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ABSTRACT In order to further improve the accuracy and speed of the present commonly used NURBS
surface method, an improved method for NURBS surface based on particle swarm optimization BP neural
network is proposed. Firstly, node vectors of the data points are calculated by using the parametrization
method of accumulating chord length. Then, prediction model of node vectors is constructed by using the
particle swarm optimization BP neural network, and the experiment is presented to justify the feasibility and
veracity of constructed prediction model. Finally, using the predicted node vectors, a fast and high-precision
NURBS surface is realized. The results showed that the root mean squared error of fitting result of surface
was deduced 84.05% and the run time was deduced 92.42% compared with the traditional NURBS method.
Therefore, the proposed method is a fast and high-precise NURBS surface fitting method.

INDEX TERMS Reverse engineering, particle swarm optimization BP neural network, node vector, NURBS

surface.

I. INTRODUCTION

With the development of mechanical processing industry,
construction of complex surface model has been used in
the field of reverse engineering machining [1], [2]. High
precision fitting of surface is a significant technology in the
reverse engineering and processing, and the fitting accuracy
determines the quality of the product. So the technology
is becoming increasingly important in product manufactur-
ing. At present, the external shape of most surface models
cannot be described by the accurate expression of analytic
function. The popular two-layer implicit function interpola-
tion algorithm based on central reduction is mostly used in
the production and processing of these products. However,
when the number of point clouds reaches a certain level, this
method requires repeated interpolation and approximation,
which takes a long time [3], [4].
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To solve the above-mentioned problems, a fitting method
based on Non-Uniform Rational B-Spline(NURBS) is pro-
posed by Piegl L [5]. NURBS method constructs rational
B-spline function by non-uniform node vector expression,
which can provide uniform mathematical representation for
standard analytic structure and free-form surface [6], [7]. The
method is suitable for the construction of various free-form
surface and composite surface models. Since NURBS method
is the only representation method of free-form curves
and surfaces in STEP standard for geometric definition
of industrial products, it has been widely used in reverse
engineering [8], [9].

In recent years, neural network has been applied in various
fields, and it’s growing very rapidly [10], [11]. Six meta-
heuristic algorithms were applied to parametric optimization
of multi-path milling process [12], [13]. However, In the
application of the NURBS surface of the reverse engineer-
ing, no researcher has studied before. BP neural network
can learn, train and organize the solution of some nonlinear
dynamic problems by simulating human brain neural
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thinking. Duo to the randomness of initial weight and thresh-
old values, low convergence speed and accuracy may occur in
the neural network training process [14], [15]. Hence, in this
paper the particle swarm optimization BP neural network is
applied to train node vectors for the NURBS surface, and
the nonlinear mapping relationship is constructed. According
to the mapping relationship, predicted node vectors can be
acquired. Then, by calculating the data points, the control
points for the NURBS surface are obtained. Finally, Fast
and high precision NURBS surface is realized by using the
predicted node vectors and control points.

The novelty of this paper are as follows: particle swarm
optimization BP neural network is first introduced into
NURBS surface fitting. A fast and precise NURBS surface
fitting method is realized by establishing prediction model
of node vectors based on the particle swarm optimization
BP neural network. Compared with the traditional NURBS
method, the root mean squared error of fitting result of surface
was deduced 84.05% and the run time was deduced 92.42%.
In order to further verify the fast and high-precision NURBS
surface in this paper, compared to the BP prediction method
and support vector model prediction method, the average root
mean squared error were reduced by 67.11% and 34.76%,
respectively. The run time were reduced by 77.93% and
77.61%, respectively. And hence, the proposed method can
realize the fast and high precision NURBS surface.

Il. NURBS SURFACE IMPROVEMENT PROCESS

A. NODE VECTORS OF NURBS SURFACE ACQUISITION
Data points of surface model are obtained by using a high
precision 3D scanner. The data points are distributed as a (r +
1) x(s+1) matrix and denoted by P;; i = 0,1,...,7,j =0,
1,..., s). There are r 4+ 1 rows in the data points, so there
are r + 1 cross-sections. The lateral parameter direction is
set as u. Similarly, there are s + 1 rows in the data points,
so there are s + 1 cross-sections. The longitudinal parameter
direction is set as v. Data point parameters of each section can
be expressed as:

Uy :ﬁk_l+|]7k—l7k—1|/d, k=1,2,---,5s—1) (1)

When 9 = 0,u; = 1, chord length can be calcu-
lated by using the cumulative chord length parameterization
(161, [17].

S
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Node vectors of the NURBS surface are acquired by using
the deBoor method [18], [19].
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FIGURE 1. Specific structure of BP neural network.

where U and V are node vectors, r = p+m+1,s = g+n+1.
The total number of contained nodes in the node vector U and
V are (r + 1) and (s 4 1), respectively.

B. OPTIMIZATION OF NODE VECTORS BY PARTICLE
SWARM OPTIMIZATION BP NEURAL NETWORK
Because BP neural network has good learning ability and gen-
eralization ability, it is used to optimize the solutions of node
vectors U and V, thereby improving the operation efficiency
and save time of node vectors. Since any continuous function
can be approximated by a three-layer BP neural network on
the closed interval, this paper adopts the BP neural network
structure in the form of single hidden layer to optimize the
calculation and generation of node vectors U and V. The
specific structure of BP neural network is shown in Fig 1.
The typical framework of BP neural network can be repre-
sented as a 3-layer perception model. From Fig 1 shows that
input node vectors enter the whole network from the input
layer during sample training. Then the input node vectors
can be processed by the function in the hidden layer. Finally,
the results are output in the output node. The input node
vectors are set to #; and v;, then the output node vectors are set
to uj4+1 and vi41. The weight between the input layer and the
hidden layer is set to Wl.(]. ). The weight between the hidden

layer and the output layer is set to Wf) .

Although the BP neural network can deal with non-
linear parameters, it has some shortcomings and limita-
tions [20], [21]. For example, in the selection of node vector
samples, it is required that node vectors must be representa-
tive. If the parameters of node vector samples are few, BP neu-
ral network cannot optimize to the expected value during
training parameters. The initial weight of BP neural network
is random, so the training process cannot converge at high
speed and the result precision is low [22], [23]. Therefore,
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FIGURE 2. Flow chart of particle swarm optimization BP neural network.

considering the advantages of particle swarm optimization,
such as global optimization and dynamic search, the node
vectors of NURBS surface are predicted by using the particle
swarm optimization BP neural network. The flow chart of
predicted node vectors is shown in Fig 2.

The steps of the particle swarm optimization BP neural
network are as follows:

1) Imported data are divided the raw data into training data
and test date. Data are normalized treatment.

2) The topology of BP neural network with single hidden
layer is constructed. The input and output nodes of the
network structure are determined based on the original
data. The number of hidden layer nodes is determined
according to the Kolmogorov theorem.

3) According to the BP neural network, the parameters of
particle swarm optimization are initialized, including
population number n, particle velocity v, number of
iterations and dimension D of each particle.

4) The fitness value of the current particle is compared
to the fitness value of the particle’s historical optimal
position, if a better fitness value, it is regarded as the
current optimal position. Compared with the global
optimal position fitness value of each particle, a better
fitness value is regarded as the current global optimal
position.

5) According to (4) and (5), the particle velocity and
position are updated.

v?d+1 =B x v +cir (p?d — xl‘fi) + o (pgd —xi“d)
4)
vid =i ®)

where c¢; and ¢, are acceleration factor; r; and r
are random numbers within [0,1]; a is the number
of iterations; B is the inertia factor, whose value is
non-negative; v;q is particle velocity, and the range of
variation is set as [—0.1,0.1]; pis is the optimal posi-
tion experienced by the ith particle; pgq is the optimal
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FIGURE 3. A structural diagram of an aeroengine.

position experienced by all particles in the particle
swarm; x;q is the position of the ith particle in the
particle swarm.

6) Determine if the termination condition is met. If the
termination condition is satisfied, the optimal weight
and threshold are output and assigned to BP neural
network. Otherwise, go back to Step 4).

7) The BP neural network is trained and the predicted
node vectors are obtained.

In reverse engineering, control points on the (p, g) order
surface are often used to approximate a given data point
Pj;j. Because the surface fitting is similar to curve fitting,
surface can be fitted by using the least square surface approx-
imation [24], [25]. Firstly, NURBS curves are approximated
along a vector direction. Then, the control vertices of the
curve are approximated in a direction perpendicular to the
vector in the above step. Finally, generated control points
are the control points of the NURBS surface. Fast and high
precision NURBS surface fitting is realized by using control
points and predicted node vectors [26]-[28]. The NURBS
surface is expressed as follows [29], [30]:

m

n
> > Nip(wN; ,(Mw;;CP;;
i=l Oj 0

Z Z N; p(”)lvj q(V)Wl/

i=0j=0

Su,v) = ,0<u,v<1 (6)

where wy; is weight factors; CPj; is control points; N; ,(u) and
Nj 4(v) are B-spline basis function.

Ill. EXPERIMENTAL AND SIMULATION STUDY

A. SIMULATION STUDY OF AEROENGINE BUFFER
SURFACE

A structural diagram of an aeroengine was shown
in Fig 3 [31], [32]. The aeroengine buffer was made up of
surface and was located at the engine exhaust. Since the 3D
scanner can go deep into the inner part of the mechanical parts
to scan the buffer part of the surface, the proposed method can
be used to study NURBS surface. The specific measurement
system was shown in Fig 3. In order to verify the feasibility
of the proposed method, a similar model was selected as the
simulation study object of the aeroengine buffer surface in
this paper. According to the designed description in Fig 3,
point cloud of the surface was shown in Fig. 4.
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FIGURE 5. Coordinates of the sequence Nx« along the X-axis.

B. RESEARCH ON OPTIMIZATION OF NODE VECTORS OF
NURBS SURFACE

By calculating the sum of the z coordinate values of each
point along the x-axis, the maximum of sum of the sequence
values was selected and denoted as Nxco. The Nxo distribution
is shown in Fig 5.

126 sequence values corresponding to node vector U, such
as 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26,
27,29, 30, 31, 32, 33, 35, were selected as training samples.
The corresponding node vector U of sequences 16, 22, 28,
34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112,
118, 124, 130, 136, 142 were selected as the test sample. The
input data was a 3001 x 126 matrix composed of the data of
the corresponding node vector U in the training sample. The
output data was a 1 x 126 matrix composed of the data of
the next corresponding node vector U in the training sample.
According to the Kolmogrov theorem, the number of hidden
layer nodes was 92. Learning factor cl= ¢2=2, population
size n = 50, number of iterations k = 30, particle velocity
v =[—0.1,0.1].

By calculating the sum of the z coordinate values of each
point along the y axis, the maximum of sum of the sequence
values was selected and denoted as Ny«. The Ny« distribu-
tion was shown in Fig 6.
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FIGURE 8. Convergence process of node vector V.

161 sequence values corresponding to node vector V, such
as 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24,
25, 26, were selected as training samples. The corresponding
node vector V of sequences 22, 32, 43, 54, 65, 76, 87, 98,
109, 120, 132, 143, 154, 176, 187, 197, were selected as test
sample. The optimal weight and threshold were obtained by
using the particle swarm optimization. The optimal weight
and threshold were assigned to BP neural network. Learning
rate of the network was set as 0.01, and the target precision
was 1074,

After repeated calculation and iteration of the prediction
model, the convergence process of node vector U and V
training were shown in Fig 7 and Fig 8, respectively.
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TABLE 1. Coordinate values of feature points.
O ) 0; [0 Os Os % Os O
x/c 11 28 45 63 80 97 114 131 148
m
ylc 109 109 109 109 109 109 109 109 109
m
zlc  60.8 409 366 367 40.8 86.0 102. 864 614

m 9 8 4 4 8 8 6 7 6

The prediction results of node vectors U and V were shown
in Fig 9 and Fig 10, respectively.

C. FITTING RESULTS OF NURBS METHOD

Using the equal spacing sampling method, date points were
selected. Coordinate values of the points were listed in the
Table 1.

The control points were obtained by calculating the data
points. NURBS surface was realized based on the control
points and the predicted node vectors U and V. The fitting
results of the proposed method were shown in Fig 11. The
results of the conventional NURBS surface were shown in
Fig 12.

In order to understand the fitting effect more intuitively,
the root mean square error was used to compare the fitting
results of the two methods. When y = 109, the z coordinate
values corresponding to different y coordinate values were
shown in Fig. 13. The standard value curve was the distri-
bution curve of point cloud when y = 109. Using the (7),
the root-mean-square error values were calculated, as shown
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in Fig 14.

RE = | AE/,

where AE; is the error value.

(N
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TABLE 2. Experimental results of two methods.

Conventional

NURBS Proposed
method method
Average value of error of 04213 0.0672
mean square root /cm
Running time/s 28.6245 2.1687
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— —=-u Direction
100+ * —=y Direction
50
£
o ]
N
-50 %
-100
~
200 ¥
100 N ™
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FIGURE 15. Fitting results of BP prediction method.

According to the above calculation method of root mean
square error, the average root mean square errors and run-
ning times of the two methods were shown in Table 2. All
the experiment results were acquired by using a computer
with 3.20GHz Intel Core i7 processor and 8GB of 2133MHz
DDR4 RAM.

On the basis of the Table 2 above, it can be obtained that
the average root-mean-square error of the surface by using
the proposed method was 84.05% lower than the conven-
tional NURBS method, and the running time was reduced by
92.42%. And hence, the proposed method can realize the fast
and high precision NURBS surface.
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In order to further verify the fast and high-precision
NURBS surface in this paper, the node vectors U and V
were predicted by using the BP prediction method and
support vector model (SVM) prediction method. On the
basis of the control points and the above predicted node
vectors U and V, fitting results of the BP prediction
method and SVM prediction method were shown in Fig 15
and Fig 16, respectively. The z coordinate values cor-
responding to different y coordinate values were shown
in Fig. 17.

When y = 109, the root mean square error values were
calculated by using the (7), as shown in Fig 18. The average
root mean square errors and running times of the BP predic-
tion method, SVM prediction method and proposed method
were shown in Table 3.

By comparing the results of two prediction method, it can
be obtained that the root mean square errors of the proposed
method were 67.11% and 34.69% lower than that of the BP
prediction method and SVM prediction method, respectively,
and the running time were reduced by 77.93% and 77.61%,
respectively.
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FIGURE 18. Root-mean-square error values of BP prediction method,
SVM prediction method and proposed method.

TABLE 3. Experimental results of BP prediction method, SVM prediction
method and proposed method.

BP prediction SVM prediction  Proposed
method method method
Average value of
error of mean 0.2043 0.1029 0.0672
square root /cm
Running time/s 9.8252 9.6845 2.1687

IV. CONCLUSION

In this paper, an improved method for NURBS surface based
on particle swarm optimization BP neural network is pro-
posed. The prediction model of BP neural network based on
particle swarm optimization is used to predict the node vector.
The efficiency and precision of NURBS surface are improved
by using the predicted node vector. Compared with the con-
ventional NURBS surface method and the SVM predictive
fitting method, the proposed method is superior to many
existing methods in terms of running time and accuracy. The
proposed method lays a good foundation for the subsequent
object processing and reconstruction.
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