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ABSTRACT A high percentage of information that propagates through a social network is sourced from
different exogenous sources. E.g., individuals may form their opinions about products based on their own
experience or reading a product review, and then share that with their social network. This sharing then
diffuses through the network, evolving as a combination of both network and external effects. Besides,
different individuals (nodes in a social network) have different degrees of exposition to their external
sources, as well. Modeling this influence of external sources is important in order to understand the diffusion
process and predict future content sharing patterns. Recognizing this fusion of intrinsic (network) effect and
exogenous (external) effect, this paper develops a novel fuzzy relative willingness (FRW) model. Leveraging
a fuzzy set approach provides a way to handle the uncertainties arising within the human concept of
willingness. We demonstrate that FRW is able to accurately identify both top-k most content producers
and diffusion effect based on external influence. We also demonstrate that the fuzzy set theory provides
a compelling framework to model uncertainties pertaining to the influence as well as the susceptibility of

individuals for both network and exogenous effects.

INDEX TERMS Social networks, information diffusion, exogenous factors.

I. INTRODUCTION

Quantifying how much a person is willing to accept infor-
mation from external sources is an interesting problem in the
context of information diffusion. Information that propagates
in the network can be twofold because of its source. The first
kind of information is acquired from one of the user’s neigh-
bors in the social network (internal influence), and the other
one is brought into the network from outside (exogenous
influence). The external source can be anything, starting from
legacy books through a more dynamic online news portal,
in-person discussion to television, from family relationships
to virtual networks like blogs. Each individual has a different
degree of exposition to these external sources. In this context,
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one question arises: ‘is understanding persons’ willingness to
adopt from external a valuable factor for predicting the future
content sharing pattern in the whole network?’

Information diffusion has been forefront of the research for
quite sometime [1]-[4] with the objective of finding the influ-
ential nodes [3], [5]-[17]. Most of the previous work, with
very few exceptions [4], [18], only considered peer-influence
in information diffusion. However, recently Li er al. [19]
show that about 50% to 70% of the information cascade is due
to the exogenous factors. Therefore, it is essential to under-
stand whether a person is willing to share information from
exogenous sources or not in order to explain the information
diffusion process better.

The present study is an attempt in the direction of quantify-
ing willingness to adopt from exogenous sources. We define
a new problem of identifying nodes’ willingness in the
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context of information propagation. The concept of ‘willing’
is rather perceived than certain. One can be less willing
or more willing, hence, binary classification of whether a
person is willing or not would not be suitable in such a
scenario. The uncertainties involved within the concept of
willingness itself needs to be taken care off. Fuzzy sets being
a well known mathematical tool for managing uncertainties
involved with the imprecise concepts is a natural choice
for characterizing the willingness of a node. In this paper,
we use a fuzzy set to express the uncertainties and propose
a fuzzy relative willingness (FRW) measure, which char-
acterizes the relative willingness of a node to adopt from
exogenous factors. In order to validate, extensive simulations
have been performed on synthetic data set to check the mem-
bership against the prior configurations. We perform basic
comparisons with few baseline algorithms, which show that
the proposed model better explains the prior configurations
than the baseline algorithms. FRW is further used in a newly
re-framed perspective on target set selection (seed selection),
i.e., in the top-k content producer problem. Comparative
results on two real-world networks show that selecting top-
k nodes based on proposed FRW measure outperforms other
baseline algorithms in predicting the number of externally
influenced future content shares. In summary, the contribu-
tion of the paper is as follows:

1) We define a new problem of quantifying willingness to
adopt and propagate from exogenous influence.

2) We use a simple methodology to express willingness
in the framework of a fuzzy set and propose a fuzzy
relative willingness (FRW) measure to quantify will-
ingness to adopt.

3) Finally, we use the FRW measure in a newly defined
ranking problem, which maximizes the number of
externally influenced future content shares in the net-
work. The problem is referred to as the top-k content
producer problem.

The rest of the paper is organized as follows. Related
literature is discussed in Section II. The proposed problem
of quantifying adoption willingness, its mathematical foun-
dations, an algorithm, and complexity analysis are described
in Section III. Section IV reports various experiments, corre-
sponding results and discussions, whereas the final conclu-
sions can be found in Section V.

Il. RELATED WORK

The work on diffusion of innovation has been started by
sociologist [1], [20] and currently being explored by dif-
ferent field of studies including computer science for last
few decades. Since the pioneering work of [5], [21] on viral
marketing, different diffusion models [1]-[4] and algorithms
to find out the influencing individuals [3], [S]-[17] have been
developed. It also includes interacting spreading processes
in multilayer social networks [22], [23]. During these time,
the main objective was to use the information diffusion for
viral marketing, diagnosis and controlling epidemic spread

186654

exogenous
influence

0
& - =

A}
FRW>0

exogenous
influence

efe
P

underlying social network
propagation through social network

FIGURE 1. The example of how Fuzzy Relative Willingness (FRW)
quantifies susceptibility to external factors and the associated initiation
of information diffusion in the social network.

and identifying threats among others. The overall aim was
to maximize the influence, e.g. [24], [25]. Most of these
diffusion models considered only the effect of peer-influence
except a few exceptions. The paper [26] model information
propagation to identify whether a propagation is peer-driven
or authority-driven, whereas [19] and [27] tried to estimate
the magnitude of the external influence in the network.

Reference [18] modeled information diffusion process
incorporating both the peer and exogenous effects; here the
exogenous effects were calculated from a time function called
event profile. However, another important task of identifying
nodes’ willingness to accept new information from exoge-
nous sources or willingness to share external information
in the network is not attempted. Quantifying such attributes
of a person will provide an opportunity to study the afore-
mentioned problems in a different dimension. For example,
in viral marketing, we could reduce our search to the more
willing individuals only; for blocking a threat we could push
the correction measures to the members who wish to accept
the changes rather whose influence is higher.

Quantifying willingness of a node to adopt from exogenous
influence, as per our best knowledge, is not attempted earlier.
The best know problem addressed in this direction is the
target set selection which attempt to select nodes based on the
influence in the network. Readers may refer [28] for a com-
prehensive related work on target set selection problem. Dif-
ferent popular algorithms used for this task includes centrality
like degree, diffusion degree [11], [29], degree discount [9]
based heuristics methods, Prefix excluding Maximum Influ-
ence Arborescence (PMIA) [30] and Network Discovery of
Influencers using Flows (NDIF) [31] among others. Table 1
list the properties of our proposed FRW based top-k content
producer in comparison with the other comparative methods.

IIl. FUZZY RELATIVE WILLINGNESS

Considering exogenous factors, we are trying to quantify
the relative willingness of each node to adopt and propagate
a piece of information as compared to other nodes in the
network. For a given social network (e.g., friendship network,
following-follower network) and content stream (e.g., list of
tweets, status, hashtag) shared within the network, we assume
that network actors are externally influenced to share content
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TABLE 1. Comparison of Our Method to others.

Feature Degree | Diffusion Degree | NDIF | Degree Discount | PMIA | FRW
Data-Driven X X v X X 4
Diffusion Model Dependency X v X to some extent 4 X
Accuracy X X X X X 4

Get FRW sort and
Statistics 0 Wu) select top k
Fuzzification

occ
3 556083 0000ce

Social Stream

Split into equal
time slots

FIGURE 2. Block diagram showing the procedure for quantifying fuzzy
relative willingness (FRW) and top-k content producers in the network.

if none of their neighbors used the same piece of information
anytime before them. In order to calculate the willingness,
we split the content stream into equal-length time spans.
As we were trying to gather a comparative view of externally
influenced nodes, we calculate the global statistics like mean
and standard deviation of externally influenced social shares
per user per time span. Fuzzy relative willingness score is
then calculated based on how much a node’s externally influ-
enced social share differs as compared to the global average.
A block diagram of the process is shown in Figure 2.

The concept of ‘willing’ is related to human behavior.
Hence, it is imprecise in nature. Uncertainties within it have
been expressed in the concept of fuzzy set theory here.
A fuzzy transformation function is used to transform a node’s
social share count into a fuzzy membership value, which
depicts its position compared to the global average value
and characterizes the willingness. FRW is mathematically
defined in the following sections, along with the neces-
sary introduction of notation used (Table 2) and complexity
analysis.

A. MODEL

Let a social network be represented with a graph G(V, E)
where V is the set of nodes, and E is the set of edges. Also,
let the stream of all the content shared in the network be P,
which is a list of tuples p(h, u, t). Here, h is a content (tweet)
or content token (e.g. hash-tag or keyword) shared by a node
(user) u € V atatime-stamp . We call & as a post in the rest of
the paper. The problem is to quantify the relative willingness
to adopt FRW(u) of a node u for a given network G and
content stream P.

Definition 1 (Length of Time Slot t;): The stream P has
been split into equal time-length slots. Let the number of these
time slots be N; € N. Then, the length of a single time slot is
calculated as:

tmax — tmin
Iy = N, ey
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TABLE 2. Explanation of the notation used.

Used symbol Explanation

G graph

\% set of nodes

E set of edges

P stream of content shares

h content of a share, e.g. tweet, hash-tag, keyword

u node (user), u € V'

t timestamp of a share

p(h,u,t) single content share

N number of time slots

FE7 (u) set of externally influenced posts in jth time slot for
anode u

I(u) set of u’s neighbors in the graph

m mean number of externally influenced post per user
over all time slots

o standard deviation of externally influenced post per
user over all time slots

a,b parameters of Fuzzy Relative Willingness

FRW(u) Fuzzy Relative Willingness to adopt of node u

where ;4 and #,,;, is the time-stamp of the very last and the
very first post in P respectively.

Definition 2 (Externally Influenced Post): A user’s post is
said to be externally influenced if it is observed that none of
his neighbors shared the same post earlier within the same
time slot. Thus, a set E/(u) of externally influenced posts p
for anode u € V in time slot j is defined as:

El(u) = {p(h, u, t*) € P|Hq(h,v,t") € P Vv € T'(u),
(" < 1" tyin + (G — Dty < 1,17 < tyin + jts}
2)

Here 0 < j < N; is the index of the time slot the
observed post p € P belongs to. I'(u) represents the set of
u’s neighbors. We restrict our search for a known neighbor
to a particular time slot. This provides a sense of memory
window to each node as well as it reduces the running time
of the algorithm. Further, we considered only the short-term
influence not long-term influence. The assumption of using a
particular time slot in the definition is inline with this.

Definition 3 (m): m is the mean number of externally
influenced post per user over all time slots. That is,

N .
m— Zj:tl Zuev |E (u)|
B [V * N;

Definition 4 (0): o is the standard deviation of externally
influenced post per user over all time slots. That is,

\/ Y Y ey IEG0)] — mP?
o =
V] * N,

3)

“
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FIGURE 3. Examples of MS large fuzzy transformation function for
distinct parameters.

Definition 5 (Fuzzy Relative Willingness): Fuzzy Relative
Willingness FRW(u) of a node u is calculated with the
following MS Large fuzzy transformation function [32].

bxo
FRWw) = — X—axmibxo when x(u) > a xm
otherwise
Q)
YU E W
Here, x(u) = ’*T is the mean number of exter-

nally influenced posts for a particular user u; a and b are
user-defined parameters of FRW. The choice of the MS Large
transformation function is motivated by the fact that it allows
us to assign the users who are more likely to adopt and have
many posts with larger x(u#) (membership) values. In addition,
we wanted a slow growth as the post increases to a certain
extent. Figure 3 show the plots of MS Large function for
different values of m and o as a reference. However, one may
choose another fuzzy function depending upon the properties
they wish to express.

1) PROPERTIES OF THE PARAMETERS a AND b

The parameter a controls the minimum number of posts,
after which a person is labeled as a willing person via an
FRW membership value > 0. If a = 0, then all the
nodes having one or more externally influenced posts are
assigned with a positive FRW membership, whereas, for
a = 1, only the nodes with more than the mean number
of externally influenced posts are assigned with an FRW
membership.

The parameter b is the scaling factor of the standard devia-
tion used in the FRW. The value b = 0 will assign each node
(qualified based on a) with a membership value of 1.

In other words, the selection of coefficients depends on the
definition of anomalies. It is highly likely that no anomaly
is present when the concentration is less than the mean,
implying that a is 1. The tolerance between ‘anomaly’ and
‘background’ is around the mean plus one standard deviation,
implying that b is also 1.
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Algorithm 1 Willingness Calculation
I: Input: G(V, E), P, t,
2: P <« Sort(P) > sort by timestamp
3 k <« 1, start < tyi,, end < start + t
4: while start < t,,4, do
5: events < {p(hy, u, t) € Plstart <t < end}
6: Initialize: KT, KTC, PTC with empty dictionaries
7: > KT :known tags, KTC : KT count, PTC : total post
count

8: for all p(h, t, u) € events do

9 if 1 € KT [u] then

10: KTClu] < KTClu] + 1
11: else

12: KT[u] < KT[u] U {h}
13: PTClu] < PTClu] + 1

14: for all v € I'(u) do

15: KT[v] < KT[v]U {h}
16: for allu € V do

17: |E¥(u)| = PTC[u] — KTC[u]
18: k <k + 1, start < end, end < start + t,

19: Calculate m and o using Equations 3 and 4
20: for allu € V do
21: Calculate #RW!(u) using Equation 5

The estimation method as well as sensitivity study over
a and b parameters is out of scope in this work. We would
like to redirect the reader to works dealing with this problem
directly, e.g. [32]

B. ALGORITHM

In order to effectively calculate the FRW values, the main
computational challenge is to identify the posts which are
externally influenced. The natural way is to search for the
source in the network recursively. Although the search is
limited to the immediate neighbors, it is time-consuming.
We take a top-down approach to reduce execution time. The
algorithm to calculate FRW of all the nodes in the network
is shown in Algorithm 1. The inputs to the algorithm are the
social graph G(V, E), the list of social posts P, and the time
span 7, used for identifying the externally influenced posts.
We sort P according to their time-stamps, and the algorithm
then linearly traverse each post. In each step, it updates two
sets of counters, one is a total number of posts of the user
(PTC), and another is a total number of known posts (KTC)
of the user (i.e., shared by some neighbor beforehand in the
time slot). It then updates the known keywords (KT') of all
its neighbors as it is being shared with them from the current
post owner.

C. COMPLEXITY

The proposed algorithm runs for each post of the social
stream. In each step, two major activities are performed.
The former is to check whether the content is prior known
by the content owner. The latter is to update all of its
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TABLE 3. Synthetic Data set.

Properties/Name Net200
Network Type Undirected
Nodes 148
Edges 604
Avg. Degree 8

neighbors’ known content list. We manage this list using a
hash set so that a typical search operation can be considered
as O(1). Updating neighbors’ list of known content can be
very dependent on the number of neighbors one possesses.
The average degree can be considered as a good indicator for
typical cases. Finally, we calculate the FRW values for all the
nodes in the network. So the complexity of the algorithm is
O(|P|+ W + |V|); where |V] is the number of nodes,
|E| is the number of edges and |P| is the number of tokens in
the social stream.

IV. EXPERIMENTS AND RESULTS

We conducted various experiments analyze the validity of the
proposed FRW model using both synthetically generated and
real-world data sets. Accuracy is measured by the fraction of
externally influenced nodes identified (or true positive rate):
I, = w, where T returns the set of nodes
selected as externally influenced nodes prior to the simu-
lation, and Support(FRWV) is the support set of FRW. zIn
addition, experiments are performed to see how the accuracy
is affected by the change of different diffusion parameters.
The simulations were carried out over a synthetically gen-
erated network Net200 (Table 3). LDBC DATAGEN [33] is
used to generate this data, which is based on Facebook degree
distribution.

We evaluate efficacy of FRW to predict the future states
on a real-world data set: a Twitter social graph and hash tag
data (Table 5). FRW is compared with several other baseline
algorithms, where we also considered the effect of cascade
size and the parameter of FRW. All software is written in
Pythin. SOIL [34] simulation package is utilized for the
simulations. All codes will be made publicly available after
review.

Let us first describe the simulation processes and its infor-
mation diffusion parameters.

A. THE DIFFUSION MODEL OF THE SIMULATION

The diffusion models like the independent cascade model
or linear threshold model do not consider the influence of
external factors. Our study focuses on the external factors
and nodes’ willingness. So a more comprehensive model is
required. We use a simple diffusion model inspired by the
tutorial on SOIL [35] for the simulations. In this process,
each node v € V have three parameters expressing external
exposure (A,), the probability of infection from external
factors (P)) and the probability of infection by the internal
connections (P}). A, is a Boolean parameter that determines
whether node v is exposed to the external source or not.
If A, = 1 then v will be influenced to propagate the message
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by the external information with a probability of P}. A node
v gets influenced by its neighbor with a probability of P}.
The state transition diagram of the diffusion process is shown
in Figure 4.

B. ACCURACY WITH DIFFUSION PARAMETERS

We varied the diffusion parameters in three different com-
binations viz. (i) keeping both P, and P; fixed for all the
nodes in the network, (ii) varying P, while keeping P; fixed
for all nodes and (iii) varying P; for a fixed value of P,. The
obtained results and details of the simulations are presented
below.

1) GLOBALLY FIXED PROBABILITY OF EXTERNAL AND
INTERNAL INFLUENCES: Pe, P;

In this setting, we assign a fix value for P, and P} for all
v € V in a particular simulation. We randomly choose few
nodes (about 10%) and assign it with A = 1. In various sim-
ulations, parameter P, has been incremented within interval
(0.0, 1.0) and parameter P; in [0.0, 1.0) with the same incre-
ment value of 0.05. Thus, we run 380 simulations on Net200
(Table 3). A single simulation is performed with 2000 time
steps (characterizing the time-stamp in real data set) and
t; = 100 is considered while calculating FRW values using
Equations 2-5.

Figure 5a shows the variation of I, with the value of P,.
Each dot in the plot corresponds to a single simulation in
the network. The hue of the dots indicates the P; value. It is
evident that the mean I, remains nearly constant at around
0.8, whereas the standard deviation very slowly decreases
with rising P,. We found that the accuracy is greater than
0.9 for 30% simulations and greater than 0.6 for about 88%
of the simulations.

Variation of I, with the change in internal influence prob-
ability P; is shown in Figure 5b. Hue represents the exter-
nal influence probability in this scatter plot. The blue line
indicating the mean I, clearly shows that it drops with the
increase in P;. At the same time, the standard deviation rep-
resented by the orange line reveals a slow increase. Despite
the decrease, the mean value of I is above or equal to 0.6 for
all the simulations. The same is evident from the heat map
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in Figure 6. We can see there that the higher accuracy is
obtained when P; is between 0.05 to 0.6 irrespective of the
value of P,.

2) VARIABLE VALUE OF Pe

In this experiment, we randomly selected 10 seed nodes
and each of them is assigned with a P, value taken from
(0.0, 1.0] with a step 0.1. We were interested in testing the
model behavior with uniformly distributed P,. Simulations
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were carried out for the values of P; between [0.0, 1.0)
with step value 0.05. Twenty such simulations are further
repeated for 10 different randomly chosen sets of seed nodes.
Thus, total 200 simulations have been performed with this
setting. The I, values for 10 experiments are shown using
box-whisker in Figure 7. Each label in x-axis corresponds
to the results of experiments on one set of randomly cho-
sen 10 seed nodes and the box-whisker graph of that label
summarizes the outcome of 20 different simulations (for
different values of P;) as stated above. It is evident that the
median value for accuracy is at least 0.7, if considering each
experiment separately. The mean and standard deviation of all
the 200 simulation together is found to be 0.814 and 0.158,
respectively.

3) VARIABLE VALUE OF P;

In this experiment we keep a global fixed value for P,,
while we assigned uniform random values to P;. Similar to
Section IV-B.2 different values of P, is used for different
simulations. The same process is repeated for 10 times with
different uniform random values of P;. The results for individ-
ual experiments are shown in Figure 8. The mean value of /,
is 0.7647. The minimum and maximum median accuracy are
found to be 0.68 for experiment no. 5 and as much as 0.81 for
experiment no. 7.
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C. COMPARATIVE STUDY

To the best of our knowledge, no attempt was made to
measure the willingness of the node to adopt from exter-
nal sources. Accordingly, no similar algorithm is avail-
able in the literature to compare with straightforwardly.
Therefore, in our experiments, we choose popular seed
selection algorithms as a baseline. There are several algo-
rithms for seed selection in the literature [28]. In our study,
we tried to compare our method with well known seed
selection algorithms of different approaches. In particular,
we used centrality based, path based and content based
seed selection methods. The details of these methods are as
follows:

o Degree Centrality: One of the classic approaches where
top-k influential nodes are selected based on their degree
scores. We use k = |{v € V|A, = 1}|. Predicted true
positive is calculated by the cardinality of the intersec-
tion of the seed selected by degree measure and the set
fveViAa, =1}

« Diffusion Degree [11], [29]: Diffusion degree includes
the diffusion parameters along with the degree measure.
Similarly to degree, top k nodes are chosen based on the
node ranking upon diffusion degree.

o Degree Discount [9]: Node’s centrality is calculated here
by discounting edges of already selected seeds from the
degree.

o Prefix excluding Maximum Influence Arborescence
(PMIA) [30]: This is a path based method. Nodes
are selected based on the expected influence of
the paths connecting the node with others in the
network.

o Network Discovery of Influencers using Flows
(NDIF) [31]: This is a content-based algorithm, where
content flow is used to identify the flow paths. Then,
the algorithm greedily chooses the seeds. This algorithm
is the closest algorithm to our proposed methods as it
also uses content in order to find seeds. The algorithm
takes the network structure and content streams as the
input.

Comparative results for different algorithms for the glob-
ally fixed P; and P, are shown in Figure 9. Each data plotted
here is the average over different P; (Figure 9a) and P,
(Figure 9b) values. It is evident from the figures that overall,
the proposed method detects the externally influenced nodes
with very high accuracy compared to the baseline algorithms.
As expected, NDFI performs better compared to the other
structure-based algorithms. It is found that for P; between
0.0 and 0.15, accuracy of NDIF is very high. However, as P;
increases the accuracy falls sharply and from P; = 0.4 it
stabilizes around 0.1. On the other hand, the proposed method
maintains high accuracy, with the lowest level of 0.6 for
P; = 0.95. Table 4 shows the average values of Precision,
Recall and f-score for different methods. Note that in the
case of proposed FRW method the FP is zero so the Precision
is 1.0, and for the other methods FP = FN as we take the
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FIGURE 9. Comparative results for different algorithms. Color patch
showing the confidence interval at 95%.

TABLE 4. Precision, Recall and f-Score of different algorithms.

Algorithm Recall Precision f-score
Degree 0.0942631  0.0942631  0.0942631
Degree Discount 0.103773 0.103773 0.103773
Diffusion Degree  0.0938844  0.0938844  0.0938844
NDIF 0.330682 0.330682 0.330682
PMIA 0.0973923  0.0973923  0.0973923
FRW 0.792716 1 0.884374

top-k nodes where k is equal to the number of desire seeds.
Hence in the case of these comparing methods desire nodes
(TP + FN) is equal to the retrieved nodes (TP + FP).

The results NDIF are better for smaller values of P;, and as
we increase cascade size from 0 to 4, the performance deterio-
rates. The results are shown in Figure 10. FRW’s performance
is also affected by the user-defined parameter a. The effect
of different values of a is presented in Figure 11. Reducing a
would produce higher accuracy. However, in practical scenar-
ios, reducing a to very low values results can result in higher
miss-classification.
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D. PREDICTION OF TOP-k A CONTENT PRODUCER

In order to predict the top-k number of users who may create
higher number of posts influenced by exogenous factors,
we formulate the problem as a ranking problem. We split the
data into two parts, namely, training set and testing set. With
the training data, we selected the top-k nodes based on their
FRW model predicted score. These top-k nodes created the
most number of externally influenced posts in the network
and intuitively it is expected that these nodes would continue
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TABLE 5. Real-World Data Set.

Properties/Name Twitter Weibo
Nodes 475,311 1,776,950
Edges 2,735,341 308,489,739
Avg. Degree 11.5097 173.61
Total #tag Posts 12,054,205 8,454,839
Total Days 33 365
Type Undirected Directed
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FIGURE 12. Comparative results of top-k content producer for different
real-world data.

to do so in the future as well. We verified this from the test
data set. The experiment is conducted with two real-world
social network viz. Twitter [36] and Weibo [37] network. The
Twitter network contains reciprocal links of Twitter user. The
data was collected between March 24, 2012 and April 25,
2012. The network properties are shown in Table 5. It is an
undirected network along with the hashtags used in tweets.
Each hashtag has been associated with a time stamp to indi-
cate when it was used. Weibo data, on the other hand, is a
following-follower network collected for 2009-2012. In our
experiment, we took the content stream for the year 2011.
In twitter, first 25 days (about 75% hashtags) were used as
training data, and the rest (about 8 days) data was used as
testing set. In Weibo, we used 11 months data for identifying
the top-k content producer and the last month of the year is
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used as a test set, similar to Twitter. Similarly, we get the
top-k nodes by the comparing methods and total number of
externally influenced posts in the test set is computed. These
results are compared and shown in Figure 12. X-axis shows
the value of k and the y-axis shows the number of externally
influenced posts in the test set by the top-k nodes. It is evident
that FRW performs better than the baseline algorithms to a
large extent.

V. CONCLUSION

We considered a new problem of estimating users’ willing-
ness to adopt information from external sources in the con-
text of information diffusion in the network. Given a social
network and stream shared in the network, we provided an
algorithm and a measure to identify the willingness of a node,
i.e. openness of a node to external influences. The proposed
method is called fuzzy relative willingness (FRW). Empiri-
cal analysis demonstrates that FRW is able to discover the
externally influenced nodes with high accuracy. Comparative
analysis with baseline algorithm reveals that FRW is better
than the most similar state-of-the art approach for most of the
cases.

The FRW generated scores are also used to predict the
top-k content producer, that is the top-k nodes who share
and spread the external information in the network. This
concept was tested on both directed and undirected real-world
networks, namely, Twitter (undirected) and Weibo (directed).
Experimental studies demonstrate that our algorithm can bet-
ter predict the number of future posts compared to all other
methods.

Quantification of human willingness, i.e. openness, will
provide a new research direction in the domain of informa-
tion diffusion and target set (seed) selection. The presented
algorithm is relatively simple, but the idea of representing
willingness with fuzzy membership values will provide an
opportunity to use other well-known membership functions
to suit the data set and the applications they are used for.
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