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ABSTRACT Soybeans have the characteristics of balanced amino acid species and high nutritional value.
In this article, the feasibility of the identification soybean from three typical origins (Argentina, the United
States and China) by interval partial least squares (iPLS) optimized terahertz (THz) spectroscopy combined
with chemometrics was investigated. Firstly, the THz frequency-domain spectrum was optimized using
iPLS. Then, 168 soybean samples were selected as the correction set, and soybean origin identification
models were respectively built using the extreme learning machine (ELM), genetic algorithm support vector
machine (GA-SVM), and artificial bee colony algorithm support vector machine (ABC-SVM) combined
with 8 pre-processing techniques. Finally, the models were verified through 57 samples of the test set and
the comprehensive identification accuracy rate of the ABC-SVM model reached 94.74%. The experimental
results showed that after iPLS optimization and appropriate pre-processing technique, THz spectroscopy and
chemometrics could accurately identify the origin of soybean.

INDEX TERMS Terahertz, origin, pre-processing technique, iPLS, chemometrics.

I. INTRODUCTION
Soybeans from different origins have large differences in
appearance, color, nutritional value, and internal chemi-
cal composition [1], [2]. According to the database of the
Food and Agriculture Organization of the United Nations,
the United States and Argentina are among the top three soy-
bean producing countries in the world in 2019. At the same
time, they are also the main sources of imported soybeans
for China. According to China Customs, Chinese soybean
imports have remained above 80% of Chinese total con-
sumption from 2016-2019. China imports 88 million tons
of soybeans and the share of soybean imports in China’s
domestic consumption is 84.86% in 2019. Imported soybeans
are mostly genetically modified soybeans, which are not
allowed to be traded privately in China.With the development
of globalization, the issue of the protection of the origin of
agricultural products and food has attracted more and more
attention from researchers in various countries [3], [4]. Inter-
national scholars in the European Union, the United States
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and other countries have pioneered a series of exploratory
research efforts in this field. These studies mainly focus
on the analysis of the chemical composition of products
from different regions to find out the specific indicators
that can characterize the regional information [5]. For exam-
ple, Du et al. [6] analyzed the geographic origin of rice
by mineral elements and characteristic volatile components,
with a final average classification accuracy of 93.5%. For
example, Latorre et al. [7] used mineral element analy-
sis and chemometrics to qualitatively identify potatoes and
found this method to be effective. For example, Pilgrim
et al. [8] applied trace element and stable isotope signatures
in determining the origin of tea tree samples and developed
a simple method for analyzing and verifying the origin of
tea leaves. Other methods, Dittgen et al. [9] used liquid
chromatography-mass spectrometry (LC-MS) to evaluate the
physicochemical characteristics of black rice and select the
best genotype that could enhance black rice production.
For example, Lim et al. [10] used untargeted metabolomics
approaches to analyze the geographical origin of rice and
proposed a phospholipid-based discrimination method. For
example, Wadood et al. [11] successfully established a
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classification model based on linear discriminant analysis
by gas chromatography to discriminate the geographic ori-
gin of Chinese winter wheat. This model could be used to
distinguish between geographical origin and variety, but the
accuracy rate for origin identification was low. In general,
most of these methods are sensitive and accurate. However,
these identification methods have disadvantages such as high
cost, low efficiency, cumbersome operation, difficult opera-
tion by non-specialists and so on. In recent years, spectro-
scopic techniques such as Near Infrared Spectroscopy (NIR)
had been introduced into food origin detection, quality
identification, quantitative detection and so on [12], [13].
Although the above-mentioned spectroscopy techniques
had been used in agricultural and food research, the use
of terahertz (THz) spectroscopy had been received little
attention.

THz radiation refers to electromagnetic waves with a
frequency between 0.1-10 THz. Compared with other tra-
ditional spectroscopy techniques, it has unique advantages.
The vibrations of molecules (proteins and amino acids, etc.)
and intermolecular interactions are right in the THz fre-
quency range [14]. THz spectroscopy is extremely sensitive
to discover subtle differences and changes in the structure of
matter, so THz spectroscopy has broad research prospects in
biorecognition [15]. At present, there have been some related
researches on the detection of agricultural products and food
based on THz spectroscopy. For example, Chen et al. [16]
distinguished transgenic beets by THz spectroscopy, and the
final percentage of classification for both transgenic and
non-transgenic beets was 100%. For example, Liu et al. [17]
applied THz spectroscopy and chemometrics to identify
transgenic rice seeds, and the accuracy of the prediction set
was 96.67%. For example, Liu et al. [18] applied THz spec-
troscopy and chemometrics in the identification of transgenic
camellia oil and found that the use of continuous projec-
tion arithmetic could improve the classification accuracy of
weighted linear discriminant analysis (WLDA). For exam-
ple, Liu et al. [19] used THz spectroscopy combined with
chemometrics to distinguish the geographical origin of extra
virgin olive oil, and the accuracy of the prediction set was
96.25%. For example, Liu et al. [20] used THz spectroscopy
to determine the adulterated acacia honey and the final corre-
lation coefficient was 0.985. For example, Liu and Fan [21]
used THz spectroscopy to quantify potassium aluminum
sulfate dodecahydrate in potato starch and found that potas-
sium aluminum sulfate dodecahydrate had a distinct char-
acteristic absorption peak in the THz band. For example,
Zhang et al. [22] used THz time-domain spectroscopy and
chemometrics to determine amino acid mixtures in cereals
and finally proved that THz time-domain spectroscopy could
be used for the qualitative and quantitative analysis of amino
acids. For example, Peng et al. [23] used THz spectroscopy
to qualitatively and quantitatively identify the components
in the mixture, and the average correlation coefficient for
the identification reached 99.135%. But so far, there has
been no relevant study report on spectral region-optimized

THz spectrum and chemometrics to identify the origin of
soybeans.

The purpose of this article was to study the feasibility
of THz spectroscopy and interval partial least squares (iPLS)
combined with chemometrics to identify soybean origin.
At the same time, the soybean origin model identification
results after eight pre-processing techniques were compared
and the most suitable pre-processing techniques for the three
modeling algorithms (extreme learning machine (ELM),
genetic algorithm support vector machine (GA-SVM) and
artificial bee colony algorithm support vector machine (ABC-
SVM)) were separately found.

II. MATERIALS AND RELATED WORK
A. MATERIALS
A total of 75 soybeans from different batches of Argentina,
the United States and China were selected as experimental
samples. Among them, 25 samples were from Argentina,
9 samples from the US and 41 samples from China. All
samples were collected and provided by the Quality Inspec-
tion Center of the Tianjin Grain and Oil Wholesale Trading
Market in China. Because the soybean samples from these
three origins (Argentina, the United States and China) were
more convenient to collect by the Quality Inspection Center,
and more batches could be provided. Therefore, this article
used these three typical origin soybeans for identification.
There were 75 different batches of soybean samples and each
batch was weighed at 50 g for this experiment. During the
experiment, it was found that the origin of different batches of
soybeans could not be identified by the naked eye. Therefore,
it is impossible to identify the origin of soybeans by naked
eyes. Moreover, information on the size, dimensions and
weight of soybean samples was not relevant for subsequent
origin modeling and prediction. Thus, we did not record the
size, dimensions, and weight of the 75 batches of soybeans.

B. THz EXPERIMENTAL DEVICE STRUCTURE
T-SPEC THz time-domain spectroscopy equipment of
EKSPLA was used in the experimentation. The optical path
was controlled and calibrated by optical lenses. This equip-
ment used low temperature gallium arsenide (LT-GaAs) as
a photoconductive antenna. The antenna was made of Ti/Au
spray coating. The optical path between the emitter and the
detector was about 62.5 cm. The ultrashort pulse laser light
source of this system was FF50 femtosecond laser. The ultra-
short pulse was divided into strong pulse and weak pulse by
the beam splitter after passing through the half-wave plate.
After passing through the chopper andmirror, the strong pulse
hit the LT-GaAs photoconductive antenna, which generated
a THz electromagnetic radiation pulse. Then this THz pulse
was focused on the sample to be tested. The THz pulse
transmitted from the sample to be tested and the weak pulse
merge, and then the merged signal was sent to the amplifier.
Finally, the THz time-domain spectrum with the information
of the sample to be measured was obtained.
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C. SAMPLE PREPARATION AND SPECTRUM ACQUISITION
Firstly, 75 soybean samples were dried in a drying cabinet
at 50 ◦C for 3 h. The dried samples were milled by a grinder.
Then, the samples were ground with a mortar and the samples
were filtrated by the sieve with the mesh size of 0.074 mm.
Secondly, according to the ratio of 3: 7, pure polyethylene
powder was added to each sample powder and then the two
powders were uniformlymixed. After that, themixed samples
were weighed 135 mg by the precision balance, which were
compressed into tablets by the tablet press under a pressure
of 20 MPa. Finally, the experimental sample was prepared as
a sheet with a thickness of approximately 1 mm and a circular
shape. Each soybean sample wasweighed into 3 experimental
samples, so a total of 225 experimental samples were used
in this experiment. Before starting the experiment, the THz
spectral instrument was preheated for 30 minutes and simul-
taneously filled with nitrogen. During the experiment, the rel-
ative humidity was controlled below 5% in the instrument
and the room temperature of the laboratory was controlled
at 25 ◦C. Each experimental sample was scanned 6 points
and each scan point was scanned 256 times. The THz time-
domain spectra of this experimental sample were the average
of six scan-point spectra. The THz time-domain spectrum
was transformed into a THz frequency-domain spectrum
through Fourier transform. The frequency range of THz
spectra was 0.1-2.5 THz and contained 263 spectral point
data.

III. RELATED THEORIES
A. PRE-PROCESSING TECHNIQUE
The THz spectrum can reflect its own data information but
it also has some information interference that is not related
to the nature of the sample itself, such as sample background,
noise, stray light, device response and so on. At the same time,
the THz spectrum is also affected by the physical properties
of the spectral data, resulting in the baseline drift of the THz
spectrum and the non-repeatability of the spectrum. These
interferences not only affect the acquisition of useful informa-
tion of the spectrum, but also affect the establishment of the
identification model and the prediction effect of the measured
sample. Therefore, before establishing a stable and predictive
discrimination model, it has become necessary to use appro-
priate pre-processing techniques to eliminate irrelevant infor-
mation from the spectral data. The pre-processing techniques
can availably remove the interference of spectral noise and
partial physical conditions, making qualitative discrimination
more intuitive and reliable [24]. Therefore, this article used
8 pre-processing techniques, including: mean center, auto
scaling, standard normal variate (SNV), normalization, mul-
tiplicative scatter correction (MSC), first derivative, second
derivative, orthogonal signal correction (OSC).

B. iPLS SPECTRAL REGION OPTIMIZATION
Spectral region optimization is extremely significant for
improving the accuracy of the qualitative discrimination

model. It selects a spectral region with better signal-to-
interference ratio for the discrimination model. At the same
time, because part of the spectral region with large infor-
mation interference is removed, the modeling time can be
reduced and the identification efficiency can be improved.
The position and width of chosen spectral regions have a
great important influence on the performance of the iden-
tification model [25]. The selected spectral regions are too
narrow or the selected location is wrong, resulting in too
little information content related to the sample to be tested,
so the discrimination effect of the established detection mod-
els are also reduced. Selected spectral region is too wide,
while the spectral information contained in the spectral
region associated with the test sample increases, but the
noise content of the respective spectral region also increases.
Therefore, the time for establishing the identification model
becomes longer and the accuracy of the model becomes
lower.

In this article, iPLS [26] was used to select the appro-
priate spectral interval. iPLS can be used to select spectral
regions that are highly relevant to the analyzed components.
Firstly, iPLS divides the collected THz spectral interval into
n sub-intervals of the same width. Then each sub-interval is
established as a local regressionmodel. Finally, by comparing
the root mean square error of cross validation (RMSECV) of
n subintervals, the appropriate modeling spectral interval is
selected.

C. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is one of the most widely used data dimensionality
reduction methods. It is the process of orthogonally trans-
forming the original data space into a low-dimensional sub-
space. This transformation reduces the dimensionality of the
data set without loss or little loss of the data set [27]. PCA
converts the initial variables so that some of the new variables
become linear combinations of the initial variables. Usually,
the number of new variables selected is less than the initial
variables. Meanwhile, these new variables should represent
the data information of the initial variables to the greatest
extent and they should not lose useful information. The new
variables are also named Principal Components (PCs).

D. ELM
ELM is a machine learning method based on the Feedfor-
ward Neuron Network (FNN). Compared with traditional
neural networks, ELM is faster than traditional learning
algorithms under the premise of ensuring learning accu-
racy and has better generalization ability [28]. ELM ran-
domly gives input weights and thresholds in hidden layer
node weights and calculates output weights through sample
training. The method does not need to manually give input
weights and thresholds during training. It only needs to spec-
ify the number of nodes in the hidden layer and chooses
the appropriate activation function to obtain the optimal
solution.
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E. GA-SVM
Support vector machine (SVM) can transform a low-
dimensional linearly indistinguishable sample into a
high-dimensional feature space by non-linear mapping to
make it linearly distinguishable [29]. The kernel functions
frequently used by SVM are linear kernel functions, poly-
nomial kernel functions, radial basis functions (RBF) and
so on. Among them, the most diffusely applied one is RBF,
which can project sample data to a higher dimensional space
and require fewer parameters to be ascertained. The paper
used genetic algorithm (GA) and artificial bee colony algo-
rithm (ABC) to optimize RBF parameters.

GA is an evolutionary algorithm whose principle is to
imitate the evolutionary law in the biological world [30].
It encodes the problem parameter as chromosomes. Then
chromosomes use iterative methods to perform selection,
crossover, and mutation operations to exchange chromosome
information in the population. Finally, chromosomes that
meet the optimization goal are generated. In GA, chromo-
somes correspond to data or arrays, which are usually rep-
resented by one-dimensional string structure data. A string
of genes is called a chromosome or genotyped individual.
A certain number of individualsmake up a group. The number
of individuals in a group is called the group size, also known
as the group size.

F. ABC-SVM
ABC is a new type of swarm intelligence optimization
algorithm, which simulates the honey gathering process of
bees [31]. It solves the contradiction between expanding new
food sources and conducting precise searches around known
food sources, to a large extent avoiding falling into local
optimal [32]. The ABC algorithm includes three types of
bees: leading bee, following bee, and scout bee and the solu-
tion of the optimization problem is used as the food source
location [33]. An important advantage of the ABC algorithm
is the deep switching of information, that is, all bees in the
algorithm rely on swinging actions to exchange information.
The speed of bees searching for food sources is the speed
of solving optimization goals. In this article, the ELM, GA-
SVM and ABC-SVM identification models were established
and verified in Matlab R2018b. The computer operating sys-
tem was Windows 10.0.

IV. RESULTS AND DISCUSSION
A. THz FREQUENCY-DOMAIN SPECTRUM
Fig. 1 and Fig. 2 are THz frequency-domain spectral images
of 225 samples in the 0.1-2.5 THz and 0.1-1.5 THz range.
The differences in the THz frequency-domain spectra of the
experimental samples from different origins can be seen in
the Fig. 1 and Fig. 2. This might be due to differences in the
content of certain chemical components. The chemical com-
ponent with the highest potential to cause this was the pro-
tein content, followed by the moisture content. 0.1-1.5 THz
range of the THz frequency domain spectral signal

FIGURE 1. THz spectrum in 0.1-2.5 THz range.

FIGURE 2. THz spectrum in 0.1-1.5 THz range.

gradually decreased. From the THz spectral images, it can
be seen that there are significantly obvious interferences in
the 1.5-2.5 THz interval. These disturbances had a very large
impact on the subsequent identification of soybean origin.
Hence, it was essential to optimize the spectral interval of the
THz frequency-domain spectrum through iPLS. Fig. 3 shows
the average THz frequency-domain spectra of soybean sam-
ples from the three origins (USA, China andArgentina). It can
be seen from the figure that the spectra of soybean samples
from China at 0.1-0.3 THz are higher than those of the other
two origins. The THz spectra of the soybean samples from
the USA and Argentina were similar.

B. iPLS SELECT THE APPROPRIATE SPECTRAL REGION
Wavelength was used as input when iPLS was used for spec-
tral region optimization of NIR spectra, but the horizontal
coordinate of the THz frequency-domain spectrum was fre-
quency and could not be directly input. Therefore, when iPLS
is used to optimize the spectral region of the THz spectrum,
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FIGURE 3. Average THz frequency domain spectra of soybean samples
from three origins.

FIGURE 4. RMSECV in the range of 0.1-2.5THz.

the input is replaced by the number of spectral points in the
frequency interval. The 263 spectral points (0.1- 2.5 THz) of
the THz frequency-domain spectral interval were divided into
10 equal parts and then sub-intervals were selected through
iPLS. Fig. 4 shows the RMSECV results for 10 sub-intervals.
From the figure, the dotted line indicated that when the PLS
components (PLSC) of the full-spectrum PLS model was 6,
the RMSECV was 0.6641. In the picture, it could be found
that the third sub-interval had the lowest RMSECV, so it was
chosen as the first selected sub-interval. Nevertheless, there
was very little useful information in an alone sub-interval and
it could not achieve the objective of establishing the discrimi-
nationmodels with excellent predictive capability and robust-
ness [34]. Hence, the third sub-interval was taken as the center
and then the range of the selected sub-interval was extended
bidirectionally, and the sub-interval with RMSECV less than
0.6641 was chose. Finally, the THz frequency-domain spec-
tral interval modeled in this experiment was chosen as the
frequency interval of 0.1-1.0792 THz (1-108 spectral points).

FIGURE 5. PCs score chart.

C. PCA
The THz spectrum after optimized selection by iPLS was
subjected to PCA. The variance contribution rate of the first
five PCs were 71.32%, 17.99%, 3.69%, 1.79% and 1.33%,
and the cumulative variance contribution rate (CVC) was
96.12%. Fig. 5 is a graph showing the dispersion of the first
3 PCs of 225 soybean samples. It could be seen from the
figure that a part of the soybean samples in China and the
soybean samples from other places had amore obvious differ-
ence, but most of the samples had a serious overlap in three-
dimensional space. Soybean samples from the United States
were completely scattered between the other two soybeans of
origin. Therefore, PCA alone could not effectively distinguish
soybean samples from different origins and it was necessary
to combine chemometrics to further examine soybean origins.

D. ELM SOYBEAN ORIGIN IDENTIFICATION MODEL
The transmissivity and frequency of the THz frequency-
domain spectrum were used as input variables for the ELM
soybean origin identification model. Soybean samples were
randomly selected according to the 3: 1 ratio between the
calibration set and the test set. The 168 calibration set soybean
samples contained 56 samples from Argentina, 20 samples
from the United States and 92 samples from China. Among
the 57 test set soybean samples, there were 19 samples from
Argentina, 7 samples from the United States and 31 samples
from China. Firstly, THz frequency-domain spectral data
was subjected to 8 different pre-processing techniques. After
that, the ELM soybean origin identification models were
established through the calibration set. Finally, the identi-
fication effects of the ELM soybean origin identification
models were verified through the test set. The verification
results are shown in Table 1. The accuracy cv (Acv) was
the identification accuracy of the cross-validation (leave-one-
out method) of the calibration set samples. The accuracy 1
(A1) was the correct rate for the identification of Argentine
soybean samples. The accuracy 2 (A2) was the identification
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TABLE 1. ELM soybean origin identification model verification results.

TABLE 2. GA-SVM and ABC-SVM soybean origin identification model verification results.

accuracy rate of US soybean samples. The accuracy 3 (A3)
was the correct rate of Chinese soybean sample identification.
The total accuracy (TA) was the correct rate of identification
of all experimental samples in the test set.

It could be seen from Table 1 that after pre-processin tech-
niques, the identification effect of the ELM soybean origin
identification model was better. This showed that there were
definite differences in the soybeans of different origins in
the THz frequency and the THz frequency-domain spectrum
could be used to detect the soybean origin. Comparing the
verification results of the ELM soybean origin identification
model after different pre-processing techniques, it could be
found that the identification effect of the ELM model after
mean center or normalization was the mostaccurate, which
was 5.26% higher than the ELM identification model with-
out pre-processing. This might be because the two spectral
pre-processing techniques removed the great mass of THz
spectral interference and the THz spectral data retained
was the most effective. Therefore, these two pre-processing
techniques were most suitable for the ELM origin identi-
fication model. In terms of accuracy of identification, the

identification of soybean samples in Argentina and China
was better but the identification of American soybean sam-
ples needed to be improved. This was similar to the PCA
results. American soybean samples were completely mixed
between the other two soybean samples, making accurate
identification difficult. Therefore, it was necessary to find a
more suitable identification method for American soybean
samples.

E. GA-SVM AND ABC-SVM SOYBEAN ORIGIN
IDENTIFICATION MODELS
Based on the preceding means, 225 samples were separated
into the calibration set and the test set. The GA andABCwere
used to optimize the selection of the RBF penalty parame-
ter c and the kernel function parameter g. Firstly, the THz
frequency-domain spectrum was subjected to eighprocess-
ing techniques. Secondly, GA-SVM and ABC discriminant
models were found by the calibration set. Ultimately, the test
set was separately employed for verification. Table 2 shows
the verification results of GA-SVM and ABC-SVM soybean
origin identification models.
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It could be seen from Table 2 that after different
pre-processing techniques, the verification result of the
ABC-SVM soybean origin identification model was better
than the GA-SVM model. This might be because when
ABC optimized the parameters of SVM, it simulated the
honey collecting process of the bee colony and divided
the bee colony into more reasonable functions. Therefore,
it showed more superior performance in solving the func-
tion optimization problem and finally obtained the optimal
discrimination model. After the auto scaling pre-processing
technique, the total accuracy rate of the ABC-SVM soy-
bean origin identification model was increased to 94.74%
(c = 9.51×109, g = 1.73×10−4). This further illustrated that
THz spectroscopy and chemometrics could accurately
identify the origin of soybeans. After the auto scaling
pre-processing technique, the GA-SVM and ABC-SVM soy-
bean origin identification models had achieved the best iden-
tification effect, which was 3.51% and 5.27% higher than
the identification model without pre-processing technique.
This might be because auto scaling pre-processing technique
deleted redundant spectral data from the THz frequency-
domain spectrum, thereby enhancing the differences between
the spectral data. In the verification results of the ABC-SVM
soybean origin identification model, the identification model
after the optimal pre-processing technique (auto scaling) was
14.04% higher than the identification model using the worst
pre-processing technique (OSC). This illustrated that the
spectral pre-processing technique had a crucial role in the
effect of soybean origin identification model.

Comparing Tables 1 and 2, it was found that theABC-SVM
soybean origin identification model had a higher total accu-
racy than the GA-SVM and ELMmodels. This indicated that
in the actual soybean origin identification, the ABC-SVM
soybean origin identification model was better than the
other two models. After comprehensively comparing the
verification results of the soybean origin identification mod-
els of ELM, GA-SVM and ABC-SVM, the paper discov-
ered that after the auto scaling pre-processing technique,
the ABC-SVM soybean origin identification model could
achieve the best identification effect. In the identification
of the origin of the soybean samples in Argentina, America
and China, the identification effects of using the auto scaling
pre-processing technique and the ABC-SVM identification
model were 94.74%, 85.71% and 96.77%.

Comparing the previous related papers on the identifi-
cation of origin, it could be found that THz spectrum and
iPLS combined with chemometrics could be used to identify
the origin of soybean. At the same time, it provided bet-
ter identification, simpler operation and wider application.
For example, Dan and Yang [35] based on the L-1-LRC
model combined with NIR spectroscopic data to identify
orange origin. Although the L-1-LRC model could achieve
an accuracy of 92.35% using training samples, the identifi-
cation performance should be further improved. For exam-
ple, Zhou et al. [36] were able to identify the origin of
panax notoginseng samples by combining Fourier transform

mid-infrared (FT-MIR) and NIR spectroscopy. Although the
origin identification results could reach 95.6%, themodel was
too complex and it required the use of two spectroscopic tech-
niques. For example, Lai et al. [37] applied energy dispersive
X-ray fluorescence spectroscopy for the analysis of soybean
traceability. The effect of origin identification could reach
96.2%. However, the selected experimental samples were all
from China, and the origin identification of foreign soybeans
was not performed. Moreover, it needed to measure the nine
elements in soybean first, and then carried out the subsequent
identification study, which was a complicated experimental
operation. Therefore, the identification of soybean origin
by THz spectroscopy and iPLS combined with chemometrics
is a newmethod that can replace the traditional soybean origin
identification.

V. CONCLUSION
The experimental results showed that THz spectroscopy
and iPLS combined with chemometrics could be used to
accurately identify soybean origin. After iPLS and auto
scaling pre-processing technique, the total accuracy of the
ABC-SVM soybean origin identification model reached
94.74%. Mean center or normalization pre-processing tech-
nique was the most suitable for ELM soybean origin identifi-
cation model. Auto scaling pre-processing technique was the
best for GA-SVM and ABC-SVM soybean origin identifica-
tion models. The novelty of this article is the identification
of soybean origin by THz spectroscopy. At the same time,
a more accurate and scientific method is proposed to select
the frequency range of THz frequency-domain spectrum.
This article has important reference value for the accurate
and rapid identification of other agricultural products and
food origins. It can play a great reference role in the research
of soybean variety identification, doping and protein content
analysis.
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