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ABSTRACT The problem of finding the optimal deployment of sensors is becoming increasingly important
with the growing expansion of the Internet of Things paradigm and increased usage of sensor networks
in different applications. During the installation of sensor networks, sensor placement directly affects the
performance of the system. The general problem of determining the position and orientation of the sensors
with the goal of optimal coverage of a given environment is NP-hard. In this manuscript, an effective
stochastic method for the placement of sensors in arbitrarily given two-dimensional and three-dimensional
environments is proposed. The method uses models of generic isotropic and directional sensors with the
defined probabilistic coverage. The optimization function combining the environment and sensor models
based on the area coverage metric is proposed. Three optimization algorithms are compared with regard to
obtained coverage score, execution time, and reliability, and the results are presented and discussed.

INDEX TERMS Sensor placement, sensor models, genetic algorithms.

I. INTRODUCTION
With the growing expansion of the Internet of Things (IoT)
paradigm and increased usage of sensor networks in different
applications the problem of finding the optimal deployment
of sensors in the field relative to some specific performance
metric is becoming increasingly important. One of the most
important performance metrics is network coverage [1]. The
coverage performance by the network of sensors depends col-
lectively on the placement of individual sensors. Depending
on the type of sensor, individual sensors may have different
individual coverage models. For example, by optimally plac-
ing the visual sensors, the performance of the video surveil-
lance system can be increased while simultaneously reducing
the number of sensors required to cover a certain area, thus
lowering the overall installation and operating costs. It may
be important to cover specific parts of the environment of
greater significance, such as passages, space around exposed
artworks, and the like. When analyzing people’s behavior,
it is desirable to increase the coverage of certain areas, e.g.
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in front of product shelves, promotional posters, or show-
cases, to enable a more detailed analysis of people’s interest
in a particular product or type of advertisement.

The problem of determining the optimal placement of sen-
sors in an environment finds its basis in the problem of the Art
Gallery Problem, a famous computational geometry problem
posed by Victor Klee as ‘‘What is the smallest number of
guards needed to guard an art gallery?’’ [2]. This problem
has a basis in the visibility, a metric that gives quantitative
information on how good the sensors detect and see the object
in the environment, a common factor for the fields of robotics,
computer vision, optimization, and computational graphics.

Klee’s original Art Gallery Problem was to determine the
covering positions for guards who can survey 360◦ around
their fixed position, while the art gallery is described with
a polygon. Four types of guards are defined: vertex, point,
edge, and mobile guard. Vertex guard limits the positions of
guards to polygon vertices, point guard limits the positions
inside the polygon, while edge guard allows only placement
along the polygon edges. The mobility guard is allowed to
move along a sequence of closed line segments completely
contained in the simple polygon. The term ‘‘polygon’’ is
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usually modified by ‘‘simple’’ to distinguish it from polygons
that cross themselves [3]. This means that the original Art
Gallery Problem assumes only the line of sight restriction:
two points are visible if the line segment between them does
not intersect any object. Some works extended the problem
with the range and incidence constraints [4], but still kept the
simple two-dimensional, polygon, approach.

These studies used a polygonal region in the plane as the
model of the art gallery. The plane polygon only models the
floor outline of the art gallery. It does not always provide
adequate information about the complex spatial structure of
the building. In many applications, knowledge of the spatial
structure of the building is essential for deciding how the
building should be monitored [5].

For three-dimensional environments, studies are usually
based on elevation maps restricted to planar terrains [6] and
orthogonal polyhedral environments [7]. The Art Gallery
Problem, in both two-dimensional and three-dimensional
environment, is proven to be NP-Hard, although, for some
instances regarding two-dimensional problems and some
three-dimensional with simple polygons, a solution can be
found [3], [4], [8].

There are many real-life problems extrapolated from Art
Gallery Problem making the mentioned problem more than
a geometric exercise. Examples of the Art Gallery Prob-
lem usage are found in security applications (placing security
cameras or guards) but also in other fields like placing TV
cameras in a showroom, arranging the lighting sources in a
room, or placing radar stations. Practical implementations of
the Art Gallery Problem are increasing the complexity of the
stated problem, as the real world has great variety in shapes
of the polygons and a global solution that would suffice for
all polygon types has not been found yet [2].

The first aspect of the problem is related to the type of used
coverage, which directly affects the optimization process.
There are multiple types of coverage metrics as the sensors
are placed with a specific use in mind [9], [10]. The most
widely used metric is the area coverage which is defined as
the ratio of the area covered by the sensors to the total target
area [11]–[13]. Special cases of area coverage include point
and barrier coverage, where certain locations in the target
environment have a higher importance in the coverage prob-
lem. The objective of the k-coverage is to cover each location
in the target environment by at least k sensors. There are
multiple reasons to use k-coverage, for example, robustness
and positioning [14].

Based on the aforementioned Art Gallery Problem, it is
evident that the second aspect of the problem relates to
the dimension of the target environment. Even though
two-dimensional environments represent a simpler compu-
tational problem, such an approximate approach can lead to
errors. Those errors are the result of an attempt to model a
real-world environment in a lower, two-dimensional space,
and are caused by an overestimation in the calculation of area
coverage. Three-dimensional environments represent a more
faithful description of a real-world environment, which can

lead to a much better approximation of sensor positions, but
with the inherent problem of higher computational cost, i.e.
slower computation.

In any case, when calculating the area coverage, the topog-
raphy of the environment, and the existing obstacles that
cover the sensory area of each sensor should be taken
into account [15]. Existing research in this area has typ-
ically assumed two-dimensional environments [16]–[20]
or approximated a three-dimensional problem with two-
dimensional. The approximation approach used a fixed sen-
sor height and limited search space to one plane [21], [22].
Throughout this manuscript, both two-dimensional and
three-dimensional types of environments will be examined.
Since a three-dimensional case expands the search space, thus
significantly hardens the problem, emphasis will be on the
aforementioned case.

A further aspect of the problem is related to the detection
ability of the sensor [23]. The detection ability of the sensor
describes if the sensor ‘‘sees’’ an object, in case of binary
coverage, or how good it ‘‘sees’’ it, for probabilistic coverage.
Detection is usually modeled using binary coverage for each
of the sensors [17]–[20], [24], [25], but probabilistic coverage
provides a more refined model [21], [26]–[28].

In addition to the detection capability, the shape of the area
covered by the sensor is an important aspect. The coverage
area of the sensor depends on the sensor type. The assump-
tion of isotropic sensing ability is only true for some types
of sensors (Bluetooth beacons, Wireless beacons. . . ), while
others have directional sensing ability (cameras, ultrasonic
sensors. . . ). Sensor, in the context of this manuscript, is the
device that can receive or provide some kind of signal. Exam-
ples of sensors providing the signal are signal beacons, which
emit a radio or light signal in their vicinity. An example of the
latter one is the Camera, which receives the light signal and
detects the visible light spectrum in the form of a video.

In this manuscript, an effective method for the problem
of optimal placement of the sensors in a three-dimensional
environment based on the probabilistic coverage model and
stochastic approach is proposed. The proposed solution con-
sists of the environment and sensor models combined with
the optimization function derived from the area coverage
metric. Any number of sensors can be used and placed in the
environment using any algorithm for derivative-free, nonlin-
ear, and constrained optimization. The stochastic approach is
proposed, as an effective method for the proposed solution.

Through the definition of the environment and sensor mod-
els that roughly describe the real world the proposed solution
makes the search for an optimal solution practical. Increas-
ing the sensor coverage by optimally placing the sensors,
improves the performance of the sensor network.

To validate the proposed solution experiments were per-
formed using environments and sensors modeled based on
their real-world physical characteristics. Models for both
isotropic and directional sensors were proposed.

Three nature inspired genetic algorithms were compared
with regard to their obtained coverage score, execution time,
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and reliability. Algorithms were compared in test cases with
different environments, rasterization values, sensor types, and
numbers of sensors.

To summarize, the following contributions are presented in
this manuscript:
• An effective method for addressing the problem of opti-
mal placement of sensors in a given environment

• Environment modeling based on real-world physi-
cal characteristics using both two-dimensional and
three-dimensional representations

• Generic sensor models for isotropic and directional sen-
sors with the probabilistic coverage

• Optimization function based on the area coverage metric
• Comparison between three nature-inspired genetic algo-
rithms for the problem of sensor placement

The manuscript is organized as follows: in Section II
and Section III proposed environment and sensor mod-
els are introduced, followed by the description of the
optimization function in Section IV. After the optimiza-
tion function, the experimental setup containing the chosen
environment and sensor models, as well as the descriptions of
the used algorithms and hardware is explained in Section V.
SectionVI contains a few chosen case studies of the optimiza-
tion results followed by the results of the comparison between
the selected algorithms. Finally, the concluding remarks are
given in Section VII.

II. ENVIRONMENT MODELS
To evaluate the estimated positions of the sensors,
environment models used to roughly describe the real world
environments are defined using the free and occupied space.
A rough model of the real world environment is defined by
its ground plane layout. Free and occupied space can be arbi-
trary definedwith the polygonal three-dimensional modeling.
Environment models are defined in three-dimensional space,
but if only a two-dimensional representation of the defined
environment is needed their ground planes can be used.

To allow for the calculation of the space coverage, the envi-
ronment is further split in voxels. The rasterization param-
eter defines the dimensions of one voxel and, as a product,
the granularity of space coverage. The number of voxels in
the environment, therefore, depends not only on the layout
and dimensions of the free and occupied space but also on the
rasterization parameter. The presupposition is, that the more
voxels in an environment, the more accurate the description
of the world is.

Using both two-dimensional and three-dimensional space
representations, as well as different rasterization parameters,
enables the evaluation of the performance of the optimization
algorithms on test cases with different complexities.

III. SENSOR MODELS
Sensor models are defined through the specification of the
rules for the visibility calculation for every voxel in the
environment surrounding the sensor. As stated earlier, sen-
sor models that use the probabilistic coverage model are

proposed. There are two main types of sensors, based on their
sensing ability. The first one is sensors with isotropic sensing
ability, while the second is the sensors with directional one.

Visibility vvs between each of the voxels vi and sensors sj
is defined as a product of three base functions:

vvs(vi, sj) = vd (vi, sj) · vϕ(vi, sj) · vθ (vi, sj), (1)

where vd is the visibility value which depends on the distance
between the sensor and the observed voxel, while the visibil-
ities vϕ and vθ are dependent on the azimuth and inclination
angles between the sensor and the voxel. All three visibilities
calculations depend on the used sensor type and will be
described separately in the following subsections.

Visibility is only calculated if there is a line of sight
between the voxel and the sensor. Distance dvs between the
voxel and the sensor used in distance visibility function vd is
calculated using euclidean distance formulation:

dvs(vi, sj) =
√
(vix − sjx )2 + (viy − sjy )2 + (viz − sjz )2. (2)

Both azimuth ϕ and inclination θ , are calculated as angles
in the spherical coordinate system:

ϕvs(vi, sj) = arctan 2
(
viy − sjy , vix − sjx

)
, (3)

θvs(vi, sj) = arcsin
(
viz − sjz
dvs(vi, sj)

)
. (4)

Those two angles are used in the calculation of the azimuth
visibility vϕ and inclination visibility vθ appropriately.

A. ISOTROPIC SENSORS
The isotropic sensors are ones that have the same uniform
sensing ability, regardless of the signal direction. As such, all
sensors with the isotropic antenna have the angular visibility
of an observed voxel as a constant and defined as:

vϕ(vi, sj) = 1, (5)

for the azimuth and as:

vθ (vi, sj) = 1, (6)

for the inclination angle.
One of the most common representatives of the isotropic

sensor is a radio transmitting beacon with an isotropic
antenna that incessantly emits radio signals in its vicinity.
In the following, we propose a simplified model for a radio
transmitting beacon that does not take into account the influ-
ence of radio wave reflection or absorption.

Distance visibility vd for this sensor type is modeled as
Received signal strength indicator (RSSI) function:

rssi(vi, sj) = −20 · log10(dvs(vi, sj))+ rssi1m. (7)

The received signal strength indicator is a value that
depends both on the distance from the sensor as well as
the signal strength at the distance of one meter rssi1m. The
received signal strength indicator value depending on the
distance is shown in Figure 1.
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FIGURE 1. Received signal strength (rssi ) depending on the distance
between voxel and sensor.

As received signal strength indicator value drops as the dis-
tance increases, the signal strength drops below the strength
of the noise signal. As the value of noise represents mini-
mal usable value, a signal-to-noise ratio (SNR) is used. The
signal-to-noise ratio is the difference between the received
signal strength indicator and the noise values in decibels.
As any value equal or below the noise level is considered not
usable resulting value is set to zero for any signal-to-noise
value not bigger than assumed noise value:

snr(vi, sj)

=

{
rssi(vi, sj)− noise, iff rssi(vi, sj) > noise
0, otherwise

. (8)

Calculation of the optimization function depends on the
probabilistic visibility values, values between zero and one.
To satisfy that requirement a signal-to-noise value is normal-
ized using the rssimax value, a value of the received signal
strength at the closest point. This normalized signal-to-noise
ratio is the value used as distance visibility vd , Figure 2, for
this sensor:

vd (vi, sj) =
snr(vi, sj)

rssimax − noise
. (9)

B. DIRECTIONAL SENSORS
The second model presented, representing the directional
sensing group, is one of the stereo cameras. A Stereo Camera
is a system of two RGB cameras in the same enclosure,
usually lying in the same plane and on the fixed distance.
Depth data, or distance from the sensor plane, is calculated
through the process called Stereo matching.

Stereo matching is a process typically done on rectified
images from both cameras [29]. The relative relationship
between the pair of images is preserved after the rectification

FIGURE 2. Distance visibility value (vd ) for modeled sensor.

of both images in the form of a Q matrix:

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0
−1
Tx

cx − c′x
Tx

 . (10)

In a Q matrix, a value Tx is the distance between cameras
(baseline), usually in meters or millimeters. Values cx and
cy are the coordinates in pixels of the principal point of the
reference camera, usually a left one. Value c′x is the x coordi-
nate of the principal point of the non-reference camera. When
both camera resolutions are equal and the normal rectification
process is done, the cx and c′x will have the same values and
the last element in the Q matrix will be zero. Value f is the
focal length in pixels.

The key step of the stereo matching process is searching
for matching pixels in both images corresponding to the same
point in the scene [30]. For rectified images, those matching
pixels are found on the same epipolar line, i.e. in the same row
of the image. A search is only performed up to a maximum
distance dmax from the reference pixel in one direction, in case
no matching pixel is found, for example, due to occlusions.
The distance between x coordinates of the matching pixels is
called disparity.

From the disparity value and the values from Q matrix,
a depth value can be calculated:

depth =
Tx · f

disparity
. (11)

As the disparity level is a discrete value, the error func-
tion used for distance visibility calculation is defined as the
distance between two neighboring disparity levels. For the
voxel at the specific distance dvs, the error is calculated as
the distance between which that specific distance is located:

errord (vi, sj) =
Tx · f

bdisparityc
−

Tx · f
ddisparitye

, (12)
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FIGURE 3. Error value (errord ) for stereo camera.

FIGURE 4. Distance visibility value (vd ) for stereo camera.

and then disparity calculation from the distance between the
sensor and a voxel is added to the formula:

errord (vi, sj) =
Tx · f⌊
Tx · f

dvs(vi, sj)

⌋ − Tx · f⌈
Tx · f

dvs(vi, sj)

⌉ . (13)

Error value for Stereo Camera depending on the distance
is shown in Figure 3.

The measure used in the optimization function is visibility
with the assumption of 1 being fully visible and 0 not visible.
Depth data is usually used to detect objects in the scene.
As such, during the modeling of the sensor, the minimal size
of the object expected to be detected should be taken into
account. If the distance between two consecutive disparity
levels is smaller than a errorthr value, a voxel is assumed to be
fully visible. Furthermore, as this distance increases, the error
rises and consequently, visibility value decreases, Figure 4:

vd (vi, sj)

=

 1, iff errord (vi, sj) < errorthr
errorthr

errord (vi, sj)
, otherwise . (14)

Coordinates of the voxels are converted from the envi-
ronment’s global coordinate system to the local coordinate
system of the sensor using the pitch and yaw angles of the
camera. Following the conversion, azimuth and inclination
angles between the sensor and a voxel are defined using
previously described formulas. The angular visibility model
depends on two main characteristics of the sensor: field of
view and the used stereo matching algorithm. Fields of view,
both vertical and horizontal, affect the width of the visible
angle spectrum, while the other features of the angle spectrum
such as the slope of its boundaries depend on the used stereo
matching process.

In Figure 5 an example of basic dimensions of one image
is shown. Full thick lines represent image borders with the
image width xdim and image height ydim. The thin dotted lines
show the previously defined camera principal point C and
its position in the image cx and cy. Thick dashed lines are
separated from the vertical borders by maximum disparity
dmax . There are two arrows marked with in1 and in2 point-
ing to two horizontal borders of the image as well as four
marked with az1, az2, az3, and az4 pointing to two vertical
image borders, together with two lines separated from those
borders for dmax . Those six values, i.e. positions, will be used
for angular visibility calculations, for both inclination and
azimuth visibility respectively.

FIGURE 5. Representation of used values for angular visibility calculation.

As the basic stereo matching algorithm is trying to match
the pixels in the same row, inclination dependent visibility
has only two states: zero and one. Voxels with the inclina-
tion angle inside the vertical field of view domain are fully
visible, while others, outside of the vertical field of view, are
completely invisible. Two angles in1 and in2, calculated from
those vertical image boundaries are defined as:

in1 = arctan 2(Tx · (0− cy),Tx · f ), (15)

and:

in2 = arctan 2(Tx · (ydim − cy),Tx · f ), (16)

where 0 − cy is the distance in pixels of the upper vertical
boundary from the principal point, while ydim−cy is a distance
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between the lower vertical boundary and the principal point.
Those two values are used as the limits of the vertical field of
view in the inclination visibility calculation:

vθ (vi, sj) =

{
1, iff in1 ≤ θ (vi, sj) < in2
0, otherwise .

(17)

Graph showing inclination visibility for proposed sensor is
given in Figure 6.

FIGURE 6. Inclination visibility value (vθ ) for stereo camera.

There is a small difference between inclination and
azimuth visibility. Similar to the inclination based visibility,
all the voxels with the azimuth outside of the horizontal field
of view are not visible. All voxels whose corresponding pixels
are inside the image and at most dmax from each edge are
considered to be fully visible. The leftmost and the rightmost
limits are image boundaries, defined as:

az1 = arctan 2(Tx · (0− cx),Tx · f ), (18)

and:

az4 = arctan 2(Tx · (xdim − cx),Tx · f ). (19)

Limits of the fully visible space are calculated on the
distance of dmax from left edge:

az2 = arctan 2(Tx · (dmax − cx),Tx · f ), (20)

and right edge:

az3 = arctan 2(Tx · (xdim − dmax − cx),Tx · f ). (21)

For those voxels that have corresponding pixels near the
edges of the image, visibility is defined as the ratio between
the distance from the edge and dmax :

vϕ(vi, sj)=



ϕ(vi, sj)− az1
az2 − az1

iff az1 ≤ ϕ(vi, sj) < az2

1, iff az2 ≤ ϕ(vi, sj) < az3
ϕ(vi, sj)− az4
az3 − az4

iff az3 ≤ ϕ(vi, sj) < az4

0, otherwise .
(22)

Such calculation is derived from the stereo matching algo-
rithm and the smaller search space it has near the edges. The
graph for the voxel azimuth visibility is shown in Figure 7.

FIGURE 7. Azimuth visibility value (vϕ ) for stereo camera.

IV. OPTIMIZATION FUNCTION
In order to enable the search for optimal positions of the
sensors in a given environment, it is necessary to define
an optimization function that evaluates the selected solu-
tion. That optimization function is a minimization function
connecting the previously described environment and sensor
models based on the chosen metric. The optimization func-
tion describes a single-objective, continuous problem. Any
optimization algorithm with the ability of derivative-free,
nonlinear, and constrained optimization can be used with it.

The metric used in the proposed solution is the area cov-
erage metric, defined as the ratio of the area covered by the
sensors to the total target area. The optimization algorithm
aims to minimize the global loss value obtained as a result
of the optimization function. Loss value is defined as the
complement of the coverage.

Arising from the chosen coverage metric, global loss
value L is defined as the arithmetic mean of the loss values
for all n voxels in the environment V :

L(V , S) =
1
n

n∑
i=1

Lv(vi, S). (23)

As one voxel can be visible from multiple sensors in the
environment, a loss for each voxel, Lv, is defined as a product
of the loss values from each of the m sensors in the sensor
set S:

Lv(vi, S) =
m∏
j=1

lvs(vi, sj). (24)

Loss value for each combination of the sensor and voxel
in the environment, lvs, is defined as the complement of that
pair visibility, as previously defined in Equation 1:

lvs(vi, sj) = 1− vvs(vi, sj). (25)

For the definition of sensor positions, yaw and pitch angles,
continuous values are used. Voxel values are defined with
discrete positions derived from the environment using the
defined rasterization parameter.

185600 VOLUME 8, 2020



D. Sušanj et al.: Effective Area Coverage of 2D and 3D Environments With Directional and Isotropic Sensors

V. EXPERIMENTAL SETUP
A. ENVIRONMENTS
Three test environments were defined by varying their shape
and the number and shape of the obstacles contained within.
For each of the defined three-dimensional environments, their
ground plane was used as a corresponding two-dimensional
test case.

The first environment, Figure 8, is U-shaped, with no
obstacles, and is representative of an environment where
more than one sensor is needed to obtain a satisfactory cov-
erage of the environment, due to the curvature present in
the environment. In this scenario, one sensor might have a
fairly large coverage of space, but it cannot cover parts of the
environment that are hidden, due to the environment shape.

FIGURE 8. Environment 1 2D ground plan (left image) and 3D isometric
view (right image).

The second environment, Figure 9, represents a simple
quadratic shaped environment where multiple obstacles are
present. Because of the obstacles, an individual sensor cannot
have a large coverage of space. In three-dimensional space,
obstacles have different heights, but they are diagonally sym-
metrical.

FIGURE 9. Environment 2 2D ground plan (left image) and 3D isometric
view (right image).

The third environment, Figure 10, represents a scenario
where multiple obstacles are isolating parts of the environ-
ment. The intention was to test the behavior of the optimiza-
tion algorithm on the environment with the discontinuity,
where the optimization algorithm is forced to either place
the sensor in the enclosed part of the environment or to place
sensors in the nonisolated parts of the environment. This way,

FIGURE 10. Environment 3 2D ground plan (left image) and 3D isometric
view (right image).

an isolated part of the environment can be covered by a sensor
only if it is contained inside that isolated space.

B. ENVIRONMENT RASTERIZATION
Rasterization values of 0.1m, 0.5m, and 1.0m were used
to simulate different environment granularities. The chosen
rasterization value determines the size of the voxel edges
and as such the number of voxels in the simulated environ-
ment. The number of voxels for each of the environments in
both two-dimensional and three-dimensional representation
depending on the rasterization value is shown in Table 1.

TABLE 1. Number of voxels for each test environment and rasterization
value.

C. SENSORS
In our test cases, two types of sensors are used, with isotropic
and directional sensing abilities. For the isotropic sensor,
a previously described model of a radio transmitting beacon
instantiated with parameters derived from the specifications
of the Estimote Bluetooth Low Energy sensor [31] was used.
Parameters based on the ZED Stereo camera [32] were used
to instantiate a model of a directional sensor. The number of
sensors ranges from one to three sensors in a specific test case.
The values of the used parameters are listed in Table 2.

TABLE 2. Parameters of the used sensors.
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D. OPTIMIZATION ALGORITHMS
As stated in Section IV, any optimization algorithm with
the ability of derivative-free, nonlinear, and constrained opti-
mization can be used for the minimization of the optimization
function. Three nature-inspired genetic algorithms are used:
Artificial Bee Colony Algorithm (ABC) [33], Fireworks
Algorithm (FWA) [34] and Particle Swarm Optimization
Algorithm (PSO) [35]. The mentioned algorithms are meta-
heuristic, swarm intelligence based algorithms, designed for
optimizing non-linear functions in a multidimensional space.
In this manuscript, the optimization function described previ-
ously represents a non-linear minimization function. Sensor
positions and angles are independent variables which are
optimized. They represent a multidimensional search space,
whose size varies not only based on the environment dimen-
sionality but also on the number and type of sensors used.

The PSO algorithm was chosen because it is one of the
most used swarm optimization algorithms, and was proved to
be effective at many optimization problems. As an example
of a moremodern optimization algorithm, the ABC algorithm
was used, which was proven to be more effective at specific
optimization cases [33]. Furthermore, the FWA algorithm
was used as an example of a recent swarm optimization
algorithm, showing a significant improvement over the PSO
algorithm [34]. Also, the same combination of algorithmswas
used in [36] for mobile robot path planning, which proves
PSO, FWA, and ABC algorithms to be a viable choice for
optimization problems in continuous space.

For every algorithm, the same maximum number of evalu-
ations was defined and set to 100 evaluations per indepen-
dent variable. Regarding the algorithm parameters, swarm
size was determined empirically, by testing different swarm
sizes (10, 20, 30, 40, 50) on problems with two and nine
independent variables. No statistically significant differences
were found on the results comparing different swarm sizes,
so the swarm size of 10 was used for all the algorithms.
Furthermore, for the FWA and the PSO algorithms, other
parameters were determined experimentally, namely for the
FWA algorithm amplification and reduction coefficient were
set to 10, and for the PSO algorithm cognitive and social
components were set to 1.0 and inertial weight to 0.7.

E. HARDWARE SETUP
Considering the number of test cases and their computational
complexity, powerful hardware was used to carry out all
the calculations. The supercomputer ‘‘Bura‘‘ at the Univer-
sity of Rijeka was used [37]. More specifically, 40 nodes
with 24 physical cores each were used in the experiments.
To assure undisturbed processing and alleviate the compari-
son of execution times, each of the test cases was run on a
dedicated physical core.

VI. EXPERIMENTAL RESULTS
As described earlier, three environments were used in the
experiments. For every environment, a two-dimensional and

a three-dimensional space models were generated, and for
each of those spaces, three different rasterization values were
defined. Also, two different types of sensors were being
placed in the environment with the number of sensors vary-
ing from one to three sensors. Three different optimization
algorithms were used. Furthermore, every test case with each
of the algorithms was run for 100 iterations to account for the
stochastic nature of the optimization algorithms. In total, con-
sidering all cases, the optimizationwas executed 32400 times.

The score was calculated as a complement of the loss value
of the optimization function, 1− L(V , S), for each execution
of the optimization algorithm and for every optimization step,
i.e. execution of the optimization function. Its value ranges
between zero and one depending on how good the environ-
ment is covered by that particular sensor configuration.

Firstly, a few optimization results will be presented, fol-
lowed by the results of the algorithm comparison over all the
test cases.

A. CASE STUDIES
In all the figures in the following examples, green filled
circles denote sensors, red lines are outlines of the free space,
while blue ones are outlines of the obstacles. Voxels visible by
one ormore sensors are colored based on their visibility. Fully
visible voxels, the ones with visibility of one, are colored
with magenta, while the ones that are almost not visible, i.e.
with the visibility of that voxel close to zero, from any sensor
have been colored in cyan. Voxels that are not visible from
any of the sensors are not shown. In the following examples,
the ABC algorithm was used, since it produced the best
overall coverage score.

The first example shows one of the proposed environments,
Environment 1, described in the previous section. In Figure 11
coverage by three Stereo Camera sensors for three different
rasterization values (0.1m, 0.5m, and 1.0m) is shown in a), b),
and c) respectively.

Additionally, the influence of the different rasterization
values on the reliability of optimization algorithms is shown
in Figure 12, where, for the specific test case, three different
rasterization values were used as a varying parameter, all else
being equal. In this test case three Bluetooth Low Energy
sensors were being placed in three-dimensional space in the
Environment 3. Results from all iterations of the test case are
shown for a specific rasterization value.

It is visible that the distribution of sensor positions largely
depends on the rasterization value. For a large rasterization
value (1.0m), the dispersion of sensor positions is large,
while for smaller rasterization value (0.1m) distribution has
significantly less dispersion.

The third example shows Environment 2with the estimated
positions for isotropic sensors. Specifically, two Bluetooth
Low Energy sensors were placed in the two-dimensional
environment rasterized with the 0.1m rasterization value.
It is evident that for the placement of two sensors in the
particular environment shown, different solutions with the
same or similar score exist. In figure 13, a), b) and c) show
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FIGURE 11. Example of the coverage for different rasterization values for
two-dimensional environment 1.

FIGURE 12. Example of the dispersion of estimated position, i.e.
algorithm reliability, for different rasterization values for
three-dimensional environment 3.

few such solutions found by the algorithm. Additionally, all
positions of all iterations for this test case were combined
in one view, d), which shows the resulting distribution of
sensor positions in all iterations. Marked in cyan, blue, red,

FIGURE 13. Example of different solutions for two-dimensional
environment 2.

and yellow are results chosen from four random iterations,
showing the general rule of sensors placement in this specific
test case.

An example of a test case where there is no large vari-
ety of found solutions for sensor placement is shown in
Figure 14. Two Bluetooth Low Energy sensors were placed
in three-dimensional space of the Environment 2 with the
rasterization set to 0.1m.

In a), b), c), and d) two random iterations of the test case are
shown and have similar sensor positions. To further examine
how sensors were being placed across iterations a plot of all
sensors positions in all iterations of the test case is shown in
e), from a top view for easier visualization.

The next example is one with different numbers of Stereo
Camera sensors being placed in the Environment 3 with the
rasterization value of 0.1m and two-dimensional space.
In Figure 15 a) and b) one sensor was being placed, on c)

and d) two sensors were placed, and in e) and f) three sensors
were being placed. Due to the environment shape, it is visible
that many near-optimal positions exist, for every number of
sensors.

B. ALGORITHM COMPARISON
As mentioned earlier, 100 iterations of 108 distinct test cases
were done for each of the algorithms. For each of the test
cases, minimal, average, and maximum score and time were
calculated. Both score and execution time are directly depen-
dent on the size, shape, and rasterization parameter of the
environment as well as the type and number of sensors.
As such, a direct comparison between test cases is not viable.
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FIGURE 14. Example of different solutions for three-dimensional
environment 2.

For each algorithm, the scores and execution times for
each test case presented in the following are calculated as the
average over all the 100 iterations corresponding to that test
case. In Table 3 the results for Environment 1 are shown. The
results are similar for the other two considered environments
and are omitted for brevity. Times are displayed in seconds
and rounded to the closest integer value to simplify the
display.

Due to the inability to directly compare the results of these
108 test cases, simple win counting is introduced. Win per
each test case is credited to the algorithm having the best
score in each of the comparable categories. Counting is done
over three categories: lowest,min, average,mean and highest,
max, coverage score over 100 iterations of each test case.

Score win counts for each algorithm per category are
shown in Figure 16. From these results, an insight about the
algorithm performance can be drawn. The ABC algorithm
had the highest minimum score in 79 test cases as well as the
highest average score in 76 test cases. The ABC algorithm

FIGURE 15. Example of solutions for different numbers of stereo camera
sensors in two-dimensional environment 3.

had only 51 wins in the category of maximum scores, sur-
passed by the PSO algorithm with 57 wins. The PSO algo-
rithm had a significantly lower number of wins in minimum
and average score categories with 23 and 32 respectively. The
FWA algorithm did not achieve significant results in any of
the categories, achieving only 6, 0 and 1 wins.

A similar comparison was done on resulting times with
the goal of having a lower execution time per category,
Figure 17. In categories of average and maximum execu-
tion time, the FWA algorithm achieved wins in 84 and 75
respectively, while in the minimum category it was surpassed
by the PSO algorithm with 54 wins compared to 49. The
PSO algorithm was second with 20 wins in the categories
of average and maximum time. The slowest algorithm was
the ABC algorithm with 5, 4, and 13 wins per each of the
categories.

Based on these win counts the ABC algorithm gave the
best results overall but with the slowest time. The FWA
algorithm finished the fastest but with the worst results. The
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TABLE 3. Average scores and times for environment 1.

FIGURE 16. Score win counts for all test cases.

PSO algorithm stands in the middle, based on the number of
wins both for the score and execution time.

To study the performance and reliability of the algorithms,
theywere compared over a few chosen test cases. As the focus
of this research was on three-dimensional environments the

FIGURE 17. Time win counts for all test cases.

results for three-dimensional space with the rasterization of
0.1m are shown in the form of the box plots.
In each of the sub-figures shown in Figures 18 and 19

results for each of the algorithms for each of the environ-
ments are presented. In the Figure 18 results for the isotropic,
Estimote Bluetooth Low Energy, sensor are shown while in
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FIGURE 18. Results comparing algorithms placing estimote bluetooth low
energy sensors for three-dimensional environments 1, 2, and 3.

the Figure 19 results for the directional, ZED Stereo Camera,
sensor are shown. Each of the subfigures in both figures con-
sists of results for the same number of sensors; for one sensor
in the subfigures a), two sensors in the subfigures b), and for
the three sensors in the subfigures c).

Results for these test cases are confirming the results of
the score win counts. It is evident that the isotropic sensor
results for the ABC and the PSO algorithms are comparable,

FIGURE 19. Results comparing algorithms placing ZED stereo camera
sensors for three-dimensional environments 1, 2, and 3.

while for the directional sensors results achieved by the PSO
algorithm are significantly lower even compared to the FWA
algorithm. The difference between the ABC and the PSO
algorithm results for Bluetooth Low Energy and ZED Stereo
Camera sensors is evident. This is probably due to the number
of independent variables and will be explored in future work.
The FWA algorithm is shown to be least reliable, showing the
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FIGURE 20. Placement distributions for three example environments
(rows) and algorithms (columns).

high variance across all the iterations, alongwith significantly
lower scores.

To investigate the distribution of sensors positions across
all iterations of a specific test case in relation to the optimiza-
tion algorithm used, three test cases are shown in Figure 20.
For these test cases, all three environments were used, raster-
ization value was set to 0.1m and two Bluetooth Low Energy
sensors were placed in three-dimensional space. For easier
visualization, only the top view is shown. In the first row
results for the Environment 1 are shown (sub-figures a), b),
and c)), in the second row results for the Environment 2 (d), e)
and f)) and in the third row results for the Environment 3 are
shown (g), h), and i)), while in columns results for the ABC
algorithm (a), d), and g)), the FWA algorithm (b), e), h)) and
the PSO algorithm (c), f), i)) are shown, respectively.

From these results, it is noticeable that the FWA algorithm
has the highest dispersion in positions, with many outliers,
which contributes to our conclusion that the FWA algorithm
is not among the best algorithms that were tested considering
the score parameter. The ABC algorithm shows less disper-
sion in sensors positions and the PSO algorithm shows the
least dispersion in sensor positions. This is consistent with the
variance in the score of the algorithms shown in Figure 18 b),
where the FWA algorithm has the highest variance, followed
by the ABC and the PSO algorithms.

VII. CONCLUSION
In this manuscript, an effective method for addressing
the problem of optimal placement of the isometric and

directional sensors in an environment was proposed. The
proposed solution incorporates environment models using
both three-dimensional and two-dimensional representations
as well as the sensor models with probabilistic coverage.
Models for both environment and sensor are based on their
real-world physical characteristics.

The proposed optimization function was combined with
the proposed models to enable the maximization of the cov-
erage of the environment by the sensors using the area cov-
erage metric. The optimization function enables the use of
any derivative-free, nonlinear, and constrained optimization
algorithm.

A comparison of obtained coverage score and execution
time for three optimization algorithms was performed. The
ABC algorithm has shown to outperform its competitors,
the FWA, and the PSO algorithms in the coverage score value.
The FWA algorithm had the lowest execution times followed
by the PSO and the ABC algorithms.

Times needed for the execution of three-dimensional test
cases, especially ones with lower rasterization, proved to
be notably higher than ones with a lower number of vox-
els. As shown in the previous section, some of the test
cases started to take a few processing days compared to the
mere seconds of the others, lower-dimensional ones.

Future research will include using different types of cover-
age, especially k-coverage, as well as adding different types
of sensors. Further idea is to determine the optimal number
of evaluations per independent variable, as well as finding the
influence of the rasterization parameter on the optimization
process. Finding values that provide a good ratio of the speed
and the accuracy can speed the processing significantly with
a low impact on the accuracy. Other optimization algorithms
could be easily added and compared. One of the possibilities
is to train an agent (sensor) model using reinforcement learn-
ing, which could lead to the possibility of finding optimal
results within an unknown environment.
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