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ABSTRACT It is becoming clear that the maritime industry is expected to see considerable growth over
the coming years, and the Internet of Underwater Things (IoUT) could have an essential role to play in
its technological development. In this regard, because batteries are the main power source in underwater
environments, there is a clear need to minimize the consumption of energy. In addition, underwater links
that make use of acoustic soundwaves can cause relatively long propagation delays. In our proposed scheme,
we focus on the initial connection procedure between sensor nodes and underwater base stations to tackle
these environmental problems, in which the former estimates the signal strength of the latter. From local
information measured during the initial network entry phase, underwater sensor nodes determine locational
priority of candidate targets, but do not scan or measure the signal strength of other neighbouring underwater
base stations as a means of keeping the power consumption to an absolute minimum. This can be considered
an appropriate scenario for use in severely battery-limited environments such as IoUT. Based on analysis
using machine learning, we obtain meaningful clues regarding the procedure for handover prediction without
channel measurement. By removing the overhead from the channel measurement, the power consumption
of the underwater things can be minimized. Two different methods of deciding on handover priority are
suggested and analysed mathematically. The performance of each method is evaluated through intensive
system-level simulations and compared to that of a more conventional scheme.

INDEX TERMS Locational priority, machine learning, handover prediction.

I. INTRODUCTION
With the passage of time, more and more electronic devices
have been devised to adopt wireless communication systems
[1], [2]. Because there is less restriction on the mobility of
nodes in wireless than in wired communications, the needs
of wireless devices are continuing to increase, as is their
functionality. The development of industries using wireless
communication systems like IoT, smart vehicles or mobile
technology implies the adoption of wireless systems in
diverse areas. The demand for wireless communication sys-
tems is also increasing for underwater applications [3].
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For example, the adoption of standards for underwater
communications and underwater observation webs by the
NorthAtlantic TreatyOrganization (NATO) has led to various
underwater applications by organizations such as Ocean Net-
works Canada, the Ocean Observations Initiative, and Smart
Bay. The so-called Internet of Underwater Things (IoUT)
can be used in many different areas, for example, national
defence, marine disasters, fisheries, observations for marine
resources, diver communications, or marine rescue [4]–[6].

In all these areas, there are many cases where mobility
is required. Moreover, sensor nodes may possibly be forced
by tides or other environmental drivers [7]–[10], and in
this regard, handover methods might be required in IoUT
networks [11], [12].
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Since the IoUT network mostly makes use of acoustic
waves, it is characterized by velocities of around 1500m/s,
which are much slower than that of microwaves. In addition,
it is vulnerable to noises made both on the ocean surface and
at depth. It also suffers from numerous restrictions such as
multipath fading, slow data transmission, substantial propa-
gation losses, limited energy when using batteries, and severe
hidden-node problems [13]–[17]. Therefore, it is only barely
possible to apply existing conventional handover methods to
IoUT networks [18]–[20]. It is generally necessary to mea-
sure locations or signal strengths by transmitting measure-
ment reference signals between sensor nodes and a number of
base stations. However, this causes significant performance
degradation in IoUT networks. Furthermore, long propaga-
tion delays mean that the sensor node may be in a different
location by the time the channel measurement is completed.
Underwater environments have many limitations that affect
the tasks undertaken by humans, and underwater devices
have communication functions in the form of non-power and
Lightweight sensor nodes [21]–[23].

In this paper, we propose a handover priority decision
method that is applicable to IoUT networks and may be used
to solve the aforementioned problems based on locational
probabilities and machine learning with zero scanning. Two
alternatives are discussed and evaluated, which uses only
the signal information created in the initial network entry
process between base stations and sensor nodes to remove
measurement overhead. Sensor nodes never perform neigh-
bouring cell measurement after network entry procedures.
This approach does not consume additional energy to mea-
sure all candidate neighbouring cells because it uses saved
signal information with no need for any measurements. The
handover procedure best suited to IoUT networks is proposed
and evaluated at the system level.

II. RELATED WORK
A. BACKGROUND
In the case of IoUT, by the environmental specificity, on-
surface wireless communication systems cannot be applied
[13]–[17]. Therefore, many different IoUT models that fit the
underwater characteristics have been suggested [24]–[29].
The method tuned to fit the underwater environment was
suggested based on the IEEE 802.11 protocol used on the
surfaces [6], [28]. Experiments are conducted with many
different media like RF, visible light, etc., mainly the models
using acoustic wave communications were many because
they had fewer restrictions on communication distance in
underwater environments [13]–[17].

1) PROBLEM STATEMENT
IoUT has many practical problems due to environmental
reasons. First of all, there is an energy problem. When
communication is conducted under deep water, consis-
tent energy supply is hardly possible. That means, once
a battery equipped node is installed, its maintenance is

almost impossible. Thus, for underwater wireless networks,
it must be designed to be used for as long as possible with
minimum energy usage after installation. This is themost crit-
ical issue of the underwater acoustic wave wireless networks,
and many challenges to solve this have been conducted
[3], [20], [36]. Moreover, acoustic wave is very slow with
the speed of 1500m/s underwater, and the data transmission
speed is very restricted, so there are many difficulties with
large data transmission [4], [37], [46].

B. RELATED WORK
1) RESEARCHES ABOUT THE PREVIOUS UNDERWATER
HANDOVER METHODS AND ITS PROBLEMS
In [38] suggests an ocean current prediction method through
machine learning. It makes the prediction model by collect-
ing marine data and predicts the movement of nodes that
move passively by the tides at the underwater environments.
The high accuracy of the machine learning model supports
handover through the predicted movements of the nodes and
motivates this work.

Handover methods for underwater visual light Ad-hoc
diver networks were discussed in [39]. In this work, if a diver
gets out of the communication range while communicating
with other divers using visual light, the handover is performed
by using other diver(diver bridge) between transmitter and
receiver. This result has presented about the handover pro-
tocols, yet it is just a suggestion of the concepts, there is
no experiment or investigation. Also, since it uses the visual
light, there is a restriction for the distance between nodes.

To the best of the our knowledge, handover technol-
ogy using acoustic wave in underwater wireless networks,
themethods suggested in [38] and [45] are the known options.
The lack of previous researches or the standards leads to
unsystematized design in future researches because there is
not sufficient reference.

Thus, this paper suggests a new concept that has not been
mentioned before. It would be helpful for many underwater
handover researches in the future. In addition, this research
possibly can be applied to the practical IoUT network that
we are currently working for a huge project supported by
Korean government [40]–[44]. Numerous research institutes,
universities, and global IT companies such as SK Telecom
are involved in this on-going project for commercialization of
IoUT applications [47], [48]. Actually, the testbeds designed
in this project are on the level of the practical test.

2) PREDICTION OF UNDERWATER SENSOR LOCATION
WITH ZERO CHANNEL MEASUREMENT
The proposed method is intended to minimize the con-
sumption of energy by removing the need for channel
measurement. Before considering the handover procedure,
we first needed to address the possibility and feasibility of
handover methods without channel measurement in IoUT
environments.
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While it may be impossible to predict the position of sensor
nodes without channel monitoring due to the uncertainties
of mobile users on land, using information on ocean current
prediction based on machine learning algorithms, the move-
ment of underwater sensor nodes may be predictable in IoUT
environments [38].

The prediction of node location for IoUT is based on ocean
currents. If we assume that sensor nodes are lightweight and
move passively with currents, models for predicting ocean
currents may help simulate the mobility of underwater sensor
nodes without the need for channel measurement.

We also used machine learning technologies for evaluation
purposes, and to that end data were obtained for the real
underwater environment off the southeastern coast of the
Korean peninsula, and were used for training and validation.
An ocean current prediction model was thus trained using a
variety of sea information data with the aim of predicting the
movements of sensor nodes.

The data used for learning is gathered by collaborationwith
Korea Hydrographic and Oceanographic Agency, and it is
actual data collected at the location pointed in Fig. 1.

FIGURE 1. The location for the ocean data collection from the South Sea
of Korea.

The training set includes recent measured data on surface
velocity, surface flow (direction), water temperature, and
salinity for a four period at 30-minute intervals.

We devised 5 machine learning models, namely MLR
(Multiple Linear Regression), MLP (Multi-Layer Percep-
tron), SVM (Support Vector Machine), DTC (Decision Tree
Classification), andKNN (K-Nearest Neighbors). All of them
produce highly accurate predictions of ocean currents for
estimating the mobility of underwater sensor nodes.

Fig. 2 shows the prediction accuracy of the 5 machine
learning models. In the present study we used various dif-
ferent machine learning models to make the predictions. The
term ‘Rank’ is herein defined as the number of candidates for
which an accurate target handover cell can be determined.

FIGURE 2. Prediction accuracy of the underwater sensor nodes using
many machine learning models.

In other words, for a Rank n, the machine learning model
predicts n candidate target cells. The prediction accuracy in
Fig. 2 is defined as the probability that the correct target cell in
practice is contained in n candidate target cells as determined
by the machine learning models.

Figure 2 shows that the prediction accuracy can be more
than 80% if we adopt machine learning models to predict the
mobility of sensor nodes in underwater environments. A total
of 6 base stations are located around the central base station
in the suggested sea current prediction model environment,
meaning that the model can predict the direction within a rank
of up to 6. For the prediction results, we show the accuracy
of the proposed model for Rank 1, 2, and 3. The success of
these predictions means that handover can be applied without
channel monitoring.

In this paper, we describe the prediction of the mobility
of sensor nodes under these conditions. Two methods are
proposed for the handover procedure. The first makes use of
candidate counts, and the second uses the difference in signal
strength at the point of initial network entry.

III. PROPOSED UNDERWATER HANDOVER
PROCEDURE WITH ZERO SCANNING
A. UNDERWATER CHANNEL MODELS
For the underwater wireless communications, many differ-
ent channel models were suggested depending on the media
while taking into account the various environmental effects
such as signal decrease, antenna radiation pattern, and multi-
thread fading following the sea surface.

In [30] handles the factors which are to be considered at the
underwater RF communications. It claims that the wireless
sensor network is settable at the underwater environment
through the mathematical analysis of various factors like
electromagnetic properties of water, transition frequency,
reflections, channel characteristics, multipath. This research,
however, raises many problems like path loss due to a
decrease, or necessity of remodeling RF communication
equipment.

In [31] and [32], it shows the use of high-frequency RF
communications. And [31] shows 4G transmitter-receivers
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FIGURE 3. System model of internet of underwater things.

are usable for underwater communications, tranceivers using
insulator were considered in [32]. However, they also show
that underwater RF communications still have many limits
when it comes to long-distance communications.

Communication channel modeling method was discussed
in [33]. And In [34], the long-distance underwater visual light
wireless communication channel models are suggested and
analyzed. They also show that the visual light communica-
tions have difficulties due to absorption and scattering.

The problems of the underwater acoustic wave networks
based on acoustic wave modems and their environmental
characteristics are discussed in [3]. The research result apply-
ing OFDM to underwater wireless acoustic wave channels is
presented in [35].

B. SYSTEM MODEL OF UNDERWATER
HANDOVER SCENARIOS
Before discussing handover technologies for IoUT networks,
we present the systemmodel of IoUT considered in this work.

Although many kinds of model are possible, we present
a practical system model composed of UBSCs (Underwater
Base Station Controllers), UBSs (Underwater Base Stations),
and the SN (Sensor Node). This system model is designed
and implemented for commercial IoUT applications in South
Korea [40]–[44].

Numerous research institutes, universities, and global IT
companies including SK Telecom have been involved in this
large research project for several years. In this practical sys-
tem model, SNs collect data from marine environments, such
as temperature, current speed, and salinity. They then deliver
this information to the connected UBS. The UBSs manage
a number of sensor nodes within the their communication
range, receive the collected data from their sensor nodes, and
combine and send them to the UBSC. The UBSC transfers
the collected data to other networks on land for connection to
the Internet. Our IoUT network structure is shown in Fig 3.

The solid line shows the coverage of UBSCs, and the dotted
line shows the coverage of UBSs. The UBSCs control the
UBSs and the UBSs control the sensor nodes within their
area of coverage. The detailed structure is one where the
UBSC takes charge of 3 UBSs. The operational scenario
of our practical system model takes place via the following
procedures for managing IoUT networks.

1) Deploying UBSCs, UBSs, and sensor nodes
2) Searching for connection between UBSCs and UBSs,

and between UBSs and sensor nodes, and the attempt
to connect

3) Completion of searching and setting system
environments

4) Entering data transmission phase

FIGURE 4. Example of control packet transmissions for searching and
connecting method in system.

Fig. 4 shows the procedure for search and connection
between 2 UBS’s and 2 SNs. UBS transmits ERQ(Echo
ReQuest) message to SN within the range. Then the SN mea-
sures the signal strength of the received packet, and compares
it with the predefined threshold value. If the signal strength is
stronger than the threshold, it attempts to connect with UBS
by sending ERP(Echo ResPonse) message. If not, it saves
the information of the UBS and waits for the signal from
other UBSs. In practical situations, this process is performed
several times to solve the problems of lost packets. This
method is conducted at the initial connection level, and once
they are connected, it moves on to the data transmission
phase. The details are in Section III.

C. HANDOVER TRIGGER CONDITION
In this section, we explain the handover trigger condition for
the underwater sensor nodes. On land, handover is widely
used for mobile devices. Mobile devices in outdoor commu-
nication systems measure the signal strength of neighbouring
cells periodically before calculating the most appropriate
time for handover and the target neighbour cell. However,
since energy is restricted in IoUT networks, the handover
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trigger condition must be appropriate for underwater sensor
nodes, as follows

Algorithm 1 Handover Trigger Procedure
1: if transfer_data() then
2: transfer_time[].append(transfer_timer())
3: rtt_timer()
4: transfer_timer()
5: end if
6: if receive_ack() then
7: rtt_time[].append(rtt_timer())
8: sn_dist[].append(calc_rtt(rtt_time[]))
9: max_timer = max(transfer_time[])

10: average_speed = average(sn_dist[]) /
average(rtt_time[])

11: deadtime = (max_range − sn_dist[LAST]) / aver-
age_speed

12: if deadtime < max_timer then
13: handover_request()
14: end if
15: end if

FIGURE 5. Description of handover trigger parameter using packet flow
procedure.

Algorithm 1 contains a listing of how the handover trig-
ger procedure works, and Fig. 5 gives a brief overview
of the parameter about the handover trigger procedure.
Table 1 shows the parameter information defined in the sys-
tem specification. When a sensor node sends data to its
UBS, two types of timing parameter aremeasured, namely the
time to receive ACK and the time gap between receipt of the
previous data and receipt of the current data. The time taken is
saved into an array structure called transfer_time. Afterwards,
when the ACK packet has been transmitted from the UBS,

TABLE 1. Handover trigger procedure parameter.

the distance between the sensor node and the connected UBS
is calculated using RTT(Round Trip Time). To predict when
the sensor node moves out of range of the connected UBS,
the longest time in the array transfer_time is retained. Based
on the measured data, the average speed and the deadtime are
also calculated as shown in the the pseudo code. Handover is
attempted when the deadtime is shorter than max_timer. Due
to the characteristics of IoUT networks, data transmission is
erratic, and it is hard to determine the exact time at which
the sensor node escapes out of the communication range.
By considering the underwater characteristics, an average
speed of the sensor node per unit time is used. Using the
longest transfer_time and the longest deadtime, considered as
the last data transmission before the sensor node escapes from
the range of the connected UBS, the request for handover is
sent to the UBS.

IV. PROPOSED APPROACH
A. PROPOSED UNDERWATER HANDOVER PROCEDURES
Two locational priority-based handover methods are pro-
posed in this section. From the initial network entry processes
between the sensor nodes and the UBSs, messages are passed,
and these methods are used to measure the signal strength of
the signalling packets during the initial connection procedure
for the first and the last. Thesemethods can prevent additional
energy consumption by using information on signal strength
obtained during the essential initial procedure.

IoUT networks can use this policy to reduce energy con-
sumption as much as possible. Two methods are proposed,
discussed, and evaluated, namely UCC (Using the Candidate
UBS Counts) and UDSS (Using the Difference of Signal
Strength).

1) UCC METHOD USING CANDIDATE UBS COUNTS
Under UCC, the signal strength of the data transmitted dur-
ing the initial search and connection process is measured,
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saved, and noted. This process is essential for the connection
between sensor nodes and UBSs. The strength of the signal
is measured using a sensor node. If the signal strength of
a candidate UBS is larger than the threshold, the UBS is
enrolled at the sensor node. Given the number of enrolled
candidate UBSs, it is then possible to guess the location of the
sensor node, which can be calculated using the well known
triangulation method [45].

FIGURE 6. Flowchart of UCC method using candidate UBS counts.

Algorithm 2 UBS - Sensor Node Connection Process and
Candidate Base Station Registration Process

Waiting_Signal()
2: UBS_Signal_Recognition()

if Threshold < Signal then
4: Connection_UBS()

else
6: Save_UBS_Infomation()

Waiting_Another_Signal()
8: end if

The process of connection between the sensor node and
UBSs for enrolling candidate UBSs is presented in Fig.6. And
Algorithm 2 shows process of connection using pseudocode.

During the process of connection between the UBS and the
sensor node, the sensor node measures the signal strength,
and if the signal strength does not exceed the threshold,
it deems theUBS to be a candidate without connectingwith it.
After this, when the sensor node receives signals from another

UBS, it measures the signal strength and checks whether
it exceeds the threshold. This process continues until the
sensor node finds a signal that exceeds the threshold. Thus,
information about all the other UBSs that had a lower received
signal strength than the threshold is saved.

If the sensor node fulfills the condition of the handover trig-
ger, handover priority is decided using the saved information
about candidate UBSs without measuring any neighbouring
channel or scanning any neighbouring cells. We thus describe
the proposed handover methods as featuring zero neighbour-
ing channel scanning and discovery. If the UBS that meets the
condition is not detected during the process of searching and
connection, the sensor node tries to connect with the one with
the strongest signal using saved information about candidate
UBSs. The signal strength can be considered proportional to
the distance it moves in an ideal situation without refraction,
interference, or resistance.

FIGURE 7. Number of candidate base stations generated for a given
threshold of underwater base stations and a maximum radio reach.

Assuming that signal strength is proportional to distance,
the number of candidate UBSs calculatedwithin the threshold
can be determined as shown in Fig 7. Around the centre of the
circle in which the UBS is located, there are as many candi-
date UBSs as the number of overlaps of UBS RANGEMAX
and UBS RANGETreshold. Using the number of candidate
UBSs, the approximate location of the sensor node can be
estimated, and the handover target cell priority can then be
decided. The whole process is presented in Algorithm 3.

In order to discuss the procedure for determining handover
priority using the number of candidate UBSs, definitions of
internal and external UBSs are required. Internal UBSs are
defined as those that are connected to their UBSC and which
exist inside its coverage. External UBSs are regarded as those
UBSs that do not exist inside the coverage of the UBSC.
We now describe three possible cases.

a: CASE 1: CANDIDATE UBS COUNT IS 1
When the sensor nodes are moving out of range of the
connected UBS, it is considered that they could possibly
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Algorithm 3 Determining Handover Priorities Based on the
Number of Candidate Underwater Base Stations

Moving_Node_Detection_Mode()
if Node_Out_of_Range() then

3: Handover_Request()
if Candidate_UBS_Count() == 1 then
Nearest external base station connection

6: end if
if Candidate_UBS_Count() == 2 then

Connect with candidate UBS
9: (except connected UBS)

end if
if Candidate_UBS_Count() == 3 then

12: Connect in strongest candidate UBS
(except connected UBS)

end if
15: else

Moving_Node_Detection_Mode()
end if

head in the direction of the external UBS. Thus, handover is
attempted for the closest of the external UBSs.

b: CASE 2: CANDIDATE UBS COUNT IS 2
When the sensor nodes are moving out of range of the con-
nected UBS, handover is attempted with one of the internal
UBSs other than the currently connected one. If the trial of
the handover with the candidate UBS fails, connection is
attempted with other UBSs not identified as candidates.

c: CASE 3: CANDIDATE UBS COUNT IS 3
Handover is attempted with the UBSwith the strongest signal
among the candidate UBSs other than the currently con-
nected UBS. If it fails, connection is attempted with the next
strongest UBS.

2) UDSS METHOD USING DIFFERENCE OF SIGNAL
STRENGTH OF EACH UBS
The UDSS (Using the Difference of Signal Strength) method
works by measuring and using the strength of the signal
transmitted from all the UBSs in the range of the sensor
node. Because it works bymeasuring the signal strength of all
UBSs, the sensor node should know the number of UBSs that
surround it. The sensor node saves the signal strength from
the UBSs. Consequently, the handover priority is determined
from the difference of signal strength.

Fig. 8 shows the IoUT connection procedure for the UDSS
method. And Algorithm 4 shows UBS connection process.

We explain the prediction procedure for the location of the
sensor node using the difference in signal strength from the
UBSs. Fig. 9 shows the position of the sensor nodes according
to signal strength difference. We assume that the sensor node
is connected to UBS_A with the strongest signal. In this case,
the location of the sensor node predicted from the difference
in signal strength can be classified into 3 regions.

FIGURE 8. Flowchart of UDSS method using signal strength difference.

Algorithm 4 Underwater Base Station Connection Process
Waiting_Signal()
UBS_Signal_Recognition()
Save_UBS_Infomation()

4: Count++
if Count == UBS_Total_Num() then

Connection_UBS(MAX(Signal))
else

8: Waiting_Another_Signal()
end if

1© ξUBSB ≈ ξUBSC && ξUBSA � ξUBSB && ξUBSA � ξUBSC
2© [ξUBSA ≈ ξUBSB && ξUBSB � ξUBSC ] || [ξUBSA ≈ ξUBSC

&& ξUBSB � ξUBSC ]
3© ξUBSA ≈ ξUBSB ≈ ξUBSC
Here, ξUBSA , ξUBSB , and ξUBSC denote the signal strength of

base stationsUBS_A,UBS_B, andUBS_C , respectively. The
sensor node can be assumed to be located in region 1© when
the signal fromUBS_B and C is weak (but the B and C signal
strengths are similar) and the signal from UBS_A is strong.

In region 2©, two conditions are possible. In the first,
the signal strengths of UBS_A and UBS_B are similar and
the signal from UBS_C is weak. In the second, the signal
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FIGURE 9. Position of sensor nodes in IoUT network structure according
to difference in signal strength.

strengths of UBS_A and UBS_C are similar and the signal
from UBS_B is weak.

The sensor node can be assumed to be located in region 3©

when the strengths of the signals from all the UBSs are
similar. If the sensor node connected to UBS_A is located in
region 2© and ismoving far away from the connected base sta-
tion, handover is attempted with UBS_B(or UBS_C), which
is the next strongest UBS. If handover fails, it attempts to
connect with the next strongest UBS.A sensor node located in
region 3© also attempts handover in order of signal strength.
In the location of 1©, handover is not attempted with the
internal UBS.

Similar to Case 1 of the UCCmethod, by assuming that the
sensor nodes are most likely to be heading in the direction of
the external UBS, handover is requested first with the closest
external UBS.

B. ANALYSIS AND PERFORMANCE EVALUATION
In this section, a probabilistic rationale and a geometric anal-
ysis are proposed to show that the sensor nodes may select a
proper target cell with zero neighbour scanning or neighbour
discovery with a fairly high probability by using the proposed
methods in a real situation. Also, we observe how the fre-
quency of network crashes varies according to the handover
success probability. Table 2 shows the parameter information
used in analysis Fig. [45].

For the geometric analysis, it is assumed that a sensor
node A(SN_A) is connected to a certain base station noted
by UBS_A. The sensor node can be considered to be located
in the grey-coloured area when the candidate UBS count is
1 or when the signal strength from UBS_A is the highest, and
the signals from the others are relatively weak.

TABLE 2. Formulation paramete for analysis and performance evaluation
[45].

FIGURE 10. The probability that a moving sensor node will face an
external UBS.

Assuming that the sum of the angles α, β, γ implies that
the heading is towards the internal UBSs, the probability that
the heading of the sensor nodewill get away from theUBS for
given α, β, γ can be calculated as follows. In this formulation,
Alen, Blen,Clen,Dlen, Elen, Flen,Glen are defined as the lengths
of lines A, B, C, D, E, F and G in Fig. 10.

α = arccos(Alen/Clen) (1)

β = (C2
len + D

2
len + G

2
len)/2 ∗ Clen ∗ Dlen (2)

γ = arccos(Flen/Dlen) (3)

The angle of the external UBS direction can be obtained by
subtracting the internal UBS angle from 360 degrees. Thus,
the probability that the sensor node will escape to an external
UBS is formulated as follows. In this formulation, SN_Aescape
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denotes the escape probability from the current UBS.

SN_Aescape = (360− (α + β + γ ))/360 (4)

The induced formula above, the possibility that a sensor
node would leave to an external base station is calculated as
77% maximum [45].

FIGURE 11. Probability of sensor node heading for candidate base
station.

In the case of Fig. 11 which shows that SN_B is connected
to UBS_B, The sensor node can be considered to be located in
the dark grey area when the candidate UBS count is 2 or when
the signal strengths from UBS_B and UBS_C are similar
while the signal fromUBS_A is the weakest. In this situation,
the sum of the angles δ, ε is the angle of escape to the
direction of the external UBSs. Angle δ, ε can be calculated
from the slopes of lines I and K , relative to the linesH and J ,
respectively.

In the following formulations, XUB, YUB denote the dis-
tances of the X-axis and Y-axis from UBS_B, and XUC , YUC
denote the distances of the X-axis and Y-axis from UBS_C
in Fig. 11. XSB, YSB indicate the distances of the X-axis and
Y-axis from SN_B.

Hslope = (YUB − YSB)/(XUB − XSB) (5)

Jslope = (YUC − YSB)/(XUC − XSB) (6)

Islope = −(1/Hslope) (7)

Kslope = −(1/Jslope) (8)

By adapting the reverse tangent to Islope and Kslope,
the value of the angles δ, ε can be calculated.

δ = arctan(Islope) (9)

ε = arctan(Kslope) (10)

‘‘SN_Bp’’ is defined as the probability that the sensor node
B is heading to the internal base station without leaving the

external base station, and can be obtained as follows.

SN_Bp = (180− (δ + ε))/180 (11)

The value of SN_Bp may change according to the initial
location of the sensor node, but in most situations the sensor
node heads to the candidate UBSwith the highest probability.

By the induced formula above, the possibility that a sensor
node would move toward the other potential base station
within the range is calculated as 82%. This means that a
sensor node would head to the internal candidate base stations
at most of the locations.

In particular, the sensor node can be considered to be
located at the centre of the UBSC when the candidate UBS
count is 3 or when signal strengths from all the UBSs are
similar. In this situation, sensor nodes are most likely to head
to an internal UBS no matter what direction it moves. In this
regard, the handover target cell can be determined among the
internal UBSs.

We performed an intensive system level simulation
together with mathematical and geometric modelling to show
the accuracy of the proposed handover prediction model. The
tests were conducted assuming that the nodes connected to
the UBS are moving far and in an inconstant direction in the
aforementioned three cases in Fig. 3 and Fig. 7.

V. EXPERIMENTAL SETUP
This research suggests a handover method which pre-
vents additional energy usage by using inevitably collected
information. Also, it conducted probabilistic, mathematical,
and geometric investigations about the suggested method.
However, it is necessary to check if the method can work in
real environments. This chapter discusses the environments,
parameters, and the results of the system level simulations for
these verifications.

A. SIMULATION ENVIRONMENT AND PARAMETER
The system level simulator designed and implemented by
using Python. Additionally we used open-library such as
Numpy andMatplotlib for implementation of the simulations.
The composition of the base stations used in the practical
experiment is shown in Fig. 12.

In this simulation, one UBSC contains 3 UBSs, and
3 UBSCs(9 UBS’s) were composed in total. The deployment
of the test scenario is corroborated with the specification of
the real IoUT network which is implemented in the afore-
mentioned project supported by Korean government. The
coordinates and the simulation parameters of the UBSCs and
the UBS’s are as described on Fig. 13.

Two types of experiments are conducted, the first exper-
iment was about whether the sensor nodes move like the
suggested method in practice, and the second one was about
the affect of the incorrect handover prediction to the IoUT
networks.

Fig. 14 shows the simulation progress about the movement
of sensor nodes. In this simulation, sensor nodes are located
on random coordinates and moved to random directions from
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FIGURE 12. Handover simulation environment and nodes configuration.

FIGURE 13. Simulation parameters for node mobility test and collision
rate test.

the connected base station. For the verification, the simulation
was conducted for 10,000 times in each case. For the calcu-
lation of network crashes of handover failure, the experiment
was done by adding a node trying handover. It was done for
1,000 seconds, and each node has 1% of data transmission
probability at every second. In the case that handover target is
correctly predicted, even if the delivery for handover request
message fails due to a crash, the handover can possibly be
succeeded within the retransmission limit.

In the other case that handover target is not correct,
we choose the method that repeats handover attempts for the
number of retransmission limit. Fig. 15 shows the flow chart
to the simulations.

VI. RESULT AND DISCUSSIONS
A. CASE. 1: CANDIDATE UBS COUNT IS 1
Fig. 16 shows the results for two methods. The simulations
were repeated 10,000 times for the sensor node that moved

FIGURE 14. Algorithm-based flow chart for simulations of node mobility.

FIGURE 15. Flow chart for collision test.

away from the connected base station in Case 1 for both the
UCC and UDSS methods. For the UCC method, the proba-
bility that the sensor nodes head to external UBSs is 76.38%,
while the probability that the sensor nodes headed to internal
UBSs is 23.62%.

In the case of the UDSS method, the trend is similar to
the UCC method. 71.3% of the sensor nodes moved in the
direction of the external UBSs while the remaining 28.7%
moved in the direction of the internal UBSs. Most of the
sensor nodes headed towards external UBSs.

B. CASE. 2: CANDIDATE UBS COUNT IS 2
Situations were considered in which the sensor nodes were
located randomly in region 2©, and each simulation was
conducted 10,000 times. Fig. 16 shows the results of the
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FIGURE 16. The simulation results for UCC and UDSS methods.

simulations, and indicates that the sensor nodes are most
likely to head towards the internal UBSs in both the UCC
method and the UDSS method. In the UDSS method, 83.7%
of the nodes headed to the internal UBSs.

C. CASE. 3: CANDIDATE UBS COUNT IS 3
In case 3, situations were considered where the sensor nodes
are randomly located in region 3©, and each simulation was
conducted 10,000 times. Fig. 16 shows the results of the
simulations, and in the UCC case, the sensor nodes moved
to the internal UBS with the second strongest signal with a
probability of 78.47%. In UDSS, the sensor nodes moved
to the internal UBS with the second strongest signal with a
probability of 86.25% as expected.

FIGURE 17. Network impact on IoUT networks in terms of collision rate
according to the number of nodes.

D. NETWORK IMPACT: COLLISION TEST
Fig. 17 indicates the impact of the handover attempts on the
IoUT networks of correct or incorrect prediction. In these
simulations, we assumed that 10 sensor nodes are located in a
single UBS cell, and these nodes are sending data based on a
CSMA (Carrier SenseMultiple Access)-based random access
mechanism to the UBS. In this experiment, we measured
the packet collision rate for 1000 seconds of transmission.
In Fig. 17, the number of additional nodes on the x-axis
indicates the number of nodes that were added and attempted
handover. This was done by adding sensor nodes one-by-one
starting with 10 nodes communicating in a normal situation.
The added sensor nodes requested handover until they suc-
ceed, and if a collision occurred they made requests again.
If the handover was undertaken correctly, the sensor node
started data transmission like other sensor nodes. As the
number of added sensor nodes increased, we observe that
the collision rate also increased. The orange-coloured bar
shows the case where the added sensor nodes correctly pre-
dicted the handover target using the proposed methods. The
blue-coloured bar indicates the case where the handover was
attempted randomly, such that the handover request might
fail in some cases. The handover procedure is repeated until
it succeeds. The blue-coloured bar shows a steeper increase
in the number of collisions. We thus note that the network
performance can be increased by using the proposed han-
dover prediction methods in terms of collision rate. When
the prediction is correct, the collision rate is increased much
less than the case in which the prediction is incorrect. The
collision rates increase as 13.95%, 18.06%, 31.83%, 42.15%,
and 47.11%, depending on the number of additional nodes.
On the other hand, when the handover target cell is predicted
correctly using the proposed methods, the collision rates are
13.92%, 15.35%, 17.68%, 20.54%, and 23.16%, depending
on the number of additional nodes.

VII. CONCLUSION AND FUTURE WORK
In this paper, intelligent handover prediction schemes with
zero scanning are proposed for reducing the battery power
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consumption and to increase the efficiency of IoUT net-
works. These are essential features of underwater IoT devices
where battery life is limited. Based on the proposed handover
prediction scheme, the power consumption can be reduced
because channel scanning is not required. In addition, it is
possible to improve the network efficiency by reducing the
collision rate and by predicting the correct handover target
cell. In this study, we considered a practical underwater IoT
network under development for commercialization in South
Korea. For further studies, the main idea of the proposed
schemes is expected to also be applicable for practical IoT
devices and systems in general.
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