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ABSTRACT For deep sea equipment suspension installation used in marine engineering, the multi-camera
video motion analysis method is used to calculate the three-dimensional underwater trajectory of the
underwater engineering structure. Considering difficulty in underwater modeling caused by the problems
of light scattering and refraction under water, the camera imaging model on land is no longer applicable
in water, and a new underwater camera imaging model needs to be proposed. This paper introduces an
underwater camera imaging model with light refraction, studies the calibration method of the internal and
external parameters of the underwater camera, and improves the multiscale rotation dense feature pyramid
convolutional neural network to detect the position of the target object in the image. The underwater motion
videos of the target produced by three fixed underwater cameras are optimized to fuse and calculate the
trajectory of the underwater target. This method is suitable for large-scale motion of underwater objects
and can obtain more accurate trajectories. Experimental analysis and data comparison have verified the
effectiveness of the method.

INDEX TERMS Deep sea equipment installation, underwater camera calibration, three-dimensional trajec-
tory calculation, BA optimization, multiscale rotation dense feature pyramid networks.

I. INTRODUCTION
Marine engineering equipment is a high-input and high-risk
product. With the continuous development of marine engi-
neering equipment, the demand for marine target detection
has become a hot research topic. In the past few decades,
underwater equipment installation methods have been widely
used. For underwater equipment installation on different
occasions, people pay more and more attention to its stability
and high precision, and this is an urgent problem that needs
to be solved for marine engineering equipment. Fortunately,
the detection direction of underwater targets has been greatly
developed, for example using methods based on acoustic
sensors [1]–[4], lidar [5]–[8], geometric scattered waves
[9]–[11], sonar pictures [12]–[15], hybrid particle filter
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tracking [16], wavelet transform [17], [18] and others to
detect underwater targets.

These methods can detect underwater target objects to a
large extent, but because they rely too much on the infor-
mation provided by the sensors, the results obtained are
unstable, and the performance of different sensors in complex
underwater environments will be affected. As a result, their
accuracy requirement cannot be fullymet. Comparedwith the
environment in the air, the dynamics, unstructural characteris-
tics, backscattering of impurities in the water, and light atten-
uation in seawater, especially in the deep-sea environment,
seriously hinder exploration of the ocean. Therefore, using
the image captured by the camera and using computer vision
to conduct underwater detection has increasingly become
a research hotspot. Underwater vision imaging is an effec-
tive method for detecting underwater environments. Great
progress has been made in the analysis of target movement
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on land, but the analysis of underwater target movement still
faces many difficulties. For example, there are many sus-
pended matters and particles in the underwater environment.
The light is scattered under water and the underwater image
is degraded. Another major obstacle is the image error caused
by the refraction of light [19]. How to accurately detect under-
water targets in blurred underwater images is also very chal-
lenging. PSYCHARAKIS [20] pre-made a calibration frame,
based on several markers and used the DLT [21] equation
to obtain its 3D coordinates to perform a three-dimensional
swimming analysis, but the DLT algorithm did not consider
the refractive coordinate system. KWON [22] proposed con-
sidering both refraction and DLT methods, that is, the pixel
coordinates used to calculate the refraction point after con-
sidering refraction based on Snell’s law. ALEXANDRI and
DIAMANT [23] proposed an autonomous underwater vehi-
cle (AUV) using an inertial navigation system (INS) and a
simultaneous localization andmapping (SLAM)method. The
method needs to rely on plenty of external environmental
imaging to provide the required ‘‘nodes’’. Shen et al. [24]
used a binocular camera to detect underwater target objects.
By improving the Harris operator, the camera can be cor-
rectly modeled in high-scattering underwater environments,
but this method depends on the clarity of the pictures taken.
In addition, the final results need to be optimized for com-
puter vision methods, so these methods have great limitations
when used underwater. High-precision target detection in an
underwater environment with low illumination and blurred
imaging effects is a great challenge. The detection cannot be
reliably done relying on traditional feature corner extraction
methods. Significant progress has been made in research
on the target detection methods based on deep learning in
terms of detection accuracy and speed, such as RCNN, SSD,
YOLO and others. Some scholars have used deep learning-
based target detection and tracking methods to achieve
good results for special applications in complex scenarios.
Stewart et al. [25] made a great contribution to stereo tracking
3D position by studying the connection between kernel-based
algorithms and traditional template tracking methods; in
order to maintain the speed and accuracy of YOLO, Redmon
and Farhadi [26] introduced the YOLOv3 network frame-
work for training and recognition; Kaiming [27] improved
the Faster R-CNN framework and introduced the Mask
R-CNN framework to effectively detect objects in images;
Zhou et al. [28] proposed a deep alignment network to effec-
tively solve the misalignment (that is, excessive background
and partial loss) and occlusion problems of the detector;
Chen et al. [29] used a fully convolutional network (FCN)),
and proposed a simple and effective visual tracking frame-
work; Zhou et al. [30] proposed a novel fine-grained spatial
alignment model (FGSAM) to discover fine-grained local
information and effectively deal with complex challenging
scenes such as pose, inaccurate detection, occlusion and mis-
alignment; Zhong et al. [31] proposed a hierarchical tracker
to solve the problem of low search efficiency and reduced
tracking performance. This paper aims at the detection of

special underwater targets, and it is necessary to propose a
special non-axis alignment frame for recognition. By building
a deep learning detection framework for non-axis alignment
frames, we determine the pixel position of the target object in
the picture according to the learned model parameters, which
effectively prevents the disturbance caused by the irregular
self-motion of underwater objects.

In this paper, to simulate the installation process of large-
scale offshore oil and gas production equipment based on
the deep-sea suspension method, to study the equipment
movement characteristics under different layout parameters,
the relevant underwater three-dimensional motion trajectory
measurement test was carried out in the pool environment,
using multiple underwater cameras to produce motion videos
to calculate the target’s motion trajectory. Previously, relevant
research has been done and a paper has been published in
the Journal of Graphics [32]. This article will consider issues
related to refraction, target recognition, and optimization in
camera modeling. The contributions are as follows:

1) We introduce a camera imaging model in the event of
refraction. Compared with literature [33], the model is
simpler and requires fewer intermediate variables to be
calculated, whichmakes the parameters obtained by the
camera calibrated underwater more accurate.

2) With the refraction coordinate system considered in
the camera modeling process, the target object needs
to be identified. The traditional recognition method
relies too much on the clarity of the image, so a con-
volutional neural network is built to accurately rec-
ognize the target object. Considering special target
objects, a multiscale rotation dense feature pyramid
neural network is built to detect non-axis-alignment
target objects. Comparedwith literature [34], [35], after
passing through the RPN layer, non-maximum suppres-
sion is performed on the obtained suggestions, filtering
out the suggestions that do not meet the requirements,
and providing appropriate regional suggestions for the
next stage of the network.

3) Introduce multiple cameras to measure large-scale
motion of underwater objects, and add BA optimization
links to the measurement results to make the measure-
ment results more accurate.

The rest of this article is as follows: section II discusses
the method of underwater camera calibration. Section III
deals with the details of building a neural network to identify
the target object and obtain the center pixel coordinates.
Section IV is about the content of 3D measurement and BA
optimization. Finally, section V is the conclusions.

II. UNDERWATER CAMERA CALIBRATION
A. UNDERWATER CAMERA IMAGING MODEL
Underwater camera calibration is the key technology of
underwater vision measurement. Due to the refraction
and scattering of underwater light, the imaging model of
the underwater camera is no longer the pinhole imaging
model. When the camera captures an underwater object, the
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scattering phenomenon will affect its imaging quality. After
acquiring the underwater motion datasets of the object, this
paper uses image restoration and image enhancement meth-
ods to make deconvolution calculation on the degraded image
and the point expansion function in the spatial domain to
repair the image [36], which facilitate the later processing
of the dataset, and the expected effect is achieved. Since
scattering does not affect the physical imaging model of
the object, but refraction changes the imaging model of the
object on land, the method for studying vision on land is not
suitable, and a new imaging model needs to be proposed.
TREIBITZ [37] analyzed the effects of refraction on camera
calibration. When the light at the far end of the interface
extends backwards to the camera, it will not intersect at
a point, but form a caustic surface (not compatible with
single-view camera model), as shown in Figure 1. Therefore,
the camera calibration method for the atmospheric environ-
ment is no longer applicable, and the camera underwater
imaging model needs to be built.

FIGURE 1. Underwater non-single-view camera model.

B. UNDERWATER CAMERA INTERNAL
PARAMETER CALIBRATION
The internal parameter calibration technology of the camera
for the atmospheric environment is very mature. The existing
calibrationmethods include the TSAI [38] calibrationmethod
and the Zhang [39] calibration method. Due to the harsh
underwater environment, pictures taken by different types of
cameras may have different effects on the final result. If the
object trembles during the movement, the image captured
by the camera will be blurred and the feature points cannot
be identified. The underwater camera used in this article
has the characteristics of high-definition signals, minor video
delay and Ethernet transmission. The shell material is 316L
stainless steel, and the glass sealed camera has strong pressure
resistance and corrosion resistance in seawater. This under-
water camera can meet engineering needs. The parameters
are as follows:

1) RESOLUTION
2592× 1964, the frame rate is 64 fps.

2) PIXEL SIZE
The horizontal direction is 5µm, and the vertical direction is
also 5µm.

3) SENSOR SIZE AND SHUTTER EXPOSURE METHOD
The sensor CMOS size is 1/1.8 inches, and the shutter
exposure mode is global.

4) INTERFACE MODE
The camera uses a network interface, and the pictures and
videos captured are transmitted to the computer through the
local area network.

The internal parameters in the camera are only related to
the properties of the camera itself, and will not change in an
underwater or atmospheric shooting environment. This paper
first uses the Zhang [39] calibration method to calibrate the
camera parameters of the three cameras in the air.

Matrix A is the internal parameter matrix of the camera,
and the result of camera 1 calibration is

A =

 621.5368 0 320.9654
0 621.7594 247.9370
0 0 1

 (1)

Considering the refraction in water, the position of the
object point in the underwater image is not the actual position,
as shown in Figure 2.

FIGURE 2. Underwater light refraction model.

Due to the refraction of light, the focal length in the
imaging model has changed significantly. Figure 3 shows the
model of underwater light refraction. The true focal length
is f. The light rays refracted after being extended in the
opposite direction intersect with the optical axis to obtain a
virtual imaging plane and a virtual focal length f’. The angle
between the real light in the air and the optical axis is θ , and
the angle between the virtual light in the air and the optical
axis is θ ′. For any point x of the imaging plane:

tan(θ) =
x
f

(2)

tan(θ ′) =
x
f ′

(3)

According to the Snell’s law and the approximation when
θ is small, we can obtain:

f
f ′
≈
µ1

µ0
(4)
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FIGURE 3. Underwater target.

TABLE 1. Focal length comparison.

According to the derivation of LAVEST [40] on the imag-
ing model of the lens in two media with different refractive
indexes, the image must be enlarged to a multiple of the
refractive index between the two media.

n0(u+ du) (5)

This article discusses underwater cameras, so the refractive
index n0 of air to water is 1.33. du and du’ are pixel distortion
values. If the distortion is not considered, it equals the focal
length being enlarged by 1.33 times, which is the refractive
index of water to air. Then fx and fy in the internal parameter
matrix calibrated by the Zhang [39] calibrationmethod for the
underwater checkerboard image is 1.33 times that in the air.

In this paper, the calibration program of the Zhang [39]
calibration method is used to experimentally validate the
above-mentioned parameter calibration theory of underwater
cameras. 12 underwater checkerboard images of each camera
are collected as the input of the calibration program. The
length of the checkerboard used for calibration is 25 mm. The
image of the underwater target object is shown in Figure 3.

Calibrate the three cameras separately. The calibration
result of camera 1 is

A =

 830.8608 0 320.9772
0 830.7591 247.9170
0 0 1

 (6)

See Table 1 and Table 2 for the comparison between atmo-
spheric and underwater calibration results of camera 1.

To verify the above-mentioned conclusions, the Zhang [39]
calibration method can be used to calibrate the underwater
and atmospheric pictures, and the horizontal and vertical
focal lengths of the underwater pictures are 1.33 times those
of the atmospheric ones. This number happens to be the

TABLE 2. Comparison of principal coordinates.

refractive index of water to air. The principal point coor-
dinates are basically the same in the two cases, which are
approximately equal to half of the resolution.

C. UNDERWATER CAMERA EXTERNAL
PARAMETER CALIBRATION
Generally, the optical axis of the camera is perpendicular to
the camera lens and passes through the center of the lens of an
underwater camera. Matrix A represents the direction vector
of the optical axis. The plane where the refraction occurs is
defined as α, and the vector perpendicular to α is defined
as normal vector n, and the connection between any three-
dimensional point P(i) in the air and the optical center of
the camera is represented by vector V0. According to Snell’s
law, the refracted ray must be coplanar with the incident ray
and the normal of the refracting plane. Therefore, the entire
optical path should be on α, and the final refracted light
should intersect with the axis, as shown in Figure 4.

FIGURE 4. Underwater light model.

The point of any three-dimensional world coordinate sys-
tem converted by the external parameters of the underwater
camera is also on the refraction plane, that is:

(RP+ t)T (A× v0) = 0 (7)

where P is any point in the world coordinate system,
R and t respectively represent the rotation matrix and trans-
lation vector converted from the camera coordinate system to
the world coordinate system. It is noteworthy that the copla-
nar constraints are independent of thickness d of the medium
and refractive index µi, which depends only on the direction
vector of the axis and the camera external parameters (pose).
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[A]× is the anti-symmetric matrix of matrix A. The coplanar
constraints can be rewritten as:

vT0 (A× (RP+ t)) = vT0EP+ v
T
0 s (8)

where E=[A]×R and s=A×t. Matrix E has some similarities
with the pose essential matrix E=[t]×R between two frames
of the camera. It can use the 5-point method of the essential
matrix to decompose and estimate the camera pose R and t to
estimate the axis direction vector.

With 8 given points corresponding to the two continuous
frames, the above-mentioned equation is expanded to obtain
the following linear equation: P(1)T ⊗ v0(l)T v0(l)T

...
...

P(8)T ⊗ v0(8)T v0(8)T


︸ ︷︷ ︸

B

[
E
s

]
= 0 (9)

where B is an 8 × 12 matrix with a rank of 8; ⊗ is the
Kronecker product operation; P(i) is the corresponding three-
dimensional coordinate of the ith world coordinate system;
v0(i) is the vector connecting the corresponding ith point to
the optical center of the camera.

The resolution of the image captured by the camera
is 2592 × 1964. The experiment uses a plane calibration
plate. The z-axis coordinate is 0. Apply them to the above-
mentioned coplanar constraint equation to obtain:[

PT(12) ⊗ vT(12) vT(12)
] [E(12)

s(12)

]
= 0 (10)

According to the direction of optical axis A of the camera
and the Z axis of the world coordinate system, the following
formula can be obtained:

E =

−r2 −r5 −r8
r1 r4 r7
0 0 0

 , s =
[
−t2 t1 0

]T
(11)

E(1:2) =

[
−r2 r5
r1 r4

]
(12)

Here ri and ti represent the components of R and t respec-
tively. Select the corner world coordinates of 5 or more
plane calibration plates, apply them to the above-mentioned
formula, get the linear equation, and find the solutions to E
and s. The last column of E is solved using the constraint of
det(E) = 0 and the unit orthogonality of the rotation matrix.

Since the world coordinate of the plane calibration plate
has no Z-axis components, t3 in the translation vector,
that is, the translation component parallel to the Z axis,
has not been solved. According to the research results of
Agrawal et al. [41], the assumption is as follows:

t3 = αA (13)

In (13), α is the amplification factor. From the refraction
restriction conditions, the following formula can be obtained:

vp1 ×
[
vp0/c0 zp

] [ d0
α

]
= −vp1 × u (14)

FIGURE 5. Video sequence object position. (a) The object captured by the
first camera. (b) The object captured by the second camera. (c) The object
captured by the third camera.

TABLE 3. Camera external parameters corresponding to different
positions.

vpi is a two-dimensional vector of v0; ci = vpTi z1,
zp = [0; 1]; u represents the projection vector from the
target point in the camera coordinate system to the corre-
sponding refractive layer; d0 is the vertical distance from the
optical center of the camera to the refractive surface. Using
two or more matching corner points, get the least square
solution of α, and then t3 can be obtained.

After the underwater cameras shoot the video sequences,
the video sequences are intercepted into a picture set with a
frame as the unit by the method of image processing, and then
3 positions are selected as shown in Figure 5.

Using the above-mentioned method, the three position
cameras in Figure 5 can be obtained, as shown in Table 3.

In order to verify the feasibility of the underwater camera
calibration method, this paper uses the same data to calibrate
the camera according to the underwater imaging model pro-
posed by Xiaoze et al. [33] from China Ocean University,
and calculates the reprojection error of the two methods.
The reprojection error refers to the difference between the
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FIGURE 6. Reprojection error comparison.

projection of a real three-dimensional space point on the
image plane (i.e. the pixel point on the image) and the repro-
jection (i.e. the virtual pixel point calculated using the cal-
ibration parameter). For a specific position, the differences
between the real and virtual coordinates of each corner point
on the image plane are accumulated, and finally divided by
the total number of accumulated corner points to obtain the
reprojection error at this position. In order to explain the
problem, five positions of data were selected to calculate
the reprojection error values using different methods (the
method proposed in this paper is method 1, and the method
proposed by Xiaoze et al. [33] is method 2), as shown in Fig-
ure 6. It can be seen from Figure 6 that the accuracy of the
method in this paper has been significantly improved.

III. OBJECT CENTER PIXEL POSITIONING
Through the previous method, we can easily find internal
parameter A of the underwater camera and the external
parameter corresponding to each picture (rotation matrix R
and translation vector T), and then we need to calculate the
three-dimensional coordinates of the target object on each
picture. The center of the target picture captured by the
camera is used as the target point instead of the entire object to
describe its trajectory. Although the experiment was carried
out in the pool, the poor quality and insufficientillumination
caused the target image to be blurred. Accurate detection
of the center position of the target picture was the key step
to achieving 3D trajectory measurement. It is difficult to
use conventional target detection to accurately calculate the
center coordinates of the target. With the application of deep
learning in target visual detection, significant results have
been achieved. In this paper, deep learning is used for target
detection. Although the effect of using neural networks to
detect target objects is significant, the detection effects of dif-
ferent network models are very different for specific objects.
Girshick [42] proposed the Fast R-CNN network framework,
which can train and recognize the target object. Although the
result is good, it uses the traditional segmentation method
for feature map segmentation, resulting in the entire network
framework taking toomuch time compared to other networks.
Ren et al. [43] introduced the RPN layer on the basis of

Fast R-CNN to solve the problem of the traditional feature
segmentation taking toomuch time. However, the recognition
frame obtained by the proposedmodel frame are not all tilting
parallel to the edge of the picture. In order to more accurately
compute the coordinates of the center point of the checker-
board, it is necessary to perform oblique marking along the
movement direction of the target object. Jiang et al. [44] pro-
posed the R2CNN framework to recognize the text in the real-
life scene, and the recognition framewasmarked according to
the tilt direction of the text, in order to meet the requirements
of text recognition; Xue et al. [34], Yang et al. [35] proposed a
multi-task rotating region convolution neural network which
is used to identify the ships sailing on the sea. When multiple
ships appear on the sea port, a multi-task rotating neural
network based on dense pyramid is proposed to identify the
ships in any direction from the port. Based on this experiment,
the deep learningmethod is used to identify and detect the tar-
get surface in each picture, and return the pixel coordinates of
the recognition frame obtained through regression. It should
be noted that: first, because the world coordinate system is
established with the plane where the checkerboard is located
as the xoy coordinate system and the direction perpendicular
to this plane as the Z axis, the center point obtained by
identifying the entire object is not on the checkerboard plane;
second, consider directly identifying the checkerboard, but
during the actual underwater movement process of the object,
the direction of the target surface changes as the objectmoves.
In order to obtain the pixel coordinates of the center of the
target surface more accurately, the axis is obtained through
classification regression.

The traditional deep learning framework aligned with the
recognition frame can no longer meet the needs. In order
to solve these problems, this paper proposed an improved
CNN algorithm based on the Multiscale Rotation Dense Fea-
ture Pyramid Convolutional Neural Network to detect non-
axis aligned target surfaces and obtain accurate center pixel
coordinates.

A. MODEL ARCHITECTURE
Considering the impact of the rotation of the target surface,
a new end-to-end target surface detection deep learning
framework consisting of three consecutive parts is con-
structed: Dense Feature Pyramid Network (DFPN), RPN and
Fast-RCNN, the architecture of which is shown in Figure 7.

1) DFPN
For the features learned by the deep learning network, the bot-
tom layer feature semantic information is relatively scarce,
but the object position is accurate; by contrast, the learned
advanced feature semantic information is rich, but the object
position is relatively rough. The bottom position informa-
tion and high layer semantic information are very important
for object detection. The feature pyramid is an effective
approach for fusing multi-level information, and it works
well for small object detection. The structure based on
ResNet is shown in Figure 8, and can be divided into three
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FIGURE 7. Deep learning model architecture based on DFPN.

FIGURE 8. DFPN architecture.

parts: bottom-up convolutional neural network (Figure 8 left),
top-down process (Figure 8 right) and the side connection
between features.

Using ResNet as the backbone of the architecture,
the bottom-up part is the forward process of the convolutional
neural network. In the forward process, the size of the feature
map will change after some layers are passed, but will not
change when other layers are passed. The layers that do not
change the size of the featuremap are classified as a stage, and
the features extracted each time are the output of the last layer
of each stage {C2, C3, C4, C5}, so that a feature pyramid
can be established with a step size of {4, 8, 16, 32} pixels.
In order to reduce the number of parameters, the number of
channels of all feature maps is set to 256. In the top-down
network, horizontal and dense connections {P2, P3, P4, P5}
can obtain higher resolution. P5 is 1×1 convolution of C5, Pi
(0<i<5, i is an integer) uses the nearest neighbor upsampling
for all the previous feature maps, and through merging in
series, the aliasing effect brought by 3×3 convolutional layer
upsampling is eliminated, while reducing the number of chan-
nels. DFPN significantly improves the detection performance
through feature propagation and feature reuse.

2) RPN
In the RPN stage, in order to realize the detection of rotating
objects and improve the recall rate, a method of using rotation

anchor points to redefine rotation suggestions is proposed.
There are many ways to represent rectangular boxes. This
article uses four-point method and five-value method. The
four-point method refers to directly using the coordinates of
the four vertices of the rectangle, and the five-value method
refers to the center point coordinates (x, y), width w, height h
and rotation angle θ to express. The schematic diagram of the
five-value method (as shown in Figure 9) and the conversion
between the five-value method and the four-point method (as
shown in Equation 15) are shown below.

FIGURE 9. Five-valued representation of rotation anchor.

According to the characteristics of the target object
checkerboard and the shape in the picture, the checkerboard
can be described by using three parameters of scale, ratio and
angle. In order to cover the target object more effectively,
the anchor ratio is set to {1:1, 2:1, 1:2, 3:1, 1:3}, in the feature

x1 = x −
w
2
cos θ −

h
2
sin θ

y1 = y+
h
2
cos θ −

w
2
sin θ

x2 = x +
w
2
cos θ −

h
2
sin θ

y2 = y+
h
2
cos θ +

w
2
sin θ

x3 = y+
w
2
cos θ +

h
2
sin θ

y3 = y−
h
2
cos θ +

w
2
sin θ
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x4 = y−
w
2
cos θ +

h
2
sin θ

y4 = y−
h
2
cos θ −

w
2
sin θ (15)

map {P2, P3, P4, P5, P6} the scale is set to {50, 150, 250, 350,
500} pixels, and finally the rotation angle of each anchor is
set to {15◦, 30◦, 45◦, 60◦, 75◦, 90◦} to include the position
of the object at different angles. At that time, each feature
point in the feature map will generate 30 (1× 5× 6) anchor
points, each regression layer will obtain 150 (5×30) outputs,
and each classification layer will obtain 60 (2× 30) outputs.
In order to provide high-quality regional suggestions for the
next stage of the network, the outputs need to be ‘‘filtered’’
to filter out suggestions that do not meet the requirements,
so non-maximum suppression is required. In order to further
improve the learning of the proposal, a Skew IoU calculation
method considering the triangulation is proposed, the anchor
with the highest score in the RPN stage is selected to perform
NMS non-maximum suppression, and two constraints are set
for the NMS: (a) prediction results with IOU>15 shall be
discarded; (b) when 0.3≤IOU≤0.5, prediction results with
angle difference greater than 15◦ shall be discarded. In this
way, appropriate regional suggestions can be made for the
next stage of the network. It should be noted that NMS will
also be used to obtain accurate target values after the next
stage of prediction.

3) FAST-RCNN
First of all, it is recommended that the regions obtained by the
RPN layer be dealt with. In order to expand the feature area
and retain the complete feature information, the Multi-Scale
ROI Align method is used to obtain a fixed-length feature
vector. Use interpolation to obtain the minimum horizontal
circumscribed rectangle suggested by the region, and add
3:8 and 8:3 pooling layers tominimize the effects of distortion
caused by interpolation. After obtaining the suggestions of
the horizontal circumscribed rectangular area, by training the
parameters of the fully connected layer model, performing
position prediction and classification through regression and
classification, the parameter value of the checkerboard rep-
resented by the five-value method can be obtained. After
the second non-maximum suppression, accurate pixel coordi-
nates of the center point of the target object can be obtained.

B. LOSS FUNCTION
The multi-scale loss objective function is defined as follows:

L(P, t, vi, v∗i ) =
1
Ncls

∑
i

Lcls(Pi, ti)

+ λ
1
Nreg

∑
i

PiLreg(vi, v∗i ) (16)

Lcls(P, t) = − logPt (17)

Lreg(v, v∗) = smoothL1 (v
∗
− v) (18)

smoothL1 (x) =

{
0.5x2, if |x| < 1
|x| − 0.5, otherwise

(19)

where p represents the probability distribution of the category,
t represents the parameterized coordinate vector represented
by the predicted five-value method, Lcls(P, t) = −logPt rep-
resents the logarithm of the true value, v = (vx, vv, vw, vθ )
represents the predicted value, and v∗ = (vx∗, vv∗, vw∗, vθ∗)
represents the deviation of the true value from the anchor. λ
is the proportionality coefficient between the regression loss
function and the classification loss function. Here classifica-
tion and regression play an equally important role, so λ = 1.
The five-parameter equation that defines a five-value

method to represent a rectangular frame is shown in the
following formula.

tw = log(w/wa), th = log(h/ha) (20)

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha (21)

tθ = θ − θa (22)

tx = (x − xa)/wa, ty = (y− ya)/ha (23)

t∗w = log(w∗/wa), th = log(h∗/ha) (24)

t∗θ = θ − θa (25)

where (x, y) represents the center coordinates of the recog-
nition frame, (w, h) represents the width and height of the
recognition frame, and x (y, w, h), xa (ya, wa, ha) and
x ∗ (y ∗, w ∗, h ∗) represent the predicted value, the anchor
and the true value respectively. For this particular dataset, w
and h will not be reversed, so it is unnecessary to redefine it.

C. TRAINING AND EVALUATION
Take 6000 pictures of the checkerboard’s dataset in different
depth and set the ratio of the test dataset to the training dataset
to 5:3. The training frequency is set to 60k times. In order to
improve the learning efficiency, the learning rate needs to be
larger when set at the beginning. In order to avoid shocks,
the learning rate is then reduced. Therefore, the learning
rate of the first 25k times is 0.001, the learning rate of the
following 25k times is 0.0001, and the learning rate of the
last 10k times is 0.00001.
Different learning frameworks are used to train and iden-

tify the checkerboard dataset separately, and the differences
between the evaluation parameters of different methods are
analyzed, as shown in Table 4. It can be seen from the data
in the table that compared with other detection methods,
the deep learning framework adopted in this paper has given
better performance in terms of detection accuracy. Although
the detection time is slightly longer than that of the Faster-
RCNN framework, the method is more appropriate for the
identification of the checkerboard. By changing the detec-
tion confidence score threshold to obtain different recall and
precision rates, as shown in Figure 10, the curve in the
figure shows that the best performance can be obtained with
the set precision.
Through using the trained model framework, it is easy to

determine the pixel coordinate value of the center point of the
checkerboard in each picture, and use checkerboards of dif-
ferent positions to identify the object, as shown in Figure 11.
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TABLE 4. Performance analysis of different methods in CheckerBoard data set.

FIGURE 10. P-R curves corresponding to different methods.

FIGURE 11. CheckerBoard test recognition frame in different positions.
(a) Identify the object in the first position captured by the first camera.
(b) Identify the object in the second position captured by the first camera.
(c) Identify the object in the first position captured by the second
camera. (d) Identify the object in the second position captured by
the second camera. (e) Identify the object in the first position captured by
the third camera. (f) Identify the object in the second position captured
by the third camera.

The calculated value and the actual value of the pixel
coordinates of the center point are shown in Table 5. The error
value can be controlled within 1%, which provides accurate
data for the following three-dimensional measurement.

D. DISCUSSION
For this type of network framework, traditional errors appear
in false alarms and misjudgments. False alarms refer to the
appearance of objects with a similar aspect ratio to the target

TABLE 5. CheckerBoard center point pixel coordinate error analysis.

FIGURE 12. Misjudgment. (a) Misjudgment of camera 1. (b) Misjudgment
of camera 2.

object in a complex environment, and there are almost no
objects similar to the target object in the large-scale test pool
established in this paper, so there is basically no error due
to false alarms. Misjudgments are caused by objects with
IoU overlap and large difference in length and width. The
rotation angle of the object’s non-axis alignment detection
frame has a greater impact on the sensitivity of IoU, and it
is easy to make wrong judgments. The target objects in this
article are similar in length and width. The chance of this kind
of error appearing is small. However, when the object itself
moves to some neutral position (a certain edge of the object is
facing the camera), a wrong judgment will be made, as shown
in Figure 12. However, there are very few pictures with this
kind of error, and estimation can be performed based on the
data of the previous and following frames. Therefore, such
error has little effect on the final result.

IV. THREE-DIMENSIONAL MEASUREMENT
Through the above-mentioned method, we can calculate
internal parameter A and the external parameters (rotation
matrix R(r1, r2, r3) and translation vector T) corresponding
to each image with high precision.
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The parameters of underwater camera calibration are opti-
mized before later calculation. After the corresponding exter-
nal parameters rotation matrix R(r1, r2, r3) and translation
vector T of each image are obtained through underwater cam-
era calibration, the external parameters need to be optimized
to make the later calculation results more accurate. Good
results can be obtained by using the BA optimization method.
The so-called BA optimizationmeans that the camera attitude
and the position of the feature points are adjusted at the same
time, so that the light reflected from each feature point can
pass through the camera light center. LOURAKIS,M.I.A [45]
proposed SBA and used the principle of least square to esti-
mate the structure and motion of features, and Gao et al. [46]
aimed to minimize the reprojection error, so as to obtain the
camera pose and the coordinates of the feature points.

A. PTIMIZATION FUNCTION
With the reprojection error as the objective function, the BA
optimization is constructed as a least square problem, and
the camera pose and the coordinates of the feature points
are adjusted simultaneously by minimizing the reprojection
error. Re-projection is to re-project the points in the world
coordinate system to the pixel coordinate system, taking into
account the internal and external parameters and the distor-
tion coefficient of the camera, that is:

u = h(ξ, p) (26)

where h represents the imaging process of the camera, ξ rep-
resents the pose of the camera in the world coordinate system
(represented by LieAlgebra), p is the coordinate of the feature
point in the world coordinate system, u is the theoretical value
of the pixel coordinate corresponding to the feature point
in the pixel coordinate system, and the objective function
(re-projection error function) is defined as:

er = (z− u)2 = (z− h(ξ, p))2 (27)

where z is the pixel coordinate of the feature point in the
pixel coordinate system. The least square problem is con-
structed, and the obtained external parameters are consid-
ered as the initial values, and the corresponding external
parameters are optimized by minimizing the target function.
The re-projection error function is minimized by adjusting
(ξ , p). The checkerboard has a total of 24 corners, and the
target function to be solved can be established as shown
in (28), where ξ is the Lie Algebraic representation of the
optimized position and attitude, and pi = [xi, yi, zi]T is the
three-dimensional coordinate of the target point in the world
coordinate system.

min
1
2

24∑
i=1

|z− h(ξ, pi)|2 (28)

The error of a single feature point is:

ei = z− h(ξ, pi) (29)

Then the error of all the feature points of the checkerboard
in each image is:

f (x) =
[
e0 e1 · · · e24

]T (30)

The overall target function can be written as follows:

min
1
2

24∑
i=1

|z− h(ξ, pi)|2 = min
1
2
|f (x)|2 (31)

Define the state variables to be estimated as:

x =
[
ξ p1 · · · p24

]T (32)

The incremental equation can be obtained from the
Gauss-Newton method.

H1x = g (33)

And: {
H = J (x)T ∗ J (x)
g = −J (x)T ∗ f (x)

(34)

Corresponding to each feature point in checkerboard,
the Jacobian matrix is:

Ji(x) =
[
Fi 0 . . . Ei · · · 0 0

]
(35)

And: 
Fi =

∂ei
∂δξ

Ei =
∂ei
∂pi

(36)

Considering all the feature points, the global Jacobian
matrix can be written as follows:

J (x) =


F1 E1 0 . . . . . . 0
F2 0 E2 . . . . . . 0
. . . . . . . . . . . . . . . . . .

Fi 0 0 Ei . . . 0
. . . . . . . . . . . . . . . . . .

F24 0 0 . . . . . . E24

 (37)

And, (38) and (39), as shown at the bottom of the next page.
In the formula, fx and fy is the original size of the

image, (cx, cy) is the coordinate of the principal point, and
[X’, Y’, Z’]T is the three-dimensional coordinate of the fea-
ture point transformed to the camera coordinate system.

B. ITERRATIVE OPTIMATION
With a given initial value, the external parameters can be
optimized through iteration:

a: Set initial parameter values x0.
b: Assume that the iteration times reach k times and find

the current J(xk) and f(xk).
c: Solve incremental equation (28) and find 1xk.
d: If1xk is small enough, stop; otherwise, xk+1 = xk+1xk

and return to step b.
The external parameters obtained through underwater cam-

era calibration are set to initial value x0, and the optimized
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FIGURE 13. Comparison of reprojection of feature points before and after optimization. (a) The change process of
reprojection in the optimization process of the target object in the first position. (b) The change process of
reprojection in the optimization process of the target object in the second position.

external parameters are obtained after 5 iterations. The 24 fea-
ture points of different images before and after optimization
are re-projected, as shown in Figure 13.

It can be deemed that each image uses the object checker-
board plane facing the camera for calibration, the internal and
external parameters are obtained, and the world coordinate
system Oixiyizi is established. Correspondingly, the checker-
board plane coordinate system is Oixiyi (the default value of
zi is 0). As a result, the corresponding relationship between
the coordinates of the target point in the world coordinate
system and the image plane coordinate system is as follows:

sm = HM (40)

where s is a non-zero scale factor, m and M are the image
plane coordinate system and the world coordinate system of
the target point, respectively. The following can be obtained

from the geometric relation and formula (40) of the imaging
point:

H = A(r1, r2,T ) = (h1, h2, h3) (41)

r1 = sA−1h1 (42)

r2 = sA−1h2 (43)

r3 = r1 × r2 (44)

The following conclusions can be drawn by taking modulo
on both sides of equations (42) and (43):

s = 1/
∥∥∥A−1h1∥∥∥ = 1/

∥∥∥A−1h2∥∥∥ (45)

If the coordinate of the target point of the checkerboard
plane coordinate system is (xi, yi, 1)T, and the coordinate of
the image plane coordinate system is (u,v,1)T, then according
to the Homography matrix [47] (homography matrix H) and

F = −

 fx
Z ′

0 −
fxX ′Y ′

Z ′2
−
fxX ′Y ′

Z ′2
fx +

fyX ′2

Z ′2
−
fxY ′

Z ′

0
fx
Z ′

−
fyY ′

Z ′2
−fy −

fyY ′2

Z ′2
fyX ′Y ′

Z ′2
fyY ′

Z ′

 (38)

E =

 fx
Z ′

0 −
fxX ′

Z ′2

0
fy
Z ′

−
fxY ′

Z ′2

R (39)
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formula (40), if the image plane coordinate system coordinate
of the target point is known, the coordinate in the checker-
board plane coordinate system can be obtained, that is:

(xi, yi, 1)T = sH−1(u, v, 1)T (46)

After calculating the coordinate of the checkerboard plane
coordinate system of the target point, the three-dimensional
homogeneous coordinate is Q(xi, yi, 0, 1)T, and the coor-
dinate of the target point in the camera coordinate system
can be obtained by rotating the translation matrix, that is,
the coordinate of the target point Qc in the camera coordinate
system can be obtained.

Qc =
[
R T
0T 1

]
Q (47)

Once the pixel coordinates of the ‘‘target point’’ are known,
the camera coordinate system coordinate can be obtained
through the above-mentioned algorithm, and the same ‘‘pixel
point’’ (target point) can be found in each frame by extracting
the corner of the image target. If it is regarded as the above-
mentioned ‘‘target point’’, the camera coordinate correspond-
ing to the target point in each frame can be obtained, and
finally a three-dimensional trajectory can be constructed.

V. UNDERWATER EXPERIMENT AND RESULT ANALYSIS
The motion of the object can be divided into the complete
pendulum drop test (initial stage approximate vertical fall,
affected by installation cable and water) and the vertical drop
stage test (pendulum falling motion). Because the field of
view of a single camera is small and the span of the object
trajectory is large, it is impossible for a single camera to
capture a complete trajectory. In order to solve this problem,
this experiment uses three underwater cameras to divide the
whole trajectory into three segments, and the calculation
of the trajectory can be achieved by reasonably arranging
their respective positions. In order to better detect the corner
features of the underwater moving object image, the checker-
board is pasted around the object. In the experiment, the dis-
tance between the camera and the initial target is about 5 m,
and the depth of the test pool water is 10 m.

In the process of the object motion, a specific point can
be selected to replace the whole object, so that the trajectory
of the object can be calculated conveniently. Using different
methods to determine the target point for trajectory calcula-
tion will cause different errors. The deep learning method is
selected in this paper to determine the pixel coordinates of
the target point, which can obtain a high-precision trajectory.
For comparison, after obtaining the dataset, the conventional
method is used to calculate the pixel coordinates of the target
point to calculate the trajectory of the object, that is, a specific
corner in the target is selected as the target pixel to calculate
it; for the same dataset, the deep learning method is used
to determine the coordinates of the target center point to
calculate the trajectory. Since the deviation of the viewing

angle will lead to different results, after calculating the trajec-
tories using the conventional method and the deep learning
method respectively, the two trajectories are placed in the
same coordinate system for analysis.

A. TRAJECTORY MEASURED BY A SINGLE CAMERA
The positions captured by camera 1 during part of the time
are shown in Figure 14.

FIGURE 14. Part of the position of the object at the moment measured by
camera 1. (a) The first position. (b) The second position. (c) The third
position. (d) The fourth position.

The trajectory measured through the conventional method
is shown in Figure 15.

FIGURE 15. The trajectory of the object measured by camera.

The trajectory measured through the deep learning method
is shown in Figure 16.

Place the trajectories measured by the two methods in the
same coordinate system as shown in Figure 17.

The positions captured by camera 2 during part of the time
are shown in Figure 18.

The trajectory measured through the conventional method
is shown in Figure 19.
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FIGURE 16. The trajectory of the object measured by camera.

FIGURE 17. The trajectory of camera 1 merged into the same coordinate
system (red curve: conventional method; blue curve: deep learning
method).

FIGURE 18. Part of the position of the object at the moment measured by
camera. (a) The first position. (b) The second position. (c) The third
position. (d) The fourth position.

The trajectory measured through the deep learning method
is shown in Figure 20.

Place the trajectories measured by the two methods in the
same coordinate system as shown in Figure 21.

FIGURE 19. The trajectory of the object measured by camera.

FIGURE 20. The trajectory of the object measured by camera.

FIGURE 21. The trajectory of camera 2 merged into the same coordinate
system (red curve: conventional method; blue curve: deep learning
method).

The positions captured by camera 3 during part of the time
are shown in Figure 22.

The trajectory measured through the conventional method
is shown in Figure 23.

The trajectory measured through the deep learning method
is shown in Figure 24.
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FIGURE 22. Part of the position of the object at the moment measured by
camera 3. (a) The first position. (b) The second position. (c) The third
position. (d) The fourth position.

FIGURE 23. The trajectory of the object measured by camera 3.

FIGURE 24. The trajectory of the object measured by camera.

Place the trajectories measured by the two methods in the
same coordinate system as shown in Figure 25.

B. TRAJECTORY SYNTHESIS
When arranging the camera position during underwater oper-
ation, make sure that there are coincident parts in the field of

FIGURE 25. The trajectory of camera 2 merged into the same coordinate
system (red curve: conventional method; blue curve: deep learning
method).

FIGURE 26. Camera field of view coincidence model.

view of the three cameras, and the field of view coincide with
the camera model, is shown in Figure 26.

In Figure 26, it is assumed that the coordinates of point P in
the camera 1 coordinate system and the camera 2 coordinate
system are (x1,y1,z1) and (x2,y2,z2), respectively. Then the
following formula is correct:

[
R T
0T 1

]
x1
y1
z1
1

 =

x2
y2
z2
1

 (48)

Rotation matrix R and translation vector T can be cal-
culated from the positive definiteness of rotation matrix R
and the coordinates of several coincidence points P. There-
fore, the trajectories of camera 1 and camera 2 can be
merged into the same camera coordinate system through
formula (48). Similarly, the trajectories of camera 3 can also
be merged into the same camera coordinate system, as shown
below.

The merger trajectory measured through the conventional
method is shown in Figure 27.

The merger trajectory measured by the deep learning
method is shown in Figure 28.

Place the two trajectories in the same coordinate system as
shown in Figure 29.

From the above-mentioned comparison, we can see that
there are some offset points around the trajectory using
the conventional method, because there may be a flip or a
great rotation in the process of object motion, resulting

VOLUME 8, 2020 186389



T. Liu et al.: Novel Visual Measurement Method for Three-Dimensional Trajectory

TABLE 6. Coordinate error analysis.

FIGURE 27. Fusing tracjectory.

in another target plane of the target object photographed
by the camera. Therefore, it is calculated that the three-
dimensional point representing the object deviates to some
extent. Such situation can be avoided by using the deep
learning method. If two target surfaces appear at the same
time, the larger target will be selected for recognition and
its central coordinates will be determined, which can reduce
a lot of offset points. The measured trajectory is displayed
as a smooth curve in the 3D coordinate system, as shown
in Figure 30.

C. ERROR ANALYSIS
The commercial video motion analysis software is relatively
mature. In order to quantitatively analyze the authenticity of

FIGURE 28. Fusing tracjectory.

the experimental results, the experimental results are com-
pared with the trajectories calculated by the professional
motion video analysis software TEMA in this paper. Error
analysis with the coordinates calculated by the TEMA soft-
ware as the actual value, and the coordinates calculated by
the method described in this paper, is shown in Table 6.
However, the TEMA software needs to introduce the cam-
era calibration model parameters generated by refraction
to analyze the underwater motion video, and the operation
is relatively complex, so application in actual underwater
engineering is difficult. Through the error analysis of the
trajectory calculated through the conventional method and
the deep learning method, it can be seen that the method of
deep learning and computer vision proposed in this paper
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FIGURE 29. The trajectorys merged into the same coordinate system (red
curve: conventional method; blue curve: deep learning method).

FIGURE 30. Smooth trajectory.

is relatively simple and easy to implement and has high
accuracy.

VI. CONCLUSION
In this paper, based on the analysis of the special under-
water environment, the internal and external parameters of
the underwater camera are calibrated by using the modified
underwater camera imaging model, and an algorithm for
calculating the three-dimensional trajectory of underwater
moving objects based on multiple cameras is proposed and
realized. In this paper, the difficulty of being unable to capture
the trajectory of an object with large-scale motion is solved
experimentally, and an algorithm for registering the trajectory
captured by multiple cameras is proposed by using multiple
underwater cameras to capture the motion of the object at
the same time. Finally, the complete trajectory of underwater
large-scale object motion after registration is obtained. The
experimental results show that the underwater camera mod-
eling based on refraction can accurately obtain the trajectory

data of moving objects in the underwater environment, which
provides some reference for the work related to marine engi-
neering equipment.
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