optimization, Attention mechanism,

Dropout mechanism.

I. INTRODUCTION

As the main water retaining structure in the hydraulic
engineering field, the safe operation of the concrete dam is
an important foundation to achieve many hydraulic functions.
In cases of serious operation accidents, dam failures can
bring huge loss of life and property. However, dams operating
under the complicated boundary conditions of solid-liquid-
gas face have many hidden dangers, as the health of the old
dams are limited by surveying, construction, management
and other technical conditions, while the newly built high
dam reservoirs can adopt technologies that lack systematic
verification.
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Deformation monitoring item is the most intuitive and
reliable, and is generally regarded as the most important mon-
itoring feature which can show the dam’s operation behaviors
and structural states, reflecting the dynamic information of
dam body operation in real time [1], [2]. Therefore, the anal-
ysis of the prototype observation data of dam deformation and
the establishment of real-time prediction model become the
frontier research contents in the field of dam safety [3], [4].
The prediction model of deformation can be used as the basis
of early warning by comparing the predicted values with the
measured values, so as to find out the abnormal situation
in the operation in time and take corresponding measures
quickly to assist the safety management of the dam operation.
On the other hand, the operating conditions can also be
calculated inversely by controlling the deformation values,
which serves as a guiding basis for the reservoir operation and
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assist in the decision making of safe operation. Performing
the monitoring prediction has intuitive and reliable guiding
significance for both identifying and reacting to anomalies in
engineering operations.

In traditional deformation prediction models, most of the
deformation values are expressed as polynomials of the main
influential factors (water pressure, temperature, aging, etc.)
through statistical calculation. Such methods lack the ability
to express the multiple nonlinear relationship between dam
deformation and influential factors, so their prediction results
are not good enough [5], [6].

Relying on the development of computers, traditional
machine learning (decision tree, random forest, artificial neu-
ral network, etc.) has developed rapidly and has great advan-
tages in solving nonlinear problems, which makes machine
learning algorithm widely applied in the prediction mod-
els of concrete dam deformation and has achieved good
results [7]-[10]. Shiyi et al. [11] used the random forest
method to establish a concrete dam deformation monitoring
model and improved the model’s robustness of missing data,
unbalanced samples, outliers, and other problems, improving
the accuracy of prediction. Dai Bo er al. [12] effectively
overcame the noise interference in the monitoring sequence
and improved the prediction accuracy by integrating chaos
theory, wavelet theory and radial basis function neural
network.

As computing capacity increased significantly with the
support of the large data, deep learning [13] (such as CNN,
RNN, DBN) becomes one of the main research directions
in the field of machine learning. By studying the inherent
law of sample data and representation levels, the prediction
accuracy of model for complex nonlinear problems and the
deformation regularity of mining experience a certain degree
of ascension [14]-[16].

The Recurrent Neural network (RNN), has a unique
advantage in processing sequential data. Compared with the
shallow neural network, RNN can better describe the multi-
collinearity among variables through the deeper hidden lay-
ers. More importantly, different from the traditional FNNs,
the weight connection between the same layer neurons of
RNN is also established to build the directional information
cycle, so as to deal with the problem of the front and back
correlations between inputs. This information transmission
ability is interpreted visually as memory. Compared with the
representation method in the statistical model that reflects
the hysteretic nature of the impact factor and includes the
prophase term [17], memory is more flexible in search-
ing for effective information periods, with longer mining
period.

The increase of information amount and deeper hidden
layers lead to the gradient disappear or gradient explosion
phenomenon in the RNN training [18]-[20]. This shortcom-
ing not only limits the possible hidden layer numbers, but
also hinders learning laws and relations during the large
time interval, making RNN in practice be more prefer-
able to solve short-term dependency problems, because it
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is difficult to learn the long-term dependency relationship
implicitly from the data. LSTM is a special kind of RNN.
It can selectively remove or add information through the
“gate” structure of information, the information stored in the
form of cell state storage, avoid huge storage and computa-
tional costs of long-term dependence problem and have both
long-term and short-term dependency relationship, which is
more advantageous to mining hidden rules in information.
Yang Beibei e al. [21] used LSTM to build a model for
landslide displacements and found that the model had obvious
advantages in step type deformation prediction. Jiaqi [22]
combined CNN and LSTM to predict the traffic flow in urban
areas, and utilized the advantages of CNN and LSTM in
mining the spatial relationship and time dependence of data,
finding that the learning efficiency and prediction accuracy
were greatly improved. Qu er al. [23] combined rough set
theory with LSTM theory to improve the accuracy, robust-
ness and externality of model. Wenju et al. [24] compared
the LSTM-MA (moving average method) model with the
LSTM-PCA (principal component analysis) model and found
the LSTM-MA model was more suitable for engineering
applications due to its convenience. Yangtao et al. [25] uesed
STL (Seasonal-Trend decomposition procedure based on
Loess) decomposing the deformation into seasonal compo-
nent, trend component and remainder component, and then
predicted seasonal component by extra-trees methond while
others by stacked LSTM neural network, improving the pre-
diction accuracy and stability of dam deformation prediction
by combination of models. The data processing method,
through continuous integration of advanced deep learning
(neural network), optimization theory and mechanism into
the construction of dam deformation prediction model, com-
bined with the existing dam engineering theory and engineer-
ing experience, will have important guiding significance for
the engineering practice.

II. STATISTICAL MODEL OF CONCRETE DAM
DEFORMATION PREDICTION

A. PRINCIPLE OF STATISTICAL MODEL

The influence of load sets on the concrete dam can be found
out by the regression calculation on deformation data. Then
a mathematical expression can be established to calculate the
predictive value (deformation value) of a certain set of load
sets [26].

The dam deformation is a displacement vector sum of
creep, plastic, and elastic deformation of the concrete dam
and bedrock subjected to loads, such as water pressure, uplift
pressure, and temperature. Taking the horizontal displace-
ment as an example, the displacement of the dam body
under reservoir water pressure is generated, as shown in
Figure 1 (a). The displacement of the dam caused by foun-
dation deformation due to internal forces acting on the foun-
dation is shown in Figure 1 (b). The displacement of the dam
body caused by foundation rotation due to heavy reservoir
water is shown in Figure 1 (c).
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FIGURE 1. Horizontal displacement under the action of reservoir water.
The black solid line is the contour line before the displacement of the
dam, and the red dotted line is the contour line after the displacement.

B. DEFORMATION COMPONENT

Considering the horizontal displacement, the deformation of
aconcrete dam can be divided into hydraulic, temperature and
aging components as shown below:

8y =8y + 87 + 8 (H

where §, is horizontal displacement; §g is hydraulic com-
ponent; &7 is the temperature component; 8y is the aging
component.

1) THE HYDRAULIC COMPONENT 6§y
The deformation component of the dam body under water
pressure and reservoir water weight can be expressed as:

Sy = Za,-Hf )

where, a; is the regression coefficient of water pressure factor;
H is the water depth in front of the dam; For gravity dams,
usually n = 3, and for arch dams, usually n = 4.

2) THE TEMPERATURE COMPONENT §7

When considering the mechanics, the temperature component
should be the companion temperature measured by ther-
mometers embedded in the concrete and bedrock of the dam
body. However, after many years of dam operation, the hydra-
tion heat of dam-building concrete has been fully dispersed,
and the temperature inside the dam reaches the quasi-stable
temperature field. In this case, the dam body temperature is
only affected by the boundary temperatures, namely water
temperature and air temperature. Assuming that the change
of water temperature and air temperature is harmonic, and the
deformation is linearly related to the temperature of concrete,
the temperature component can be expressed as:

5 —Zm: b sin 2L 4 s cos 2 3)
r= 365 720 365

i=1

where, by ;, by ; are the regression coefficients of the temper-
ature factor, generally m = 1 or m = 2; ¢ is the cumulative
number of days from the corresponding monitoring day to the
initial monitoring day.

3) THE AGING COMPONENT §y
The cause of the aging component is complex. Generally, the
aging component conforms to the change law with a rapid
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growth in the early stage and gradual stability in the later
stage. Its expression can be written as:

8o =c10+crInf 4

where, c1, ¢y are the regression coefficients of aging factor;
0 is ¢/100.

C. STATISTICAL MODEL OF DEFORMATION
MEASUREMENT POINTS

To sum up, the expressions of the above three components are
substituted into Equation (1) to obtain the statistical model of
the measured point deformation of the concrete dam. By sub-
stituting the corresponding load sets and effect sets into the
expression, the problem is transformed into a mathematical
problem of the least squares optimization calculation. Finally,
the regression coefficients with the minimum error are solved,
and the explicit mathematical expression of dam deformation
is obtained:

2mit
8y = ZalH’ + Z <b1, sin —— —i—bz, cos 37;; )

+c10 +crInb +ap  (5)

where, ag is the constant term.

IIl. LSTM CONCRETE DAM DEFORMATION PREDICTION
MODEL BASED ON ATTENTION MECHANISM

A. LONG-SHORT-TERM MEMORY NETWORK

In view of the association between pre and post deformation
of a concrete dam, and the shortcoming of RNN learning that
the gradient disappearance and gradient explosion are prone
to occur, LSTM network is introduced to construct a con-
crete dam deformation prediction model of measuring points.
LSTM as an improvement of RNN, can mine the long-term
and short-term correlation laws of deformation sequences
and realize the synchronous prediction of the deformation at
measuring points.

Figure 2 shows anode in the LSTM structure [27]. The core
function of the LSTM lies in its ability to remember informa-
tion, also known as a cell. The cell state of the previous node
C;_1,1s passed along a separate chain, and the LSTM updates
the cell state through a ‘“‘gate” structure. At the same time,
the hidden state of the output of the previous node h;_ is

X

FIGURE 2. The schematic diagram of a LSTM node.
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passed to the current node along another chain, which forms
the input layer of the node with the input x; of the current
node.

In Figure 2, the process line f; represents the forgetting
gate, which is used to determine the discarding of information
in the cell. The equation is as follows:

fi =0 (Wr - [hi—1, x:] + by) (6)

where, Wy is the weight matrix; by is the bias term of the for-
getting gate; By means of the Sigmoid function, the value is in
the interval (0, 1), where “0”’ means complete abandonment,
and “1” means complete retention.

The process lines of i, and C ; combine to form a renewal
gate which is used to update the information stored in the cell.

ir =0 (W [h—1, %]+ b;) )
where, W; is the weight matrix, and b; is the bias term.
C; = tanh (W - [hy—1. /1 + bc) ®)

where, W is the weight matrix, and b¢ is the bias term.
At this point, the cell state has been updated by the formula.

Co=fi*xCro1 +ir % 6[ ©)

The output &, of the current node can be calculated from
the cell state of the current node.

or =0 (W, [h—1, x] + bo) (10)
l’l[ O * tanh (C[) (11)

where, o; is the intermediate computation; W, is the weight
matrix, and b, is the bias term.

The output %, here will be the input to the next node as the
hidden state, and the final output (deformation fitting value)
typically needs to put /; into a linear layer and then classified
using Softmax to get the required data.

Like other neural network algorithms, LSTM can learn the
complex nonlinear relationship between effect sets and load
sets through training. More importantly, its advantage lies in
the existence of cell states that enable the LSTM to selectively
retain the previous deformation and the corresponding load
when calculating the deformation under the current load.
Consequently, the neural network has the ‘“memorability”
and the ability to learn the laws between the deformation and
the previous load set.

B. ADAM OPTIMIZATION ALGORITHM
Adam is a first-order optimization algorithm put forward
by Kingma in 2015 [28], which combines the exponential
moving average of the Momentum algorithm and the gradient
update rules of the RMSprop algorithm. By estimating and
correcting the first and second moments of the gradient,
the learning rate of each parameter is dynamically adjusted
so that the learning rate of each iteration has a certain range
and the parameters variation is relatively stable.

Adam algorithm requires less memory and therefore
becomes especially suitable to solve problems involved
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excessive data and parameter sizes in deep learning. Mean-
while, it is also very suitable for the solution of unsteady
targets, problems involving high noises or sparse gradients.

After parameter initialization and random objective func-
tion f(0) determination, the gradient of objective function
f¢(0) with respect to 0 at step length ¢ can be obtained from
the formula. This gradient is the partial derivative of f; (9) with
respect to 6 under the step 7.

& = Vofi(9) (12)

According to the obtained gradient, the first order and sec-
ond order momentum matrices are estimated and updated
preliminarily.

mo=B-m_1+0—p) g (13)
vi=a-vici+(1—Bo)- g (14)

The moving mean is estimated using the first moment
(mean) and the second original moment (with a partial vari-
ance) of the gradient. However, because these moving aver-
ages are initialized as 0 vectors, the moment estimated value
deviates toward 0, especially in the initial time step and in the
case where the decay rate is very small (that is, when the 8 is
close to 1). So, bias correction is required.

m, = (15)
1 -8
/ s
= 16
V[ 1 _ ﬁé ( )

Finally, the parameter 6 is updated.

o - m
Vvit+e

The Adam algorithm is a gradient update optimization
algorithm that is often used to replace stochastic gradi-
ent descent and other optimization algorithms in the deep
learning model. It has strong robustness and relatively sim-
ple parameter adjustment process, so the default parameters
can handle most of the problem with high computational
efficiency.

0r =01 — 7

C. ATTENTION MECHANISM

The Attention mechanism is inspired by the selective atten-
tion of human vision, in which the eyes scan the global image
to find the focus area and pay more attention, while suppress-
ing the acquisition of useless information. The application
of Attention mechanism in deep learning can quickly screen
the key conditions that help to make decisions from big data,
thus reducing the computation costs, saving the storage space,
and improving learning efficiency and accuracy. The soft
attention refers to the mechanism of weighted averaging of
the input information attention [29].

At present, the Attention mechanism is mainly used
in combination with Encoder-Decoder framework. The
input (Source) will be expressed in the form of (K, V). K is
the key value of the element, which is its position, and V is
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the value of the element, which is its assigned attention. Each
element of the output (Target) is represented by ¢, which is
query. To calculate attention, it is necessary to first calculate
the attention scores s; of each input quantity:

si =F (q, ki) (13)

where, there are many kinds of attention rating functions,
such as: Additive model F (¢, k;) = v! tanh (W - k; + U - ¢);
The dot product model F (q, ki) = kl.T - q; Scale dot product
model F (¢, k) = k! - g/+/d; Bilinear model F (¢, k;) =
le - W - g. Among these models, W, Uand v are network
parameters that can be learned and trained, and d is the
dimension of input information.

Then, the attention scores are converted numerically. Gen-
erally, there are two ways of conversion. One can use the
probability distribution of normalization, which makes the
sum of the weight coefficients of attention scores equal to 1;
the other can use SoftMax function to highlight the weight of
important elements.

o; = SoftM ax (s1) = — PG (19)

Z,]'V=1 exp (s)

where, ¢; is the weight coefficient corresponding to the ele-
ment in Source. N is the amount of input information.

Finally, the weighted average is used to get the attention
value of the input information.

N
Attention((K, V), g) = Z oV (20)
i=1

y; in the Figure 3 is the output of the Attention mechanism.

The function of the Attention mechanism is to consider the
weight of the input elements, so as to pay more attention to
the sequence fragments with high similarity to the current
input, weaken the attention to the fragments with large dif-
ferences in the sequence, and consider the role of global and
local relations. For the prediction model of the concrete dam
deformation, more attention can be paid to the rule learning
and the factor significance selection under the conditions with
similar deformation. Weights can be assigned according to
the significance of factors.

yi

vl v2 v3 LLL] vi

FIGURE 3. Schematic diagram of attention mechanism.
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D. DROPOUT ALGORITHM

Dropout [30] is an optimization method proposed by Hinton
in 2012 to improve the generalization ability of neural net-
works. It has good effects on preventing model overfitting and
alleviating the time-consuming problem of deep learning in
model integration training.

According to the set abandonment rate, the Dropout mech-
anism can randomly block some neurons in the hidden layer
temporarily, so that only the remaining neurons can keep
normal training.

This random discard mechanism makes it impossible for
two neurons to work at the same time every iteration, and
prevented the common action of feature detector. Therefore,
it avoids the dependence of weight update on the fixed rela-
tion of neurons, and reduces the influence of the correlation
between feature vectors on the prediction results, so this
mechanism enhances the robustness of the neural network
losing specific neuronal connections.

At the same time, by randomly discarding some neurons,
many different subnetworks are extracted from the complete
model. By averaging the results of different sub-neural net-
works, different overfitting of different networks can be offset
to achieve a balanced effect.

Neural network operation without joining Dropout:

Wt = f (Wi’“h’ + bf“) Q1)

where, & is the input or output of a neuron; / is the update
times of the matrix; and i is the number of the neurons. Here
h! is the output of a neuron of the upper layer as the input
of the Dropout layer, while 4/*! is the output of the Dropout
layer as the input of the next neuron.

Neural network operation after joining Dropout:

r} ~ Bernoulli(p) (22)
e (23)
hﬁ“ —f (Wf“fz’ +bf+1) (24)

where, Bernoulli (p) is the discrete probability distribution
function to generate probability vector, that is, a randomly
generated 0 and 1 vector.

By inserting the Dropout layer between the LSTM layers,
the model overfitting is prevented and the robustness of the
model to special conditions is enhanced.

IV. CONSTRUCTION OF THE PREDICTION MODEL

On the premise of knowing the measured deformation data
and environmental impact factors of concrete dam mea-
surement points, the LSTM network is used to extract the
long-term and short-term features contained in the data; the
Adam conducting optimization, Attention mechanism high-
light the influence of important features on prediction; and
the Dropout mechanism prevents model from overfitting. The
synchronous prediction model of measured point deforma-
tion of concrete dam is established by utilizing all the above
algorisms.
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Standard Neural Net

After applying dropout

FIGURE 4. Schematic diagram of Dropout mechanism. Green indicates
that the neurons are active and can normally carry out input, output and
matrix update, while red indicates that the neurons are temporarily
dormant, blocking all its work.

The construction process of the model is shown in Figure 5,
and the analysis steps are as follows:

Sequence of measured
deformation data

Data abnormal
preprocessing

Data
processing

Identify training samples
for the model

Initial parameter setting

LSTM layer for feature
cccccc
extraction

Calculated model loss

Tdentily the prediction set
sample of the model

Delormation prediction

Inverse normalization of
the predicted value

FIGURE 5. Schematic diagram of Dropout mechanism.

Stepl: Preprocess the deformation monitoring data. For
the monitoring data series with strong regularity, the Pauta
Criterion can be used to judge whether the data are abnormal
or not.

yi £y £2.580 (25)

where, y; is the measured value; y; is the corresponding pre-
dicted value in the prediction model established through the
analysis of the historical data sequence y;; o is the standard
deviation A of the residual sequence. If Equation (25) is
satisfied, the measured value is considered to be normal;
otherwise, the measured value is considered abnormal and
has to be removed.

Step2: Normalize the data and determine the training sam-
ples. After the measured value sequence is checked and if
there are no obvious abnormalities, in order to align the
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variables to the same orders of magnitude (the presence of
a large number of orders of magnitude variables can make
the model neglect the influence of small orders of magnitude
variables and lose the information contained in these kinds of
variables), variables shall be normalized. The training sample
and prediction sample of the model are determined after data
normalization.

X,{ _ Xi — Xmin (26)

Xmax — Xmin

where, x; is the original variable; xlf is the variable obtained
after min-max standardization; xmax and xmi, are the max-
imum and minimum values in the original data sequence,
respectively.

Step3: Initialize the parameters. Initialize Adam parame-
ters. The learning rate (step factor) is usually set too = 0.001,
to control the updating ratio of weights. The exponential
decay rate of the first-order moment estimation is set as
B1 = 0.9. The exponential decay rate of the second-moment
estimation is set as B, = 0.999.¢ = 1 E — 0.8, ¢ is set to
a very small number to prevent the possible error of dividing
by zero in the calculation.The Dropout level drop probability
p is set to be 0.3.

Step4: The training set data go through model LSTM layer,
Dropout layer and Attention layer in turn to conduct model
training. During model training, the cell states in the LSTM
are constantly updated, so that the structure has the ‘“memory
function”. In the Adam optimization algorithm, parameters
such as step size will be updated in real time as the gradient
drops.

StepS: Determine whether the model needs to continue
training according to the loss value. If the requirements are
met, the predicted samples can be imported into the trained
model to predict the deformation of the measured point of the
concrete dam.

Where, in Step4, the specific construction of the model is
shown in Figure 6.

— _ _
[ x X: X X Input Layer
LSTM LSTM LSTM
a (Adam) Cadam) [T (Adam)

Dropout Dropout Layer
LST™ LSTM LST™M LSTM
(Adam) H (Adam) H (Adam) }'# (Adam) LSTM Layer

Dropout Layer

,,,,,,,,,,,,,,, N I

Attention Layer

v ) Output Layer
- P 4

FIGURE 6. LSTM structure of the attention mechanism.

After the input vector enters the hidden layer of the LSTM
network through the input layer, the Adam optimization algo-
rithm is used to solve the weight matrix, so as to improve
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the solving efficiency, reduce the memory consumption and
ensure the output accuracy. The output of the LSTM layer
will be used as the input of the Dropout layer to prevent the
overfitting problem during model training by masking part of
the eigenvalues. The output of the first two layers of LSTM
network and the two layers of Dropout are encoded as inputs
to the Attention mechanism.

According to the importance of each characteristic,
the Attention module assigns corresponding weight to each
characteristic, and obtains the characteristic representation of
the deformation value as output according to the weight and
the updated cell state.

After the LSTM network updating the cell state and the
Attention mechanism adjusting the weight, the calculated
eigenvalue is decoded by the activation function at the full
connection layer to obtain the final output — deformation
value.

V. CASE STUDIES

A. PROJECT OVERVIEW

In Sichuan province, China, there is a concrete double-curved
arch dam with a height of more than 200m and is divided
into 39 dam sections. The power station junction consists of
barrage, flood discharge, energy dissipation and water con-
veyance structures. Figure 7 is the engineering plane layout
(local), and Figure 8 is the upstream elevation layout of the
horizontal displacement measurement points. The vertical
lines are arranged on the arch dam section 4#, 11#, 21#, 33#
and 37# of the crest, the horizontal corridor and foundation
corridor inside the dam. Among them, the red ones are the
vertical points, and the magenta ones are the inverted vertical
points.

N
X
1S
-
PO
FIGURE 7. Engineering layout plan (local).

Considering the low frequency of manual observation,
the measurement points are selected from the automatic verti-
cal measurement points for the comparative analysis. Among
them, TCN15 vertical measuring point of the dam crest on
section 33# has high reliability and few instrument faults such
as missing or jumping, which can provide relatively accurate
deformation monitoring data with longer data series.
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FIGURE 8. Elevation drawing of upstream vertical layout of arch dam.
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FIGURE 9. Measured process lines of the upstream water level, air
temperature and deformation.The left side of the orange dotted line is
the training set sequence, while the right side is the test set sequence.The
green dotted line is roughly the date of the extreme displacement value
in each deformation period, and the purple line is used to mark the
approximate change interval of each monitored quantity.

Stepwise regression model, RNN model and LSTM model
with attention mechanism were respectively established for
the comparative analysis of the monitoring data in a mod-
eling period of 2562 days from July 1st, 2010 to July 5th,
2017.The 2050 days data from July 1st, 2010 to February 9th,
2016 were selected as the training set, and the remaining data
were used as the test set.

B. SELECTION AND PROCESSING OF THE PREDICTION
MODEL FACTORS

Select the influence subsets of the model input, H — H,
(H — Ho)?, (H — Ho)®, (H — Hp)*, sin(271/365) — sin
(2mty/365), cos(2mt /365)—cos (2mty/365), cos(4mwt/365)—
cos (4rty/365), sin(4xt/365)—sin (4rtg/365),0 —0p,In O —
In6p. The above 10 impact factors are commonly used in
the statistical model of arch dams according to theoretical
knowledge and engineering experience of experts.

The abnormal data processing was carried out for the influ-
ence factor subset and deformation data, and the interpolation
processing was carried out for the missing data, if necessary,
to ensure the continuity of the data. To enhance the model’s
learning efficiency, the normalization processing is carried
out for the processed data.

C. CONSTRUCTION OF THE DEFORMATION PREDICTION
MODEL

The normalized influence factor subset was taken as the input
of the model, and the normalized deformation value was taken
as the output of the model. The loss function is selected as
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follow:
m

1 A2
MSE = — ; (vi = 5) 27)

where y; is the measured displacement value; y; is the calcu-
lated value of the model;m is the number of the data series.

The training set data were used to make the model fully
learn the deformation law of the dam, and the trained pre-
diction model was used to predict the deformation of the
prediction set data. In order to verify the validity of the model,
the results were compared with those generated by the statis-
tical model, the LSTM model and the RNN model with the
Attention mechanism. In the neural network model, the Adam
algorithm is used for parameter optimization. In order to
prevented overfitting, two Dropout layers were inserted into
the model. The prediction results of the four models are
shown in Figure 11, and the prediction effects are shown
in the Table 1.The remaining error evaluation indexes and
formulas are as follows:
1 m

— > (i) (28)

m
i=1

RMSE =

100% <~ [3i = il
SMAPE = — (29)
m ; ([3:] + lyil) /2
m A
mapg = 0%y i (30)
m Yi
l m
MAE = E;&-—M 31)
1=

where RMSE is root mean square error; MAE is the mean
absolute error; MAPE is mean absolute percentage error; and
SMAPE is symmetric mean absolute percentage error.

From Figure 10 and Figure 11, each model has achieved
relatively good imitative and forecast effect. The calculated
values of the model fit well with the measured values in most
periods, while the deviation is obvious in the period near the
extreme value of deformation every year, especially around
the annual maximum. As we can see from Figure 9, most of
the radial displacement maxima are located in the maximum
range of the water level in the data series (corresponds to the
dotted green line in the Figure 9). Meanwhile, the extreme
values of the water level over the years are close to each
other (the purple horizontal line above the water level in the
Figure 9). However, The temperature fluctuates frequently
during the period of high water level,which is not completely
consistent with the assumption that the temperature changes
harmonically, resulting in the prediction deviation of the
model.

From Figure 11, compared with other models, the LSTM
model with attention mechanism is closer to the measured
deformation values, especially in May and June each year
when the radial displacement is relatively small, under the
condition of relatively high temperatures and low water lev-
els. Among them, the calculated values of statistical model
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TABLE 1. Statistical table of prediction models’ accuracy.

MSE RMSE MAE MAPE SMAPE
Statistic model 1.77 1.33 1.09 3.52% 3.63%
RNN+Attention 1.30 1.14 0.91 2.96% 3.03%
LSTM 1.06 1.03 0.81 2.56% 2.62%

LSTM+Attention 0.69 0.83 0.67 2.06% 2.09%

and the extremum of radial displacement in a few years
belong to training set are very similar. But in other years,
the prediction deviation of statistical model for extremum
often bigger than other models. This may be due to the
poor ability of the statistical model to express the nonlinear
relationship between variables, and the inability to describe
the complexity of the deformation under the combination of
special conditions.

As can be seen from Table 1, the MSE of LSTM model
with attention mechanism model decreases from 1.77mm
to 0.69mm compared with the statistical model, decreas-
ing by 61%. Compared with the RNN model, the MAE of
LSTM model with Attention also decreased by about 26%,
which shows the advantage of LSTM over RNN in long
sequence to some extent. Meanwhile, by adding attention
mechanism, the errors of LSTM model are reduced by about
20%, which suggests that the Attention mechanism is helpful
to improve the prediction accuracy through the weight distri-
bution among the influencing factors.

VI. CONCLUSION
In this article, the construction method of a concrete dam
deformation prediction model is studied. Here are the sum-
mary of this work:

1) The proposed model utilizes LSTM in deep learning as
the carrier to give full play to its “memorability”’ advantage
in the time series data mining;
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2) The Adam algorithm is used in this model as a gradient
descent algorithm to optimize the parameters in a time-saving
and efficient way;

3) The Dropout layer is inserted between the LSTM layers
to prevent the overfitting phenomenon during training and
increase the model’s robustness by randomly shielding the
work of some neurons;

4) The addition of the Attention mechanism in front of
the output layer enables the model to give corresponding
weight to the characteristics of influencing deformation when
making predictions. Meanwhile, the addition of the Attention
mechanism equips the model with the ability to consider the
role of global and local connections between deformation and
long series of influencing factors;

5) The validity of the method is verified by an engineering
example. Compared with other prediction models, this pro-
posed model achieves smaller errors in various aspects.
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