
Received September 24, 2020, accepted October 5, 2020, date of publication October 8, 2020, date of current version October 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029735

Automated Test Selection for Android Apps
Based on APK and Activity Classification
LUCA ARDITO 1, (Member, IEEE), RICCARDO COPPOLA 1, (Member, IEEE),
SIMONE LEONARDI 1, MAURIZIO MORISIO 1, AND UGO BUY2
1Department of Control and Computer Engineering, Politecnico di Torino, 10138 Turin, Italy
2Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

Corresponding author: Simone Leonardi (simone.leonardi@polito.it)

ABSTRACT Several techniques exist for mobile test automation, from script-based techniques to automated
test generation based onGUImodels.Most techniques fall short in being adopted extensively by practitioners
because of the very costly definition (and maintenance) of test cases. We present a novel testing framework
for Android apps that allows a developer to write effective test scripts without having to know the
implementation details and the user interface of the app under test. The main goal of the framework is
to generate adaptive tests that can be executed on a significant number of apps, or different releases of the
same app, without manual editing of the tests. The frameworks consists of: (1) a Test Scripting Language,
that allows the tester to write generic test scripts tailored to activity and app categories; (2) a State Graph
Modeler, that creates a model of the app’s GUI, identifying activities (i.e., screens) and widgets; (3) an
app classifier that determines the type of application under test; (4) an activity classifier that determines
the purpose of each screen; (5) a test adapter that executes test scripts that are compatible with the specific
app and activity, automatically tailoring the test scripts to the classes of the app and the activities under test.
We evaluated empirically the components of our testing framework. The classifiers were able to outperform
available approaches in the literature. The developed testing frameworkwas able to correctly adapt high-level
test cases to 28 out of 32 applications, and to reduce the LOCs of the test scripts of around 90%.We conclude
that machine learning can be fruitfully applied to the creation of high-level, adaptive test cases for Android
apps. Our framework is modular in nature and allows expansions through the addition of new commands to
be executed on the classified apps and activities.

INDEX TERMS Android testing, test selection, app classification.

I. INTRODUCTION
User interface and functional testing are notoriously tedious
and costly processes. Even when automated testing tech-
niques are adopted, testers have to manually write test scripts
susceptible to human errors and requiring constant main-
tenance, to be aligned with the evolution of the Software
Under Test (SUT). When a full test suite has been written,
small changes in the user interface or the functionality of
the Application Under Test (AUT) may make it necessary
to correct or re-design a significant number of test cases to
ensure that their behaviour is still correct. In the Android
domain, this issue is exacerbated by the rapid refresh cycle
of apps and their GUIs, fueled by the constant evolution
of the Android operating system and its design guidelines.
Several empirical works in literature have highlighted the
amount of maintenance typically required by Android test

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

suites [1]–[3]. In contrast, several survey-based studies have
linked the intrinsic difficulties in test script development to
the relatively low adoption of scripted testing frameworks
among Android developers [4], [5].

According to many development best practices, Android
applications have to follow several standard patterns in their
design and functional structure [6]. Research has also tried
to identify semantic categories of applications, according to
the structure and components inside the screens (or Activities
in Android parlance). The characteristics of the app GUIs
can allow to create clusters of application types and screen
categories, to abstract the application behaviour and exploit
such high-level description for the creation of generalized test
cases [7], [8].

The experience reports from the literature of the Android
domain suggest that mobile testers would benefit from a
generalization of test scripts, to untie them from the imple-
mentation details of individual applications. High-level test
scripts can be adapted to different apps of the same typology;

187648
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0501-7886
https://orcid.org/0000-0003-4601-7425
https://orcid.org/0000-0002-8009-1082
https://orcid.org/0000-0001-7362-906X
https://orcid.org/0000-0003-3264-185X

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

moreover, they can be run against the same app even if the
implementation details change during its lifecycle.

Therefore, our work aims at building a novel testing frame-
work capable of allowing a developer user to write straight-
forward, robust and adaptive tests that can be launched
against different apps based on its class, without having
to manually re-adapt them to the specific properties of the
individual GUI. To that extent, we define a novel test script-
ing language, offering 33 high-level commands generalizing
(sets of) common interactions with typical Android apps.

The framework leverages a State Graph Model of the GUI
built through a systematic exploration of the app’s compo-
nents, and machine learning algorithms to identify the class
of the application and to classify every activity that is met.
In contrast with other Android test scripting tools (such as
Appium [9] or Espresso [10]), which require the developer
to identify explicitly the elements of the GUI that have to
interact in each test case, our framework supports writing
down app-independent commands that relieve the tester from
exploring every screen’s layout structure.

The main contribution of this paper is an extensible and
low-weight framework for the development of high-level,
readable and application-independent test suites. As a sec-
ondary contribution, we provide two novel means of classi-
fying Android apps and Activities, enhancing—in terms of
performance–state-of-the-art classifiers.

The remainder of the paper is organized as follows:
Section II provides background information about the
Android layout and activity structure, the different testing
strategies for Android apps, and related work on machine
learning strategies to classify Android app. Section III pro-
vides a high-level description of the testing framework that
we propose. Section IV provides details about the individ-
ual components of the framework: the State Graph Mod-
eler, the APK classifier, the Activity classifier, and the Test
Adapter. Section V reports the results of the evaluations taht
we performed for all the components of the architecture,
in isolation. Section VI discusses the results and the current
limitations of the approach. Section VII gives our conclusions
and outlines future work directions.

II. BACKGROUND AND RELATED WORK
This section provides background information about the
structure of typical Android apps and the available appro-
aches for modelling and testing them.We also discuss similar
findings in the literature, highlighting the differences with our
work and the existing gaps in the literature.

A. ANDROID APPLICATION STRUCTURE
Android apps can be divided into three different categories,
according to the target deployment platform. First, Native
apps are developed using components that are part of the
Android framework. These apps are deployed and run on
Android devices only. Second, Web-based apps are typical
are intended to be loaded and displayed on a mobile browser.

Third Hybrid apps contain native components that can be
used to load web-based contents at run time.

Native Android apps are made up of several components,
each conforming to a specific lifecycle driven by the Android
operating system. Four kids of components exist: Activi-
ties, Content Providers, Services and Broadcast Receivers.
The latter three components are responsible for managing
data, operations in the background, and message exchange
between different apps. Activities are the main components
of Android apps since they are in charge of populating the
user interface with the required widgets. The population of
the user interface is performed according to specifications
that are given via code, in the Activity class itself, or via static
XML layout files, that are provided in a specific folder of an
Android project. The GUIs of Android apps are consist of
so-called Views, arranged on the screen according to different
Layouts; each view is provided with a set of properties that
govern the displaying of the view. Views (e.g., buttons) can
be associated with callbacks executed in response to user
interactions (e.g., button presses).

The Android PacKage file (APK) is a compressed archive
(similar to a jar or zip archive) containing a compiled pro-
gram for Android and additional assets belonging to the app,
such as widgets, screen layout specifications and strings in
different languages (for localization purposes). The APK,
digitally signed with a certificate, is the format in which
the applications are distributed for the Android system. The
most important files and folders contained in the archive are
summarized in Table 1.

Every APK must contain a file named AndroidMan-
ifest.xml, which contains essential information about the
app itself that is needed by various agents, such as the Google
Play store, the build tools, and the Android operating system.
Some of the most critical items described in the manifest file
include the hardware requirements needed to run the app,
the package name (which is generally the same as the project
namespace), and details about the list of components (includ-
ing activities) in the application. Most importantly, the man-
ifest file contains information about the permissions that the
app needs from the Android operating system. Permissions
are needed to have controlled access to some features or
areas of the device that are deemed as sensitive or vulnerable
(e.g., the user’s emails and contacts, the device’s camera, etc).
For many of the required permissions, the user is prompted to
manually consent to their use when the permission is needed.

B. TESTING STRATEGIES FOR ANDROID APPS
Several testing approaches can be applied to mobile applica-
tions. Linares-Vasquez et al. gave a characterization of the
current state of the art of Android testing, dividing testing
tools and techniques into three different categories [5].
Automation APIs/Frameworks provide testers/developers

with interfaces for writing GUI tests with manually-written
scripts with a JUnit-like syntax. These testing techniques give
full control to the testers for exercising complex use cases
against the app GUI, at the cost of high development and

VOLUME 8, 2020 187649

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

TABLE 1. Content of a decompiled Apk file.

maintenance costs. Test cases written with Automation APIs
are also significantly prone to fragility issues, meaning that
they need relevant maintenance effort when the application is
subject to typical maintenance [3]. Examples of Automation
APIs and Frameworks are the official Espresso [11] and UI
Automator [12] tools, Calabash [13], Ranorex [14], Robolec-
tric [15] and Robotium [16].
Record and Replay tools relieve testers from manually

encoding sequences of interactions into test scripts, enabling
the automated recording of testing sequences, that can be
re-executed at any time. However, these tools expose sev-
eral limitations because they cannot provide significant
defect-finding power if the developers manually insert no
assertions or if the testing environment has no knowledge
of the user interface that is tested. Even though no script
development effort is needed by Record and Replay tools,
the tests are not runnable against other AUTs if not explicitly
adapted. Examples of Record and Replay testing tools for
Android apps are the Espresso Test Recorder (which comes
embedded in recent releases of the Android Studio IDE) [10],
RERAN [17] and Barista [18].
Automated test input generation techniques have been

largely investigated by the most recent studies in the litera-
ture. These approaches automatically generate sequences of
inputs with the app, with a particular goal (e.g., achieving
high coverage or finding a high number of defects). Auto-
mated test input generation techniques can be further divided
into three different categories:

• Random Exploration Strategy: Random independent
UI events are generated and applied to the applica-
tion under test to find some faults. The advantage of
this method is that it is possible to generate many test
sequences with little effort, making it suitable for stress
testing. The main drawbacks lie in the fact that targeted
inputs cannot be generated, and that the tools are not
aware of howmuch coverage is provided for the applica-
tion under test. Also, random input generation can lead
to redundant test sequences. Examples of random-based
input generation tools areMonkey [19], Dynodroid [20],
and Cadage [21].

• Model-Based Exploration strategy: These tools sys-
tematically generate and explore a symbolic model of
the app, to investigate its behaviour. The model can be
seen as a finite-state machine, where the states repre-
sent screens of the app, and the transitions represent

events triggered by interactions with the GUI. All the
states and transitions are typically generated dynami-
cally while interactingwith the application, and stopping
when all possible routes lead to already explored states.
On the one hand, the main advantage of the model-based
approach is reaching full GUI coverage of the app with-
out many redundant test sequences. On the other hand,
internal behavioural changes that have no effects on
the GUI may not be registered by the models. Testing
tools that leverage the model-based exploration strategy
to test Android apps are MobiGUItar [22], A3E [23],
Swifthand [24], QUANTUM [25], and GuiRipper [26].

• Systematic Exploration Strategy: This category of
tools refer to a family of more sophisticated techniques
(such as genetic algorithms) that are used to guide
the exploration towards previously uncovered code.
These techniques seek to create input sequences capa-
ble of unveiling undesired behaviours. Compared to
Random and Model-based strategies, these can achieve
greater coverage and target more defect-prone areas
of the application. The main limitation of those tech-
niques lies in the scalability of the algorithms. Exam-
ples of testing tools adopting a systematic exploration
strategy are AndroidRipper [27], CrashScope [28] and
EvoDroid [29].

C. RELATED WORK
Existing research recognizes the importance of an approach
similar to ours; anyway, they are not comprehensive in devel-
oping a framework involving all the aspects of GUI mod-
elling, classification, and high-level script generation. In [22],
Amalfitano et al. explore the state graph modelling phase
with the MobiGuitar tool. They build a state-machine model
where each state is a specific state of the app’s screen, and
each transition is a UI event. After creating the state graph
breadth-first, MobiGuitar generates test cases for each path
given the initial state. Then, it crosses out every possible
incoming and outgoing edge for every node.

Yang et al. [30] have explored the application classification
phase, with Lacta. Their approach, however, requires access
to the full source code of the application. From the code,
Lacta can identify the app’s category. Dong et al. decompile
the app’s code and count the number of occurrences for each
API function call and then classify the app through a Multi-
nomial Naive Bayes classifier [8]. Hamedani et al. decompile

187650 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 1. The complete testing process workflow.

the code to retrieve the list of calledAPIs, but they also exploit
the app’s intents and hard-coded strings to classify the app’s
category [7].

The activity classification phase has not been extensively
explored yet by existing research projects. The main work
towards this direction is the one by Rosenfeld et al., which
retrieves the list of swipable, clickable, and edited text ele-
ments to perform classification [31]. Hu et al. developed
AppFlow that converts the entire screen layout into a single
string and uses a screenshot and Optical Character Recogni-
tion (OCR) techniques to identify useful text [32].

Related to the test scripting phase, instead, a direct com-
parison can be made between our work and the already cited
work of Hu et al. [32]. They allow the user to write specific
test scripts where conditions with some semantic values can
be imposed.

With this work, we improved accuracy on both APK
and Activity classification. We developed a comprehensive
approach not yet explored in literature. Finally, we created a
new testing framework based on these classifiers.

III. TESTING FRAMEWORK
Figure 1 shows an overview of the testing process accord-
ing to our framework. The individual modules and their
implementation details will be detailed in the following
section.

• Test Script Writing. In the first step of the testing
process, the human tester can create a set of test scripts
(i.e., a test suite). The test scripts, written in our scripting
language, are not aimed at any specific mobile app but
are generally applicable to broad classes of apps and
activities. Therefore the tester writes scripts that will be
fired when specific types of screens and apps are being
tested. The test suite can contain tests for different kinds
of activities, meaning that they will be executed only
when a specific kind of activity is encountered.

• APK Classification. This module analyzes the APK
file of the application under test, retrieving useful and
symbolic information that can be used to classify the
app into a specific category. These results are then used
in the testing phase, to understand which test suites have
to be executed against the AUT.

• State Graph Modelling. This module builds a finite
state machine model of the app’s GUI. This element
is then used as a functional map for the execution of
the test scripts. The creation of the GUI model can be
considered, by itself, a form of stress test for the GUI
of the app, since during the exploration of the GUI it is
possible to detect crashes, bugs, freezes and other forms
of defects in the application.

• Activity Classification The activity classifier is run at
each state that identified by the State Graph Modeler,
to understand the kind of the activity.

• Test Adapter. The information about the specific cat-
egories of APK and activity is used to filter out the
tests from the test suite that are designed to be run on
them. Each test case is then fired, and the test results are
reported based on the assertions that are contained in the
test. At the end of each test execution, the exploration of
the application is backtracked to the state preceding the
test execution.

IV. TOOL IMPLEMENTATION
In this section, we provide implementation details about key
modules of our framework. Specifically, we detail the imple-
mentation choices that we made for state graph modelling,
for both the classifiers and for the automated selection and
execution of test cases.

A. STATE GRAPH MODELLING
The main purpose of the State Graph Modelling module is to
build a reliable, functional, and logical map of the application.
Such amap allows us to proactively learnwhat screenwidgets

VOLUME 8, 2020 187651

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 2. Graphical visualization of the state graph model obtained by crawling the android stock messaging app.

are available in the application and what transitions can be
triggered by interacting with them.

Building automatically a state graph is equivalent to draw-
ing a formal model, as a Finite State Machine, since the
application can only be in one of a finite set of states at a given
time. The state graph considers all the possible transitions out
of a state, i.e., exploring all the possible UI elements in a given
screen of the application. The construction of such a graph is
a relevant aid for functional testing, as it provides a systematic
way to explore all features of the applications.

The State Graph Model (from now on, SGM) that we
adopted is a Directed Graph, with its main elements defined
as follows:

• Nodes: Each node represents the state of an activity.
By state of activity, we take into consideration the cur-
rent values of the set of attributes associatedwith eachUI
element contained in the activity. For instance, this value
could indicate whether a button is enabled, or if a toggle
button is on or off. This implies that the same activity/
screen can be represented multiple times, in multiple
states of the app.
From an implementation point of view, each node con-
tains the full layout hierarchy of the activity and the
values for all the available attributes. The node also
contains a reference to the predecessor node, a list of
all possible successor nodes, and the node’s roadmap,
that is, the list of all edges that need to be traversed to
reach the node from the entry point of the graph (most
typically, the Main activity shown to the user at the
startup of the app). By keeping the predecessor nodes
and the roadmap in a node, we can replicate the chain

of interactions needed to reach the node from the startup
screen of the app, hence guaranteeing replication of the
created test sequences.

• Edges: Each edge corresponds to a specific UI ele-
ment that the user can select to reach a new screen
state. As every widget is represented by a multitude of
attributes, we selected an id for each UI element, where
the id is unique in the context of a single activity.

Figure 2 represents a sample State Graph Model, obtained
by crawling the stock Android messaging app. To build the
SGM, we crawled the states of the app using a FIFO queue to
store the set of states that were discovered. Five essential steps
are performed during the State Graph Modelling procedure:

1) Start State Building: The start state s0 consists of
the main activity of an application. The UI elements
contained in the activity are set to their initial state as
evinced by monitoring the activity with the Android
Debug Bridge (ADB), which allows an app to be con-
trolled from a desktop or laptop computer. This state
corresponds to the start node of the SGM. This node is
then inserted in the FIFO queue of nodes to be explored.

2) Dequeue Phase: The first available unexplored state
is dequeued from the queue and reproduced on the
Android device being monitored, starting from state s0
(the startup screen);

3) Exploration Phase: Once the state to explore is repro-
duced, its layout structure is explored with the ADB,
to save all the attribute values and to identify all possi-
ble interaction with every available UI element. All ele-
ments, both clickable and non-clickable, are interacted
at this point: the reason for such operation is to provide

187652 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

a form of UI testing of the app already in the phase of
graph building, to investigate if defects or crashes can
be reached by interacting with any element of the GUI;

4) New-State-Check Phase: After the interaction with a
GUI element, we check whether the app is now in a
new screen. If so, the new state is appended to the FIFO
queue;

5) Merging Phase: once an iteration of the exploring
phase is completed, we check whether some states
inserted in the FIFO queue are equivalent to previously
encountered states (i.e., all the attributes in the screen
hierarchy are the same). If this is the case, only the
previously created state is kept in the queue.

B. APK CLASSIFICATION
This section describes the first classification step of the
proposed architecture. The APK classifier is in charge of
assigning one of a set of app categories to a given APK.
The approach we followed is a black-box approach where
only the APK compiled package of the application is needed
and not its source. It is based on Deep Neural Networks
and it is similar to existing approaches in the literature, e.g.,
AndroClass system [7]. Themain differences lie in the feature
vectors and parameters that we use.

1) COMPOSING THE FEATURE VECTOR
The first decisions taken for the APK classification step
was the objective features of the application that would bias
toward a given app class. The following elements were taken
into consideration when building our feature vectors:
• Android API Calls: Several methods in the literature
have used Android OS API calls as features to perform
classification of Android apps: LACTA [33] gathers
information from the semantics of the code identifiers;
AndroClass [7] and ClassifyDroid [8] refer to the full
list of the possible Android OS API methods called by
the app. Both approaches lead to tens of thousands of
features, resulting in very sparse data. For these reasons,
we are using only Android OS API calls, building a
binary feature vector where each cell represents one of
the possible Android OS API Classes. The value in each
vector cell indicates whether the corresponding API call
is present in the APK file or not.
To find the methods (and classes) referred by the
application, we extract the Java bytecodes executed by
Android’s Dalvik virtual machine from an APK file.
The bytecodes are typically contained in one or more
classes.dex files. Each of these dex files contains a
methods_ids section, where identifiers for all API and
user-defined methods are stored. Once the list of meth-
ods is obtained, it is compared with the full collection
of 4339 Android API classes (as of this writing), which
can be retrieved from the publicly-available Android.jar
file.

• Permissions: Requested permissions can be very help-
ful in the classification of the APKs since different

categories of applications need different permissions
from the OS. For instance, communication applica-
tions will require INTERNET and VIBRATE permis-
sions, which are generally not used by offline and video
music players, and so on. To extract Dalvik bytecodes
and the permissions required by an app, we used Apk-
tool,1 which returns the application’s manifest file in a
readable form as well as the classes.dex files. Android
applicationsmust specify the required permissions in the
first part of the manifest.
In our feature vector, we indicated with 1 a permission
that was requested, and with 0 a permission that was
not requested. We considered the list of 60 permissions
that are provided by the official developer guide for
Android.2

• Hard-coded Strings as Word Vectors: Every Android
application features a file named strings.xml located in
the /values/ subfolder of the application project. This file
is referred by the application when a particular string
value is needed and contains hard-coded strings that can
be referred multiple times in the app and changed for
localization. Each string is denoted by a unique id, using
standard XML encoding. It is evident that wemight have
an important semantic core in the strings.xml file since
the strings correspond to the main functionality of the
app.
The AndroClass classifier [7] collects all N words
appearing in all the APKs of the training set and uses
a binary vector of N elements to represent the presence
of a given word in the current app instance. The main
drawback of such an approach is that the diversity of
the vocabulary and its size depend on the number of
applications used in the dataset. We hence adopted the
Word2Vec Word Embedding technique, in which each
word is identified by a word vector in a vector space
of 300 dimensions. We adopted the pre-trained word
embedding model by Google News Word2Vec model as
released by Mikolov et al..3 The model pairs every word
string found in the strings.xml file with the correspond-
ing vector of 300 values. Because of the variable number
of strings, we next compute the average word vector
among all the strings, obtaining a point that locates the
app in a 300-dimensional space.

The resulting Feature Vector of 4699 elements is shown
in Figure 3. The vector contains 4339 cells with a binary
indication of the presence of references to Android API
classes; 60 cells with a binary indication of whether one of the
Android OS permissions has been requested or not; 300 cells
with floating values that represent the average of the word
vectors obtained by querying the Google News Word2Vec

1https://ibotpeaches.github.io/Apktool/
2https://developer.android.com/guide/topics/ permissions/overview #nor-

mal.permissions
3https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21-

pQmM/edit

VOLUME 8, 2020 187653

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 3. Structure of the feature vector used by the APK classifier.

model with all the words contained as hard-coded strings in
the APK.

2) BUILDING THE DATASET
While training the classification algorithm, we benefited
from the black-box nature of our classification approach that
allowed us to select packaged apps available in the usual
Android app markets.

For our evaluation, we specifically used the APK Pure
store,4 as it provides not only a very wide selection of appli-
cation categories but also direct app download functionality
without requiring a running Android device. In this manner,
we built a dataset containing about 3,200 apps.

TABLE 2. Structure of the APK classification data set.

We selected ten different categories of applications, choos-
ing the most popular apps in the store. We did not take into
account applications belonging to the games category since
games may feature a very diverse GUI appearance that would
make it difficult to generalize a testing approach across the
board. An average of more than 300 apps was downloaded
for each of the selected categories. Table 2 shows the selected
categories and the number of applications for each category.

3) MODEL ARCHITECTURE
In our approach, we considered a variety of statistical learning
methods for our classifier. In the end, we chose a fully con-
nected Deep Neural Networks (DNNs) because this method
yielded higher accuracy results than the remaining methods
that we tried. In Section V we report in detail the empirical
results obtained with DNNs. We also give a summary of the

4http://apkpure.com

results obtained with alternative methods. We have sufficient
data to assure it over performs classic classifiers, however a
clear understanding of the generality of this network is only
possible with sample numbers in the order of millions. Our
findings on DNNs are consistent with results obtained by
other authors. Reyhani et al. [7], who also tried K-Nearest
Neighbors (KNN), Naive Bayes (NB), and Support Vector
Machines (SVM), also concluded that DNNs outperform the
other alternatives for app classification.

TABLE 3. Selected Hyper-parameters for the APK classification
architecture.

We tuned the DNN’s hyper-parameters using the Hand
Tuning (trial and error) technique. Each parameter is tuned
individually and assigned its optimal value in terms of the
resulting DNN accuracy. Table 3 lists each hyper-parameter
and its assigned value.
• Number of layers: The optimal value of this parameter
depends on the number of dimensions in the training
data. We chose two dense layers. A higher number of
layers may lead to over-fitting.

• Number of Units per Layer: This parameter defines the
number of cells that are used in each layer of the Neural
Network.

• Activation function: This function defines the output of
each DNN cell based on its input. Possible alternatives
are ReLu, TanH, and Sigmoid (chosen).

• Optimizer: This is the algorithm used by the model to
update the weighs of each layer, after every iteration.
The most popular algorithms are Adam (chosen) and
Stochastic Gradient Descent (SGD).

• Learning Rate: This parameter determines the speed of
convergence of the DNN.

• Batch Size: This parameter defines the number of data
points used in each training iteration before updating the
weights.

187654 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 4. Overview of the APK classification pipeline.

FIGURE 5. Complete set of attributes for the dump of a UI element.

• Number of epochs: This parameter defines the number
of times the training data is passed through the model.

• Dropout: This parameter is a regularization technique
that prevents weight to be updated with certain proba-
bilities, and is used to avoid over-fitting.

A final detail of the DNN implementation is related to the
Data Scaling of the Feature Vector, which contains mixed
data (i.e., both binary and continuous features). Data scaling
is performed assigning to each sample a normalized value
z = (original_value−mean)/std, with std being the standard
deviation of the distribution of samples. Performing the stan-
dardization allows us to reorganize the distribution of values
in the data set so that it has a zero mean and unit standard
deviation. The complete pipeline of the architecture is shown
in Figure 4.

C. ACTIVITY CLASSIFICATION
This section describes the second classification step of the
proposed architecture. The activity classifier is responsible
for assigning a category to each activity in a given Android
app. The main assumption behind this classification is the
fact that many activities—even of different applications—
share several common features, as they follow very specific
patterns in both their structure and design. These design
patterns can be exploited for functional testing purposes:
for instance, many applications feature a Settings activity
that is often structured similarly, with a so-called ListView
element containing a set of clickable elements and toggles.
This implies that those activities might require a similar
approach to testing. In the remainder of this section, we report
the selection of features that we used to classify activities,
the classes of activities, and the structure of the classifier that
we developed.

1) COMPOSING THE FEATURE VECTOR
An activity can be considered a container and a manager of
UI elements, which can be either visible (i.e., that can be
seen and interacted by the user) or invisible (e.g., layouts that
are responsible for the arrangement and the behaviour of UI
elements contained therein). The type of attributes and their
number should be taken into consideration when classifying
an Android activity. Also, the attributes of some UI elements
have a value that can change over time. Hence the presence
of those attributes can be crucial in the classification process
(e.g., the isPassword=true attribute for an EditText element).
Since the attributes of the UI elements can change at run-time,
we leveraged the dump command of the UI Automator testing
framework (called through the AndroidViewClient Python
library5) to obtain the representations of the UI elements
present on screen at any moment. (See Figure 5 for a dump
example).

In addition to the types of widgets and their attributes,
we also take into consideration the different areas where the
widgets are located. As stressed by Rosenfeld et al. [31] many
apps expose the same design patterns with widgets placed in
fixed areas of the screen. We adopted their screen partition-
ing, splitting the device screen into three areas: (1) the top
20% of the screen, where typically the App Bar, Drawer and
Options buttons are located; (2) the mid 60% of the screen,
where the core of the app content is located; (3) the bottom
20% of the screen, where a Navigation Bar or a Floating
Action Button is typically located. While the top and bottom
areas tend to be very similar among all classes of activities,
the mid-portion might differ a lot for different classes of
activities. Figure 6 provides a graphical representation of the
three areas on a 1920× 1080 screen.

5https://github.com/dtmilano/AndroidViewClient

VOLUME 8, 2020 187655

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 6. Sectioning of a 1920 × 1080 screen into the identified three areas.

TABLE 4. Set of features used for activity classification.

As the feature vector of our activity classifier, we selected
an extension of the vector by Rosenfeld et al. [31], who
relied on counters for Clickable, Swipeable, and Text field
elements. In addition to those features, we also took into
account the placement of the widgets on the different areas of
the screen to build our feature vector, consisting of 16 integer
numbers. The features that we considered are summarized
in Table 4 and described in the following:
• Number of clickable elements: the number of elements
with which the user can interact. High numbers may
indicate, for instance, settings or list screens. We split
this value into three counters, one for each partition of
the screen.

• Number of swipeable elements: the number of ele-
ments that can be swiped or scrolled by the user. High
numbers may indicate list or message screens.

• Number of edit text boxes: the number of elements
where the user can input text. High numbers may indi-
cate search bars or login prompts.We split this value into
three counters, one for each partition of the screen.

• Number of long-clickable elements: the number of ele-
ments providing a secondary form of input. High num-
bers may indicate message activities or pop-up menus.

• Number of focusable elements: the number of ele-
ments with the focusable attribute (i.e., an indicator that
the widget is supposed to be interacted by the user) set
to true. High values may indicate activities providing the
user with high interaction. We split this value into three
counters, one for each partition of the screen.

• Number of ImageViews: the number of elements of the
screen hosting image files. High values may suggest the
presence of chat or browsing activities.

187656 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

• Number of password elements: the number of ele-
ments where the password attribute (i.e., an attribute that
hides input text) is set to true. A value different from zero
of this counter suggests the presence of login activities.

• Number of checkable elements: the number of ele-
ments that can be checked with a tick-mark, mostly
appearing to settings and to-do list screens.

• Presence of a side drawer: a binary indicator that
indicates the presence of a drawer containing additional
menu options.

• Total number of UI elements on screen: the total
number of widgets in the current layout, even those that
are not visible to the users.

2) BUILDING THE DATA SET
We could not find an existing data set with labelled activities
that would fit our purposes. Thus, we created a new set of
labelled Android activities on our own. Our set of activity
categories extends the set adopted by Rosenfeld et al. in their
related research [31]. The main objective of the definition of
activity classes was to find a diverse enough set of screens.
We defined the following eight classes:

• Advertisement: This class contains full-screen ads that
must be closed by the user by selecting a specific widget.

• Login: This class contains activities with a login form,
typically consisting of two EditText elements including
one with the password attribute set to true.

• Portal: This kind of activity consists of an information
hub used as the main section of the app, very common
in news, music and audio apps.

• List: This class contains activities consisting of a
dynamically-populated list of interactive elements, typ-
ically implemented with the ListView widget. If the lists
are used for settings screens, they typically incorporate
switches or so-called ToggleButton widgets.

• To-Do: This class contains activities that allow the user
to create and modify a list of tasks, typically character-
ized by the presence of multiple checkable widgets.

• Browser: This class contains activities specifically con-
structed to perform internet browsing. These typically
contain a so-calledWebView in the central section and a
search bar in the upper part.

• Map: This class contains activities designed to show the
location of a specific point of interest, typically featuring
a very complex layout due to a high number of icons,
textual contents, and images that have to be shown on
screen.

• Messages: This class contains activities characterized
by a central part of the screen with the set of messages
exchanged by the users, and an EditText used to input a
new message.

Once the categories were decided, we created a hand-
crafted dataset of labelled samples. To do so, we crawled
the ApkPure Store for 70 applications, and we traversed
most of their activities. For each activity, we stored a dump

TABLE 5. Composition of the activity classification data set.

of the screen, and we manually assigned the most plausi-
ble category among those just described. In this manner,
we obtained 100 labelled Activities, equal to 100 labelled
vectors of 16 values each, split among the eight defined
activity classes. Table 5 shows the complete composition of
the dataset.

3) MODEL ARCHITECTURE
In this work, we evaluated seven types of Machine Learn-
ing methods for our classifier. K-Nearest Neighbour, Deci-
sion Trees, Random Forest, Support Vector Machines,
Naive-Bayes, Logistic Regression, and finally Convolu-
tional Neural Networks (CNNs) have been deeply fine-tuned
and their hyper-parameters evaluated with a grid search
approach. In the end, we chose the logistic regression
approach because of its overall higher performance in accu-
racy, precision, and recall that we observed empirically. The
logistic regression used in multi-class classification is the
multinomial one. This approach hypothesizes that all classes
are independent of one another. The problem is thus solved
considering the eight activity classes listed in Table 5 as eight
different binary classification problems. The model outputs
a real value in a range from zero to one, indicating the
probability of belonging to one of the eight classes. The closer
the output probability is to one, the higher the chance the
sample belongs to that class.

Suppose that we have just two predictors that are linearly
independent as in equation (1) where the βi’s are the param-
eters of the model.

l = loge
p

1− p
= β0 + β1 ∗ x1 + β2 ∗ x2 (1)

From equation (1) we remove the logarithm obtaining the
odds in equation (2).

p
1− p

= eβ0+β1∗x1+β2∗x2 (2)

From equation (2) we obtain the sigmoid function, which also
indicates the probability of a data point belonging to a specific
class as described in equation (3).

pY=1(X) =
1

1+ eβ0+β1∗x1+β2∗x2
(3)

The model was trained to find the best set of βi param-
eters feeding our feature values and obtaining as output the
probability of the unknown data point belonging to that spe-
cific class. Once we obtained the whole set of probabilities

VOLUME 8, 2020 187657

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

for each class, we select the highest among the eight, and we
assign the activity to that class.

We also fine-tuned the C parameter which is the most
important tuning parameter in terms of the logistic regres-
sion. This is a penalty term, meant to generalize the data in
the training set. Small values mean that the regularization
will be strong and the model is simpler with the chance of
underfitting the data, while high values are indicative of low
regularization, meaning more complex models and possible
overfitting.

The effect of C on accuracy is depicted in Figure 7.

FIGURE 7. Effect of C normalization parameter on logistic regression.

Even if the multinomial logistic regression is the best
performing in terms of accuracy, precision and recall, we ana-
lyzed the output from decision trees and random forest to
determine the importance of each input feature in the activity
category attribution, as shown in Figure 8.

FIGURE 8. Level of importance as produced by decision trees and
random forest of the features used in the classification process.

This chart presents the number of total UI elements, check-
able elements, and the clickable elements at the bottom of
the activity screen as the most representative features for the
assignment of an activity’s category.

The complete pipeline of the architecture is shown in
Figure 9.

D. TEST ADAPTER
This section describes the Test Executor module that was
developed based upon the two classifications described in the
previous sections.

In the remainder of this section, we report the definition of
our scripting language and the implementation details of the
modules dedicated to test adaptation and execution.

1) TEST SCRIPTING LANGUAGE
The main drivers for the design of the test scripting language
were readability and intuitiveness. Therefore we defined
commands that indicate sets of gestures that can be applied
to a specific category of APKs and activities.

The execution of a test case is fired when two specific
preconditions are met:
• The AUT belongs to the specified Application category;
• The current activity belongs to the specified activity
category;

The outcome of a test case (pass or fail) depends on three
post-conditions. The test case is deemed as passing if and only
if all these conditions are met:
• All the commands of the test case are executed without
triggering crashes in the AUT (implicit verification);

• The condition of the assertion commands (if any) are
satisfied (explicit verification);

• The last screen reached after all commands match the
activity category specified by the user.

The proposed syntax allows us to declare multiple test
cases inside a single test suite. A test suite is declared by using
the ‘‘When’’ keyword, which indicates that the following list
of test cases must be executed only in an app of a given APK
category.

After the declaration of the test suite, the user specifies a
list of test cases that will be executed in the same order in
which they are declared. A test case is defined by a header
containing two items: the category of activity in which the
test case must be executed (indicated with the ‘‘In’’ keyword),
and the state in which the test case must end, according to the
extracted state graph of the app. If the test case must end in
the same state, the ‘‘check for SAME state’’ post-condition is
used. If the test case must end in a different state, the ‘‘check
for DIFFERENT state’’ post-condition is used, followed by
the category of the screen in which the test case must end.

The commands that compose the test scripts are divided
into two families. Activity-specific commands are developed
specifically for each of the eight activity categories in which
each screen can be classified. The full list of activity-specific
commands is detailed in Table 6. Generic commands can be
used in any activity category, as they perform actions that can
be usually executed in every context. The full list of generic
commands is detailed in Table 7.

A sample test suite script is shown in Figure 10. The
example defines a test suite for an AUT classified as a com-
munication app. The test suite is composed of two test cases.
The first test case starts in a login activity, in which the

187658 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 9. Overview of the activity Classification pipeline.

TABLE 6. Description of activity-specific commands.

TABLE 7. Description of Generic commands.

name and password are given as input, and the next button
is pressed; the test case passes if the app stays in the same
state. The second test case starts in a ToDo activity, where a
task is added; the test case passes if the app has moved to a
different layout state, in an activity of the PORTAL category.

2) IMPLEMENTATION
To implement a test runner capable of understanding the test
scripting language, we have built an interpreter that creates
Python code capable of performing the actual testing actions.
The interpreter contains the following components.

VOLUME 8, 2020 187659

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 10. A sample test suite script containing two test cases.

• Lexer: Also called tokenizer, the lexer allows the con-
version of sequences of characters into tokens that can be
used by the following parse tree. In our implementation,
we have developed the tokenizer to be case-insensitive,
to recognize quoted strings as parameters of the com-
mands, and to ignore any type of whitespace.

• Parser: The parser is responsible for analyzing the syn-
tax of the language.We created a Context-FreeGrammar
(CFG or type-2 grammar), indicating that our production
rules are in the form S− > γ , where S is always a
non-terminal symbol, and γ is a string of both Terminals
and Non-Terminals in any order. The complete grammar
is then given as input to the ANTLR tool,6 which is
capable of producing as output a working parser written
in Python, which will automatically build a parse tree.
The parser that we produce is a LL(*) Parser [34],
i.e., a type of top-down parser that parses the input
provided from left to right, deriving first the leftmost
non-terminal symbol. LL(*) parsers also allow us to
retrieve an arbitrary number of look-ahead symbols to
preventively solve conflicts in identifying the rules to
follow.

6www.antlr.org

In Figure 11, we report as an example the Abstract
Syntax Tree (AST) produced by the parsers after having
encountered the sample script previously provided. (See
Figure 10.)

• Code Generator: The purpose of the Code Generator
module is to translate the logical structure of the test
suite into pure Python code. We have modelled a test
suite as a sequence of test cases, and each test case
as a sequence of operations to be executed along with
conditions for the test to succeed.

• Widget Identification: The final and most important
step for the execution of the generated Adaptive Test
Cases, is the identification of the actual UI elements on
which to perform the interactions. To do so, the dump of
the entire screen GUI is parsed. Four different factors
are kept in consideration for the identification of the
widget:

– Textual hints: text content, content descriptions, and
resource IDs are the primary type of information
that can be used to verify the compatibility of a
given widget with a desired kind of interactions;
e.g., text content containing the ‘‘next,’’ ‘‘submit’’
or ‘‘confirm’’ keywords are likely compatible with
the CLICK NEXT operation.

– Class type: each widget class can be compatible
with a limited amount of interactions, e.g., the tog-
gle instruction is compatible with spinners but not
with buttons.

– Attribute values: the compatibility of a widget with
a certain type of interaction can be verified by con-
sidering the values of attributes defining the action
that can be performed on it; e.g., the isPassword
attribute is used to identify the widgets were to
perform the INPUT PASSWORD command.

FIGURE 11. Abstract syntax tree resulting from sample input test suite.

187660 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

TABLE 8. Time to find an injected bug with State Graph Model building procedure, and with the official Android Monkey pseudo-random input generator.

– Locational hints: the screen dump provides the
boundaries for each element. It is hence possible to
infer if a given widget is located in an area of the
screen that is compatible with the desired type of
interaction.

We adopted the heuristic of selecting the widget featur-
ing with a higher number of compatible factors. For each
identified widget, we leverage its unique ID to interact
with it inside the Python test cases.

• Test Executor: The final module of the test adapter
performs the actual execution of the tests. The system
starts from the State Graph Model of the activity run on
the device, and at each node, it runs the activity classifier
to understand the category of the current screen. Then,
each test case in the test suite written for that activity
category is fired.
At the end of the execution of a test case, its outcome is
evaluated, and then the application is brought back to the
original state in the SGM; if other test cases are available
for the current type of activity they are fired, otherwise
the exploration of the app model proceeds to a new state.

V. EVALUATION
To validate our framework, we evaluated it in isolation from
other components. The following sections report the results
of each evaluation.

A. STATE GRAPH MODELING
As anticipated in Section III, the building process of the State
GraphModel can also be deemed a form of automated testing
of the correct functioning of the app’s User Interface. In this
case two forms of implicit oracles can be used to verify
whether the UI elements of the app’s GUI behave correctly:

• AnUnhandled Exception (or Crash) stops the execution
of the app;

• A Freeze of the app GUI, which does not respond to any
input anymore.

To compare the bug-finding capabilities of the State Graph
Modeler we adopted, we compared it with Monkey,11 the
official Android Random testing tool, that comes embedded

11https://developer.android.com/studio/test/monkey

with the Android Studio IDE and that feeds the GUIs of the
AUT (application under test) with pseudo-random inputs.

We used the Fault Injection technique, manuallymodifying
the code of four different open source apps by injecting nine
different faults; we then (1) verified whether the bugs were
spotted; (2) we compared the time to find such faults with
our State Graph Modeler and with the Monkey random input
generator. Details about the considered application, injected
faults, and times to find the bugs are reported in Table 8.
For every measurement, we started the execution from the
Main Activity of the app, and we instructed the Monkey
tool to always stay inside the application package (i.e., not
navigating to other applications by sending intents).

We made the following observations:
• Our State GraphModeler and theMonkey tool were both
able to find all 9 injected faults.

• The times to find a fault varied significantly, especially
in relation to the place where the faults were injected.
When the faults were injected in the Main Activity,
the random input generation of the Monkey tool was
able to find the fault in less time than our framework;
however, when the faults were injected in screens that
were reachable after navigation in the app, the SGM
building process was able to find them in less time.

We can hence assume that the time required to find a GUI
fault is dependant on the size of the state graph and on the
number of transitions required in the input sequence to reach
the Activity where the fault is required. The ability to find all
the injected faults suggests that the SGM creation itself is a
reasonable means to perform a basic round of UI testing with
the usage of implicit oracles, on all the widgets of the AUT.

B. APK CLASSIFICATION
We performed APK classification using a Deep Neural
Network (DNN) choosing the hyper-parameters as stated
in Table 9. The output layer of the net has 10 nodes, matching
the number of APK categories. Category selection is per-
formed by a Softmax activation function. The loss function
is a Kullback-Leibler divergence that predicts how well the
predicted data distribution approximates the real data one.

The resulting network structure is shown in Figure 12.
We defined this structure by hand-tuning the hyper-
parameters listed in Section IV-B3 through extensive
empirical studies.

VOLUME 8, 2020 187661

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 12. Structure of neural network for APK classification.

TABLE 9. Hyper-parameters chosen after an empirical fine tuning phase.
They describe the DNN architecture and the choice made in the
classification optimization.

Evaluation scores are obtained using the hold-out appro-
ach. In this work, 10% of the entire dataset is left out to be
used as the final test set, while the remaining 90% of the
dataset is processed with stratified 10-fold cross-validation.
The results on the 90%of the dataset are exploited to fine-tune
the DNN hyperparameters, while results on the test set are
presented in the following.

Given the DNN above, we can reach 58.46% accuracy with
a standard deviation of 2.88%. Precision is 81.36%, with a
standard deviation of 9.31%. Finally, recall is 54.05%, with
a standard deviation of 7.75%. We obtained these results
using only the initial group of 60 permissions. When we
use the full set of 158 permissions, the accuracy score
is 58.18%. The accuracy so computed indicates that every
single requested permission is offset by a wider feature array
and this situation makes the classification process more chal-
lenging.

We assess the validity of our model comparing its perfor-
mances with state of the art solutions in application classifica-
tion. ClassifyDroid [8] tries to classify apps into 10 categories
as well using amodified version ofMultinomial Naïve Bayes,
but it uses a much bigger dataset consisting of 15590 sam-
ples coming from the Chinese MM App Market.12 However,
ClassifyDroid also presents the accuracy trend for different
percentages of labelled samples used, and for 3118 apps
(20% of the whole dataset, perfectly comparable with our
dataset of 3196 data points), it reaches an accuracy of 55%,
lower than ours.

The Lacta approach [30] classifies apps into 8 categories
using a dataset containing only 42 apps. The authors report
only precision measures, omitting accuracy. If we use the
same number of categories, we reach 88% precision, in line
with their precision of 89%. However, using hand-picked
apps for constructing the dataset may have artificially biased
Lacta’s performance. AndroClass [7] uses a Neural Network
to classify apps retrieved from the same source (APK Pure) as
ours, with about 277 apps per category, which is similar to our
ratio. The authors report 48% accuracy, 45% precision, and
41% recall. Our approach clearly outperforms those results.

We have also conducted empirical studies with different
feature vectors by removing some components to verify
that all components help in reaching our results. Table 10
shows that removing the word vector representation of the
hard-coded strings reduces performance by about 9% in
terms of accuracy, while removing the permission component

12http://mm.10086.cn/

187662 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

TABLE 10. Comparing final APK Classification results with different Feature Vectors.

reduces the performance even further, up to 13%. These
results show that none of the elements constituting our feature
vector are superfluous; all components have a semanticmean-
ing that is a key to the success of the classification process.

FIGURE 13. Effect of number of APK classes on model accuracy.

Finally, we checked the number of APK categories and
their effects on the variation on the accuracy of the model.
Figure 13 represents the effect of the number of APK classes
on model accuracy. On the left side, the accuracy is 73.57%
with 4 categories. Next, the accuracy linearly decreases
with the number of categories. If we restrict the number
of categories to 5, we obtain an accuracy score of 71.22%.
In our experiment, our model classifies APK classes accord-
ing to 10 categories. We conclude that, even if the accuracy
decreases with the number of categories, the incremental loss
is modest.

In conclusion, our fully connected Deep Neural Network
architecture yields satisfactory results in the APK classifica-
tion problem. Evidently, the success of classification depends
on the chosen dataset for any given classifier structure. For
instance, AndroClass [7] reaches an accuracy of 48% using
the APK Pure13 dataset (same source as ours), 57% using the
Google dataset14 and even 85% using a hand-made dataset.
These results imply that the choice of training applications
and their assignment to APK classes (i.e., the ‘‘ground truth’’)
affects the performance of the classifier.

13https://apkpure.com/
14https://play.google.com/

On the one hand, misclassifying ambiguous applications
in the training dataset misleads the entire training pro-
cess. On the other hand, using APKs that belong to just
one class improves the process. Ideally, we would have a
manually-labelled dataset that has a reduced yet disjoint set of
categories. AndroClass is clear proof of this fact; by ‘‘cherry-
picking’’ apps in the training set, their accuracy improved
by 37%. All of this highlights how the manual categorization
of Android applications performed on some app stores can
lead to ambiguities. In our case, due to time and resource con-
straints, it was possible to just crawl the APK Pure repository,
but it would be interesting to see what happens with a dataset
consisting of thousands of manually-labelled applications.

C. ACTIVITY CLASSIFICATION
Logistic regression is the best performing machine learning
algorithm in activity classification among the algorithms we
tested, as shown in Table 12. It has the highest scores in accu-
racy, precision, and recall. Assuming independence among
activity classes, we exploit multinomial logistic regression to
perform 8 different binary classifications. Activity selection
is performed by choosing the highest positive probability
among the 8 classifications. The eight categories are listed
in Table 5, while the features exploited to classify them are
listed in Table 4. The architecture behind the multinomial
logistic regression is depicted in Figure 14.

The evaluation score is obtained with a 10-fold cross-
validation. We also compute scores with the ‘‘leave one
out’’ approach for a clearer comparison with other research
projects in this field. The most notable measurements are
the 91.01% accuracy using 10-fold cross validation. It is
important to notice the high scores in precision 96.54% and
recall 95.25%. The precision score highlights the ability of
our model to discriminate among the 8 classes of activities.
In addition, the high recall scoring suggests that most of the
relevant samples are detected, meaning that the number of
false negatives is negligible.

Other than multinomial logistic regression, we tried three
Convolutional Neural Networks (CNN) to classify activities
and to compare their score with the existing baseline created
by previous approaches. The first CNN uses as input 1920×
1080 pixel screenshots of activities. Some screenshot pixels
are cropped to remove the bottom Android OS Action Bar,
and the top OS Status Bar, which are both graphical elements
identical in every Activity; therefore, it is no use to consider
those areas in the classification process. The screenshot is
then converted to grey-scale to reduce the dimension of the
image thanks to the removal of the colour channels. After a

VOLUME 8, 2020 187663

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

FIGURE 14. Our multinomial logistic regression exploits 16 input features listed in Table 4, then performs 8 different binary logistic
regression and finally selects the category with the highest positive probability and assigns the input activity to that category.

first pooling operation, the size of the input is (778, 486, 1).
At this stage, the image is fed to the network. The architecture
is made of a Convolutional layer (kernel 11 × 11, stride 4),
Max Pooling (kernel 3 × 3, stride 2), Convolutional (ker-
nel 5 × 5, stride 1), Max Pooling (kernel 3 × 3, stride 2),
3 Convolutional Layers (kernel 3× 3, stride 1), Max Pooling
(kernel 3 × 3, stride 2), and finally a Dense Relu Layer
of 100 units. The output is given as input to the third network
concatenation layer.

The second network tested has one Relu (Rectifier Linear
Unit) layer that sends the 16 inputs of the Features Vector to
the next concatenation layer. The third network joins the first
two models: their tensors are concatenated into a single input.
One dense layer has been added (Relu Dense of 50 units) at
the end. The output layer has a Softmax activation function
that outputs the conditional probability of the 8 classes. Cat-
egorical cross-entropy has been chosen as the loss function,
together with a stochastic gradient descent optimizer with a
learning rate of 0.001.

Unfortunately, that model never converges during the
training phase, remaining stuck at around 16% accuracy
scores after 100 epochs. We have about 988,000 parameters
in our classifier, too many variables with few data points
(100 labelled samples). Therefore, using Activity’s screen-
shots to aid us in the classification process did not have any
beneficial effects.

The reference with other research projects confirms that
our DNN classifier outperforms the existing baseline in this
field. Rosenfeld et al. classify Android activities into 7 cat-
egories using a 10-fold validation procedure [31]. They use

80 training activities versus our 100 samples. They report
accuracy scores with different approaches, so we compare our
work with their best accuracy score of 86.25% using a KStar
algorithm. We outperform this model with an increment in
accuracy of 4.76%. A second comparison is with the work of
Hu et al. [32]. In their approach, they classify Android Activ-
ities retrieving text with an OCR (Optical Character Recog-
nition) starting from activity screenshots. We compare our
results with best result that they obtained with leave-one-out
cross-validation. They classify activities in two categories
reaching a top accuracy of 87.3%. Even with the leave one
out approach and classifying a greater number of categories,
our approach reaches an accuracy of 89%, improving their
result by 1.7%.

TABLE 11. Per-class evaluation in terms of precision and recall.

A deeper analysis is presented by results in Table 11.
These scores are obtained with a 10-fold cross-validation
with the logistic regression algorithm, retrieving a confusion
matrix at each iteration, and calculating precision and recall

187664 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

TABLE 12. Comparison of a machine learning algorithm for activity classification. In the first three rows we show our top-performing algorithms, in the
last two rows we compare with other research projects results.

at each round, then averaging the whole scores at the end of
the process. The top scores are yielded by Login, Messages,
and Portal activities, showing that they maintain their char-
acteristics switching between different Android applications.
This means that they appear similar in terms of widgets and
UI elements. Moreover, most widgets are located in the same
screen areas across different apps. In conclusion, we outper-
form existing baselines with an accuracy score of 91.01%, but
we also obtained high scores in precision 96.54% and recall
95.25%, thereby setting a new state of the art baseline.

D. TEST ADAPTATION
To evaluate the testing Adaptation phase—and, in general,
the testing process with our tool as a whole—we focused on
three different research questions:

• RQ1: Can widgets with a specific semantic value
be found correctly by using textual hints and layout
attributes?

• RQ2: How often do the generated test cases lead to the
expected (pass or fail) result?

• RQ3: How much does the approach help developer-
s/testers in saving labour for the creation of test scripts?

The motivation behind the first research question is to
understand whether textual hints and layout attribute val-
ues are sufficient to identify widgets with the same seman-
tic value but located in different contexts and applications.
To answer RQ1, we applied some commands of the scripting
framework to a diverse set of applications, to evaluate their
versatility. We tested the most complex commands supported
by the scripting module, in terms of lines of Python code
required for their implementation. In Table 13 we report the
results of the application of the (sequences of) commands
to different AUTs, the outcome (success or failure of the
command execution) and, in case of failure, its cause.

In total, we have defined 4 different sets of commands to
be applied to 32 different applications.

The ADD TASK “NoteTitle” command led to 6 out
of 8 correct executions. The implementation of the command
searches for a wide set of textual hints to find the button that
can be used to add a new note (e.g., new, create, write); for
the Cute ToDo List AUT, the test failed because no textual
hints, content descriptions or ids were added in the layout

TABLE 13. Results of the evaluation of the commands versatility.

for the confirmation button. Hence the operation could not be
performed. The second failure, for the ToDoAUT, was due to
the way the addition of a task was implemented. In two cases,
the commands proved to be versatile even in unexpected
situations: for the ToDo ListAUT, an unpredictable pop-up of
an advertisement could happen after entering the title of the
note, forcing the testing engine to press the confirm button
twice; for the Checklist AUT, the Add New Note button was
uncommonly placed inside a drawer menu.

The second set of experiments involved a full login
sequence, which was executed in 7 out of 8 cases; the only
failure happened when the Polito App was selected as AUT.
However, this failure was due to the missing translation
to the English language of one of the applications. Future
implementations of the testing framework may overcome this
issue by taking into consideration multiple translations of the

VOLUME 8, 2020 187665

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

TABLE 14. Quality evaluation of the functional testing procedure.

keywords used to identify the widgets to execute the desired
operations.

Similar results were obtained for the CLICK LINE 3
command, which was executed correctly in all but one of the
List activities; the one failure that happened for the Expedia
App AUT was due to the use of a custom layout instead of a
typical ListView structure. In the case of the Google Chrome
AUT, the test produced a slightly different behaviour than
expected since the first element of the ListView in the app is
a Login button, thereby incrementing the line indexes by 1.

Finally, the command INPUT MESSAGE “TestStr-
ing” led to 8 out of 8 correct executions, in Message activi-
ties. The command also worked for theMessagesAUT,which
presented an unusual structure of the Message Composition
screen, featuring multiple EditText boxes instead of a single
one; clearly, only a single one was filled with information by
the INPUT MESSAGE command.
Overall, 28 out of 32 executions (87.5%) of the commands

were correctly translated to actual inputs on the activities
of the applications under test, proving very high versatility
of the abstract commands to the actual implementation of
Android apps. The tests did not require access to the source
code or the compiled code of the applications under test and
involved applications with very complex user interfaces, thus
corroborating the applicability of the approach to real-world
Android applications.

To answer RQ2, we verified the capability of the test
cases to provide the correct positive or negative results when
applied to Android applications (i.e., whether a test fails if it
is supposed to fail, and passes if it is supposed to pass).

We selected for that purpose 8 different apps.15 On top
of those 8 apps, we defined 14 testing scenarios that were
built to test the core functionalities of the Activity Category
to which they belong. To test different possible situations in
test executions, we tailored some tests to generate a failure
by inserting erroneous explicit assertions; also, we used the
Fault Injection technique again, by accessing the source code
of some of the apps to inject simple, functional bugs that
should lead correct test cases to fail. The full scripts are
reported in Appendix A of this manuscript. Table 14 reports
the details of all the scripts that we developed, the applications
that were used, the explanation of each test case (i.e., its
operations), the expected and actual outcomes of the test exe-
cution, and the explanation of the test outcome. By comparing
the expected outcome with the actual one, it is possible to
evaluate the capability of the testing framework to provide
the correct test outcomes.

The scripts correctly led to failures when wrong assertions
about the final screen were formulated, or when bugs were

15The number of AUTs is compatible with the one that emerges in a
literature review ofAndroid automated testing approaches byKong et al. [35]

187666 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

injected in the AUT. Test scripts 2 and 9 were supposed to
fail because bugs were injected in the AUTs (ToDo List and
Amaze File Manager); they indeed led to failure, respectively,
because of the inability to execute a tap command on a note
that was not correctly saved, and because of a mismatch in the
text given in input by the user and that shown in the GUI. Test
Script 1 was supposed to fail because a wrong assertion was
added at the end of the script, checking that a different state of
the application is reached while the application is supposed
to remain in the same state after the addition of note.

In a single case out of 14 (script 12 for the DuckDuckGo
AUT), the outcome of the execution of our script did not
match the expected one. The behaviour was due to an appli-
cation that presented a very uncommon behaviour in deleting
the user’s input after the keyboard is closed.

To summarize, the combination of the Activity Classifier
and the script creation framework proved to be a versatile
tool, able – in our evaluation phase – to generate correctly
functioning test script in more than 90% cases.

As a preliminary answer to RQ3, we report the code
saving that can be obtained by adopting our high-level
commands instead of utilizing common layout-based script-
ing languages. Each of the adaptive commands we defined
embeds 27.1 lines of Python code using the UIAutomator
library (with amaximum value of 89 lines for the ADDTASK
command for a ToDo activity).
This measure suggests that the proposed approach and the

current set of adaptive commands can be considered an excel-
lent starting point to achieve higher simplicity in creating test
cases, and a significant reduction of the labour needed by
testers in the creation of the test scripts.

VI. DISCUSSION
The evaluation we performed yielded positive results for all
the individual models of our proposed framework. All the
evaluation steps involved real-world published Android
applications (either open-source or not). Hence, it can be
considered a preliminary demonstration of the applicability
of the framework in existing projects and industrial contexts.

The complete framework showcases bug-finding features
already in the exploration phase, where the State Graph
Model of the application is constructed (with a fault-finding
capacity and a fault-finding time that was comparable to that
of state of the random art testers). The high-level commands
that we defined in the framework were applicable in near 90%
of the cases we tested, and the scripts based upon them led to
more than 90% correct test executions (in terms of correct
pass or fail outcome).

The main limitations of the proposed approach depend on
the design choices of the individual modules, which may
affect the generality of the results.

Regarding the model creation phase, we observe that the
main limitation of the State Graph Modeler we adopted is the
slow-building process, mainly impacted by the time neces-
sary to capture the dumps of every traversed screen. In some
cases, we observed that wrong layout structures were yielded

by the UI Automator tool in a non-deterministic way. Possible
ways to increase the precision and the speed of the approach
can be investigated, starting with evaluating other tools and/or
libraries to retrieve layout structures and dumps.

With respect to the components of our frameworks per-
forming APK and Activity classification, we have used appli-
cation and activity datasets already available and validated in
the literature. Of course, we cannot guarantee that any app and
activity in the universe can be filed under the categories
that we used. Another limitation to our generality can be
represented by the use of the 10-fold cross-validation in the
Activity classification phase. This limitation can be overcome
by extending the size of the adopted dataset.

Regarding the test script generation module of the frame-
work, the present study has not investigated the coverage
provided by the commands on the use of cases exposed by
the tested applications. Extensive empirical experiments are
needed to verify the efficiency in finding real bugs in Android
apps.

VII. CONCLUSION AND FUTURE WORK
We have described a machine-learning-based framework for
creating high-level test scripts for Android applications. Test
scripts are defined based on a target application and activity
category; scripts can be launched adaptively regardless of
the specific implementation details of the individual AUT.
We propose a syntax that allows the creation of test suites
and the definition of simple assertions based on the current
state and type of the Android Activity.

Our framework complements the existing literature by
providing a higher accuracy with respect to state-of-the-art
APK and activity classifiers and defining a high-level mean of
writing implementation-agnostic Android test cases. In that
aspect, it allows developing low-weight test scripts that are
generalizable to multiple activities and multiple applications
of the same type.

We regard the generality mentioned above of test scripts
as a significant added value for a testing framework, given
the labour-intensive nature of the development of test scripts
for mobile apps and the typically high maintenance they
need during the normal evolution of the AUTs. High-level
activity-related commands, detached from the specific layout
properties, can alleviate the tedious and error-prone back-
tracking of the AUT use cases to the layout properties of
individual widgets while ensuring higher readability of test
code.

The automated association performed at run-time by the
framework between high-level commands and specific layout
properties (i.e., content descriptions, ids, and textual content
of the widgets) can alsomove the definition of the test cases to
the preliminary steps of the development process. Test cases
can be defined during the definition of AUT requirements
before the activity layouts are defined, facilitating the appli-
cation of test-driven development practices in the Android
domain.

VOLUME 8, 2020 187667

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

As our immediate futurework, in addition to addressing the
limitations discussed in the previous section, we plan to set up
additional empirical studies to evaluate the whole framework,
measuring its capability to adapt entire test suites over large
sets of similar applications.

Regarding the classifiers, we plan to evaluate other fea-
ture vectors, datasets of applications and activities, and
other architectures to improve the performance of the
classifiers.

Finally, we envision the design and execution of empiri-
cal experiments to evaluate the Testing Framework’s capac-
ity to generate test cases able to provide high coverage of
the GUI widgets and high fault-finding capacity. Also, it is
worth investigating the labour that testers can save using
our Scripting Approach instead of traditional script-based
testing.

As a further improvement of our framework, we plan
to develop a semantic-aware conversational agent able to
interact with the output of this working framework and with
human test developers. The agents will look for flaws in
the test procedure and will suggest corrections. This kind
of approach will require much more data, especially labeled
data. Therefore, we will build a dataset following standards
in APK and activity description to expand the amount of
available data for a community based shared dataset used as
a baseline for future developments.

APPENDIX
SCRIPTS FOR TESTING FRAMEWORK EVALUATION
• Script 1:

1 In TODO check f o r DIFFERENT s t a t e TODO:
2 ADD TASK " T i t l e " ;
3 CUSTOM SLEEP 2000 ;
4 TICK LINE 1 ;
5
6 In TODO check f o r DIFFERENT s t a t e PORTAL:
7 ADD TASK " t i t l e " ;

• Script 2:

1 In TODO check f o r SAME s t a t e :
2 ADD TASK " T i t l e " ;
3 CUSTOM SLEEP 2000 ;
4 TICK LINE 1 ;

• Script 3:

1 In TODO check f o r DIFFERENT s t a t e TODO:
2 ADD TASK " T i t l e " ;
3 CUSTOM SLEEP 2000 ;
4 ASSERT LINECOUNT EQUALS 3 ;

• Script 4:

1 In AD check f o r DIFFERENT s t a t e AD:
2 CLICK AD;
3 PRESS BACK;
4 CUSTOM SLEEP 3000 ;
5 CLICK CLOSE;

• Script 5:

1 In LOGIN check f o r SAME s t a t e :
2 CLICK NEXT;

• Script 6:

1 In LOGIN check f o r SAME s t a t e :
2 INPUT PASSWORD " wrongPassword " ;
3 INPUT NAME " co r r ec tEma i l@gma i l . com " ;
4 CLICK NEXT;
5 CLEAR FIELDS ;

• Script 7:

1 In LOGIN check f o r DIFFERENT s t a t e PORTAL:
2 INPUT PASSWORD " co r r e c t P a s swo r d " ;
3 INPUT NAME " co r r ec tEma i l@gma i l . com " ;
4 CLICK NEXT;

• Script 8:

1 In LIST check f o r DIFFERENT s t a t e MESSAGES:
2 CLICK LINE 0 ;
3 CUSTOM SLEEP 1000 ;
4 CUSTOM CLICK TEXT " Text message " ;
5 CUSTOM SLEEP 1000 ;
6 CUSTOM TYPE " Hel loWorld " ;
7 CUSTOM SLEEP 1000 ;
8 CUSTOM CLICK TEXT " send " ;
9 CUSTOM SLEEP 1000 ;
10 CUSTOM ASSERT TEXT EQUALS " Hel loWor ld " ;

• Script 9:

1 In LIST check f o r DIFFERENT s t a t e LIST :
2 CUSTOM CLICK TEXT "Download " ;
3 CUSTOM SLEEP 2000 ;
4 CUSTOM CLICK 940 1640 ;
5 CUSTOM SLEEP 1000 ;
6 CUSTOM CLICK TEXT " Fo l d e r " ;
7 CUSTOM SLEEP 1000 ;
8 CUSTOM CLICK TEXT " En t e r Name " ;
9 CUSTOM SLEEP 1000 ;
10 CUSTOM TYPE " ThisIsAName " ;
11 CUSTOM SLEEP 2000 ;
12 CUSTOM CLICK TEXT "CREATE" ;
13 CUSTOM SLEEP 1000 ;
14 CUSTOM ASSERT TEXT EQUALS " ThisIsAName " ;

• Script 10:

1 In PORTAL check f o r SAME s t a t e :
2 SWIPE RIGHT ;
3 CUSTOM SLEEP 1000 ;
4 SWIPE RIGHT ;
5 CUSTOM SLEEP 1000 ;
6 SWIPE LEFT ;
7 CUSTOM SLEEP 1000 ;
8 SWIPE LEFT ;

• Script 11:

1 In PORTAL check f o r DIFFERENT s t a t e PORTAL:
2 SWIPE RIGHT ;
3 CUSTOM SLEEP 1000 ;
4 SWIPE RIGHT ;
5 CUSTOM SLEEP 2000 ;
6 CUSTOM CLICK TEXT " Count ry " ;
7 CUSTOM SLEEP 3000 ;
8 CUSTOM CLICK TEXT " Canada " ;

• Script 12:

1 In BROWSER check f o r SAME s t a t e :
2 INPUT URL " bbc . co . uk " ;
3 PRESS ENTER;
4 CUSTOM ASSERT TEXT EQUALS " bbc " ;

187668 VOLUME 8, 2020

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

• Script 13:

1 In MAP check f o r DIFFERENT s t a t e MAP:
2 INPUT SEARCH " San F r a n c i s c o " ;
3 CUSTOM SLEEP 1000 ;
4 CUSTOM LONG CLICK 226 1220 ;
5 CUSTOM SLEEP 1000 ;
6 SWIPE UP ;
7 SWIPE DOWN;
8 SWIPE LEFT ;
9 SWIPE RIGHT ;
10 CUSTOM PRESS DEVICE BACK;

• Script 14:

1 In MESSAGES check f o r DIFFERENT s t a t e MESSAGES:
2 INPUT MESSAGE "A s e n t e n c e " ;
3 INPUT MESSAGE " Another s e n t e n c e " ;
4 PRESS ENTER;
5 CUSTOM ASSERT TEXT EQUALS " s e n t e n c e " ;

ACKNOWLEDGMENT
A. Cardone partially conducted this work in the context of his
M.Sc. Thesis [36]. The authors would like to thank Arturo for
his work.

REFERENCES
[1] X. Li, N. Chang, Y. Wang, H. Huang, Y. Pei, L. Wang, and X. Li, ‘‘ATOM:

Automatic maintenance of GUI test scripts for evolving mobile applica-
tions,’’ in Proc. IEEE Int. Conf. Softw. Test., Verification Validation (ICST),
Mar. 2017, pp. 161–171.

[2] N. Chang, L. Wang, Y. Pei, S. K. Mondal, and X. Li, ‘‘Change-based test
script maintenance for Android apps,’’ in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur. (QRS), Jul. 2018, pp. 215–225.

[3] R. Coppola, M. Morisio, M. Torchiano, and L. Ardito, ‘‘Scripted GUI
testing of Android open-source apps: Evolution of test code and fragility
causes,’’ Empirical Softw. Eng., vol. 24, pp. 3205–3248, May 2019.

[4] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
‘‘Understanding the test automation culture of app developers,’’ in Proc.
IEEE 8th Int. Conf. Softw. Test., Verification Validation (ICST), Apr. 2015,
pp. 1–10.

[5] M. Linares-Vasquez, K. Moran, and D. Poshyvanyk, ‘‘Continuous, evo-
lutionary and large-scale: A new perspective for automated mobile app
testing,’’ in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME),
Sep. 2017, pp. 399–410.

[6] D. Rimawi and S. Zein, ‘‘A model based approach for Android design
patterns detection,’’ in Proc. 3rd Int. Symp. Multidisciplinary Stud. Innov.
Technol. (ISMSIT), Oct. 2019, pp. 1–10.

[7] M. R. Hamedani, D. Shin, M. Lee, S.-J. Cho, and C. Hwang, ‘‘AndroClass:
An effective method to classify Android applications by applying deep
neural networks to comprehensive features,’’ Wireless Commun. Mobile
Comput., vol. 2018, pp. 1–21, Sep. 2018.

[8] F. Dong, Y. Guo, C. Li, G. Xu, and F. Wei, ‘‘ClassifyDroid: Large scale
Android applications classification using semi-supervised multinomial
Naive Bayes,’’ in Proc. 4th Int. Conf. Cloud Comput. Intell. Syst. (CCIS),
Aug. 2016, pp. 77–81.

[9] S. Singh, R. Gadgil, and A. Chudgor, ‘‘Automated testing of mobile
applications using scripting technique: A study onAppium,’’ Int. J. Current
Eng. Technol., vol. 4, no. 5, pp. 3627–3630, 2014.

[10] S. Negara, N. Esfahani, and R. Buse, ‘‘Practical Android test recording
with espresso test recorder,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng., Softw. Eng. Pract. (ICSE-SEIP). Piscataway, NJ, USA: IEEE Press,
May 2019, pp. 193–202.

[11] Espresso. Accessed: Jan. 14, 2020. [Online]. Available: https://developer.
android.com/training/testing/espresso

[12] Uiautomator. Accessed: Jan. 14, 2020. [Online]. Available: https://
developer.android.com/training/testing/ui-automator

[13] M. K. Kulkarni and A. Soumya, ‘‘Deployment of calabash automation
framework to analyze the performance of an Android application,’’ J. Res.,
vol. 2, no. 3, pp. 1–6, 2016.

[14] A. Jain, M. Jain, and S. Dhankar, ‘‘A comparison of ranorex and qtp
automated testing tools and their impact on software testing,’’ IJEMS,
vol. 1, no. 1, pp. 8–12, 2014.

[15] B. Sadeh, K. Ørbekk, M. M. Eide, N. C. Gjerde, T. A. Tønnesland, and
S. Gopalakrishnan, ‘‘Towards unit testing of user interface code for
Androidmobile applications,’’ inProc. Int. Conf. Softw. Eng. Comput. Syst.
Berlin, Germany: Springer, 2011, pp. 163–175.

[16] H. Zadgaonkar, Robotium Automated Testing for Android. Birmingham,
U.K.: Packt Publishing Ltd, 2013.

[17] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, ‘‘RERAN: Timing-
and touch-sensitive record and replay for Android,’’ in Proc. 35th Int.
Conf. Softw. Eng. (ICSE). Piscataway, NJ, USA: IEEE Press, May 2013,
pp. 72–81.

[18] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, ‘‘Barista:
A technique for recording, encoding, and running platform independent
Android tests,’’ inProc. IEEE Int. Conf. Softw. Test., Verification Validation
(ICST), Mar. 2017, pp. 149–160.

[19] Ui Application Exerciser Monkey. Accessed: Jan. 14, 2020. [Online].
Available: https://developer.android.com/studio/-test/monkey

[20] A. Machiry, R. Tahiliani, and M. Naik, ‘‘Dynodroid: An input generation
system for Android apps,’’ in Proc. 9th Joint Meeting Found. Softw. Eng.
(ESEC/FSE), 2013, pp. 224–234.

[21] H. Zhu, X. Ye, X. Zhang, and K. Shen, ‘‘A context-aware approach for
dynamic GUI testing of Android applications,’’ in Proc. IEEE 39th Annu.
Comput. Softw. Appl. Conf., vol. 2, Jul. 2015, pp. 248–253.

[22] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A.M.Memon,
‘‘MobiGUITAR: Automated model-based testing of mobile apps,’’ IEEE
Softw., vol. 32, no. 5, pp. 53–59, Sep. 2015.

[23] T. Azim and I. Neamtiu, ‘‘Targeted and depth-first exploration for sys-
tematic testing of Android apps,’’ in Proc. ACM SIGPLAN Int. Conf.
Object Oriented Program. Syst. Lang. Appl. (OOPSLA), vol. 48, 2013,
pp. 641–660.

[24] W. Choi, G. Necula, and K. Sen, ‘‘Guided GUI testing of Android apps
with minimal restart and approximate learning,’’ in Proc. ACM SIGPLAN
Int. Conf. Object Oriented Program. Syst. Lang. Appl. (OOPSLA), vol. 48,
2013, pp. 623–640.

[25] R. N. Zaeem, M. R. Prasad, and S. Khurshid, ‘‘Automated generation
of oracles for testing user-interaction features of mobile apps,’’ in Proc.
IEEE 7th Int. Conf. Softw. Test., Verification Validation, Mar. 2014,
pp. 183–192.

[26] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
G. Imparato, ‘‘A toolset for GUI testing of Android applications,’’ in Proc.
28th IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2012, pp. 650–653.

[27] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci, ‘‘Con-
sidering context events in event-based testing of mobile applications,’’ in
Proc. IEEE 6th Int. Conf. Softw. Test., Verification Validation Workshops,
Mar. 2013, pp. 126–133.

[28] K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, C. Vendome, and
D. Poshyvanyk, ‘‘CrashScope: A practical tool for automated testing of
Android applications,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
Companion (ICSE-C), May 2017, pp. 15–18.

[29] R. Mahmood, N. Mirzaei, and S. Malek, ‘‘EvoDroid: Segmented evolu-
tionary testing of Android apps,’’ in Proc. 22nd ACM SIGSOFT Int. Symp.
Found. Softw. Eng. (FSE), 2014, pp. 599–609.

[30] C.-Z. Yang and M.-H. Tu, ‘‘Lacta: An enhanced automatic software cat-
egorization on the native code of Android applications,’’ in Proc. Int.
Multiconf. Eng. Comput. Scientists, in Lecture Notes in Engineering and
Computer Science, vol. 2195. Hong Kong: Newswood Limited, Mar. 2012,
pp. 769–773.

[31] A. Rosenfeld, O. Kardashov, and O. Zang, ‘‘Automation of Android
applications testing using machine learning activities classification,’’
2017, arXiv:1709.00928. [Online]. Available: http://arxiv.org/abs/1709.
00928

[32] G. Hu, L. Zhu, and J. Yang, ‘‘AppFlow: Using machine learning to syn-
thesize robust, reusable UI tests,’’ in Proc. 26th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE). New York, NY,
USA: Association Computing Machinery, 2018, p. 269.

[33] C.-Z. Yang and M.-H. Tu, ‘‘Lacta: An enhanced automatic software cat-
egorization on the native code of Android applications,’’ in Proc. Int.
Multiconf. Eng. Comput. Scientists (IMECS), vol. 1, 2012, pp. 1–5.

[34] T. Parr and K. Fisher, ‘‘LL (∗) the foundation of the ANTLR parser
generator,’’ ACM Sigplan Notices, vol. 46, no. 6, pp. 425–436, 2011.

[35] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyande, and J. Klein, ‘‘Automated
testing of Android apps: A systematic literature review,’’ IEEE Trans. Rel.,
vol. 68, no. 1, pp. 45–66, Mar. 2019.

[36] A. Cardone, ‘‘Machine learning methods for adaptive test case generation
for Android activities,’’ M.S. thesis, Dept. Comput. Sci., Univ. Illinois
Chicago, Chicago, IL, USA, 2019.

VOLUME 8, 2020 187669

L. Ardito et al.: Automated Test Selection for Android Apps Based on APK and Activity Classification

LUCA ARDITO (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in computer engi-
neering from the Politecnico di Torino. He is
currently an Assistant Professor with the Depart-
ment of Control and Computer Engineering,
Politecnico di Torino, where he is also working
with the Software Engineering research group.
His current research interests include mobile
development and testing, green software, new pro-
gramming language analysis, and empirical soft-
ware engineering methodologies.

RICCARDO COPPOLA (Member, IEEE) received
the M.Sc. degree in computer engineering and the
Ph.D. degree in control and computer engineering
from the Politecnico di Torino, Turin, Italy, where
he is currently working as a Research Assistant
with time contract. His research interests include
automated GUI testing for web and mobile appli-
cations, and the evaluation of non-functional prop-
erties of software projects.

SIMONE LEONARDI received the B.Sc. and
M.Sc. degrees in computer engineering from the
Poltecnico di Torino, where he is currently pursu-
ing the Ph.D. degree in computer and control engi-
neering. He is also a member with the Software
Engineering Group. His current research interests
include natural language processing and personal-
ity analysis applied at social media analysis and
software testing.

MAURIZIO MORISIO received the M.Sc. degree
in electronic engineering and the Ph.D. degree
in software engineering from the Polytechnic of
Turin. In 1998 and 2000, he spent two years at
the University of Maryland at College Park, work-
ing with the Experimental Software Engineering
Group led by V. Basili. From September 1998 to
June 2000, he was on the Board of Director of
the Software Engineering Laboratory (SEL). He is
currently a Full Professor with the Department of

Control and Computer Engineering, Polytechnic of Turin, where he leads
the software engineering group. He has published more than 130 articles in
international journals and conferences, and three books.

UGO BUY is currently an Associate Professor
with the University of Illinois at Chicago. His
research interests include general area of software
engineering with emphasis on modeling and anal-
ysis of concurrent and real-time systems, soft-
ware development for multicore hardware, mobile
app development, and sensor networks. In the past,
he investigated various methods for automatic ver-
ification of these systems using such models as
finite automata and Petri nets. In recent years,

he has shifted my main research focus to the automatic generation of control
supervisors for discrete manufacturing systems. More generally, he is also
interested in techniques for supervisory control and dynamic reconfiguration
of discrete event systems.

187670 VOLUME 8, 2020

